
Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

Hamilton's rule

Matthijs van Veelena,b,⁎, Benjamin Allenb,c,d,⁎, Moshe Hoffmanb,e,f, Burton Simong, Carl Vellerb,h

a Department of Economics and Business, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands
b Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
c Department of Mathematics, Emmanuel College, MA 02115, USA
d Center for Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA
e Rady School of Management, UC San Diego, La Jolla, CA 92093, USA
f Department of Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA
g Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80202, USA
h Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

A R T I C L E I N F O

Keywords:
Hamilton's rule
Inclusive fitness
Fisher's Fundamental Theorem of Natural
Selection
Replicator dynamics
Adaptive dynamics
Regression method
Counterfactual method
Empirical test
Comparative statics

A B S T R A C T

This paper reviews and addresses a variety of issues relating to inclusive fitness. The main question is: are there
limits to the generality of inclusive fitness, and if so, what are the perimeters of the domain within which
inclusive fitness works? This question is addressed using two well-known tools from evolutionary theory: the
replicator dynamics, and adaptive dynamics. Both are combined with population structure. How generally
Hamilton's rule applies depends on how costs and benefits are defined. We therefore consider costs and benefits
following from Karlin and Matessi's (1983) “counterfactual method”, and costs and benefits as defined by the
“regression method” (Gardner et al., 2011). With the latter definition of costs and benefits, Hamilton's rule
always indicates the direction of selection correctly, and with the former it does not. How these two definitions
can meaningfully be interpreted is also discussed. We also consider cases where the qualitative claim that
relatedness fosters cooperation holds, even if Hamilton's rule as a quantitative prediction does not.

We furthermore find out what the relation is between Hamilton's rule and Fisher's Fundamental Theorem of
Natural Selection. We also consider cancellation effects – which is the most important deepening of our
understanding of when altruism is selected for. Finally we also explore the remarkable (im)possibilities for
empirical testing with either definition of costs and benefits in Hamilton's rule.

1. Introduction

In 1964 Hamilton introduced the most famous rule in evolutionary
biology. In two back to back papers he formulated a model, and derived
a rule from it that we now know as Hamilton's rule. That rule states
that selection will favour altruistic behaviour if the benefits to the
recipient times the relatedness between actor and recipient outweigh
the costs to the actor. This captured both a qualitative insight – genes
can make the individuals that they are in do things that are bad for that
particular individual, but good for copies of that gene in other
individuals – and an elegant, intuitive, and simple quantification of
that phenomenon. Both Hamilton's rule and the notion of “inclusive
fitness”, which the rule suggests is maximized by evolution, have since
become standard material for both theoretically and empirically
inclined biologists. As is natural for a landmark paper, it came with
indications that also signal to outsiders that this is an important result.
The paper has about half as many citations as Darwin's (1859) “On the

Origin of Species”, and is one of the core ingredients in Richard
Dawkins' (1976) “The Selfish Gene”, which is one of the must-read
books for anyone with a general interest in science.

Besides being a monumental breakthrough, Hamilton's rule is also the
topic of a controversy. In the early '80s Karlin and Matessi (1983), and
Matessi and Karlin (1984,1986) already suggested that not all evolutionary
scenarios lead to maximization of inclusive fitness, but those papers did not
receive enough attention to make it to the collective memory of evolutionary
biology. In the last 7 years a renewed criticism of the generality of inclusive
fitness has appeared, the most notable of which was voiced in a paper by
Martin Nowak, Corina Tarnita and E.O. Wilson. The recent exchange
concerning the generality of inclusive fitness does not yet show any signs of
convergence, and positions range all the way from “Hamilton's rule almost
never holds” (Nowak et al., 2010) to “Inclusive fitness is as general as the
genetical theory of natural selection itself” (Abbot et al., 2010).

In this paper, we will review and address a variety of issues relating to
inclusive fitness. We will for instance consider the relation between
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Hamilton's rule and Fisher's Fundamental Theorem of Natural Selection
(Section 2), discuss cancellation effects, which is the most important
refinement of our understanding of how individuals sharing genes matters
for evolution (Section 7), and consider the question how Hamilton's rule
can be tested empirically (Section 8). The recurrent theme, however, will be
the central question in this controversy, which is: are there limits to the
generality of inclusive fitness, and if so, what are the perimeters of the
domain within which inclusive fitness works? In order to shed light on this
in a simple and accessible way, we chose to consider two very well-known
dynamics from evolutionary theory: the replicator dynamics (Section 3) and
adaptive dynamics (Section 6) – besides, of course, Hamilton's own
dynamical model, which is discussed in Section 2.1

We will argue that the difference in opinions on the generality of
inclusive fitness stems from a disagreement on how to define the costs
and benefits in Hamilton's rule – as suggested by Birch (2014). In this
paper, we will follow Karlin and Matessi (1983), and Matessi and
Karlin (1984,1986) and define costs and benefits by comparing actual
fitnesses with counterfactuals. This is not one of the options considered
in Birch (2014), but the “counterfactual method” is a classic possibility
that is worth exploring. Alternatively, one can define costs and benefits
using the “regression method” (for example Gardner et al., 2011;
Marshall, 2011). In cases that are uncontroversial, these different
definitions lead to the same b and c. In cases that are subject to debate,
they lead to different costs and benefits. If costs and benefits are
defined according to the regression method, inclusive fitness always
matches the direction of selection for any given linear specification (the
fact that it does so for any given linear specification is more than a
detail; the model specification issue turns out to be central to the
interpretation). If costs and benefits are defined using counterfactuals,
this is not the case. Even then, though, we can still stake out a sizable
set of models where inclusive fitness works.

Knowing that it makes a difference how costs and benefits are
defined helps understand why points of view concerning the generality
of Hamilton's rule are so different. But while it helps understand the
divergence of opinions, it still allows for disagreement on which choice
for b and c is better. Both methods will therefore be discussed in some
detail.

In Section 3 we will consider Karlin and Matessi's original counter-
factual method for defining costs and benefits, and conclude that these
definitions have an undesirable property. With their definitions, the cost of
cooperating rather than defecting is not necessarily minus the cost of
defecting instead of cooperating. Inclusive fitness therefore was bound to
only work in special cases, because of the possibility that both the inclusive
fitness of cooperation vs. defection and the inclusive fitness of defection vs.
cooperation are positive, or that both are negative. An alternative, and
perhaps – with hindsight – also more natural version of the counterfactual
method does not allow for such inconsistencies. It does, however, still allow
for inclusive fitness to not agree with the direction of selection.

In Section 4 we will discuss the regression method. We give a derivation
of the result that, with costs and benefits defined by the regression method,
Hamilton's rule always holds. The starting point for this result, however, is
that we already have a specification for the regression, and that this
specification is linear. That implies that Hamilton's rule holds just as much
for costs and benefits that follow from one linear specification as it does for
costs and benefits that follow from another. For the regression method to
be well-defined for all possible models (or datasets), it would therefore need
to be combined with a method for choosing between different specifica-
tions. Subsequently, whatever criterion one would use for choosing one
linear specification over another should also be used to choose between
linear and non-linear specifications, or between different non-linear ones.

In other words, if we have a way to decide whether or not a linear variable
should be included in the specification, then we immediately also have a
criterion that should be used to decide whether or not a non-linear variable
is to be included. This follows from the fact that least squares regressions
treat linear and non-linear variables exactly the same. We therefore argue
that Hamilton's rule, using the regression method, cannot both always be
uniquely defined, and generally valid. The general validity depends crucially
on the specification being linear, while any criterion that one could use for
choosing between different linear specifications will immediately imply that
there will also be models (or datasets) where the same criterion will rule in
favour of a non-linear specification. Non-linearity therefore remains a
problem for inclusive fitness.

The different topics related to Hamilton's rule will be discussed in
the following order. In Section 2 we will revisit Hamilton's paper itself.
There we will also discuss how his result relates to the literature at the
time, and to Fisher's Fundamental Theorem of Natural Selection, both
in the interpretation of Ewens (1989) and in the interpretation of
Lessard (1997). It turns out that Hamilton's rule is the social general-
ization of Fisher's FTNS in neither of the two interpretations, while it
does generalize results by Mulholland and Smith (1959), Schreuer and
Mandel (1959) and Kingman (1961a,b) to a setting with social traits.

Hamilton (1964b) conjectured that his rule would also be valid
outside the confines of his model, and in the remainder of the paper we
will look at other model settings. In Section 3 we consider the replicator
dynamics with population structure. While Hamilton's model setup
assumes a diploid species and considers difference equations, the
replicator dynamics imply a switch to a haploid setting with differential
equations. Here we find that in order for Hamilton's rule – with costs
and benefits defined using the counterfactual method – to agree with
the direction of selection, we need “equal gains from switching”.

In Section 4 we discuss the regression method. In Section 5 we look
at comparative statics for the replicator dynamics. Comparative statics
capture qualitative results, that may hold, even if Hamilton's rule –

which is a quantitative prediction – does not apply. We find that there
are indeed model settings in which a higher relatedness unambiguously
fosters cooperation, even though Hamilton's rule, with costs and
benefits according to the counterfactual method, does not hold.

In Section 6 we discuss how inclusive fitness describes what
happens under adaptive dynamics, and what its limitations are there.
Adaptive dynamics considers a continuous space of phenotypes, and
assumes a monomorphic population. Here we find that for Hamilton's
rule to hold – again, with costs and benefits according to the counter-
factual method – it is enough if fitnesses are linear locally, and if
populations do indeed remain close to being monomorphic.

In Section 7 we look at cancellation effects, which occur when not
only opportunities for cooperation are local, but competition is local
too. The insight that these two opposite effects occur (Wilson et al.,
1992; Taylor, 1992a,b) is the most important deepening of our under-
standing of kin selection. For social behaviour to evolve, it is not
enough that interactants are related. What is needed is that there is a
discrepancy between the two effects. Those that get the opportunity to
cooperate, or that seek each other out for cooperation, need to be more
related than those that they compete with.

Section 8 discusses how inclusive fitness can be tested empirically, and
revisits the replicator dynamics from Section 3, the adaptive dynamics from
Section 6, and the examples that illustrate cancellation effects from Section
7. Observing violations of Hamilton's rule empirically is by definition
impossible when costs and benefits are defined according to the regression
method. But also with the counterfactual method, not just any violation of
Hamilton's rule lends itself to observation by measuring costs and benefits
of those phenotypes that survived selection (as opposed to when selection
takes place). What is required for that to work is that different phenotypes
coexist in equilibrium. The empirical literature nonetheless shows surpris-
ingly many violations, also in cases where we would not expect those to be
observed, and we will explain what causes these “false negatives”.

Section 9 concludes.

1 Many papers in the domain of inclusive fitness consider different models – such as
for instance Wright's Islands model. This paper is not meant to be a review that
encompasses all of inclusive fitness theory. It mostly aims at understanding and
illustrating the reasons for the controversy using relatively simple and well-known
models.
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2. Hamilton's rule and Fisher's fundamental theorem of
natural selection

We revisit the central result in Hamilton's (1964a,b) milestone
paper and discuss how it relates to the literature at the time, and to
Fisher's Fundamental Theorem of Natural Selection, both in the
interpretation of Ewens (1989) and in the interpretation of
Lessard (1997). It turns out that Hamilton's rule is the social
generalization of Fisher's FTNS in neither of the two interpreta-
tions, while it does generalize results by Mulholland and Smith
(1959), Schreuer and Mandel (1959) and Kingman (1961a,b) to a
setting with social traits.

2.1. Hamilton's rule

The point of departure in Hamilton (1964a,b) is a single locus and a set
of alleles G G, …, n1 . These give rise to genotypes GGi j, i j n1 ≤ , ≤ . Before
we go to the central claim in Hamilton's two papers, we should perhaps first
look at the typical question in the literature at that point, so that we
understand why Hamilton chose his setup. In the few papers in Hamilton's
reference list (Mulholland and Smith, 1959; Schreuer and Mandel, 1959;
Kingman, 1961a,b), such genotypes GGi j always concerned properties that
only affected the carrier itself, and not its relatives. The core question that
was addressed in those papers was whether or not average fitness will
always increase. This turns out to be a deep question in some settings, and
trivially true, or trivially untrue, in others.

One setting in which it is trivially true, is if we (1) assume that these
fitnesses are growth rates in a differential equation, and if we moreover (2)
assume that these fitnesses are not frequency dependent – that is: the
fitness of genotypeGGi j does not depend on the distribution of genotypes in
the population that GGi j lives in. In this case it is relatively straightforward
that average fitness will go up. Another setting in which this is trivially true
is if we assume that all alleles can be ranked from unambiguously bad – G1
– to unambiguously good – Gn. In other words, if one can order the alleles
such that j i> implies that the fitness of GGj k is larger than the fitness of
GGi k for all k , then the frequency of Gj is always increasing relative to the
frequency of Gi, both in difference equations (i.e. in discrete time) and in
differential equations (continuous time). If fitnesses are furthermore not
frequency dependent, then this implies that average fitness increases. In
discrete time, the fitness of a genotype GGi j is then defined as the mean
number of offspring produced by individuals of that genotype. Everything
that happens within a generation is collapsed in this number – in
Hamilton's model organisms reproduce “once and for all at the end of a
fixed period” – so this can incorporate both differences in viability and
differences in fecundity.2

Whether or not average fitness will increase – still in the standard, non-
social setting – becomes a more difficult question if update steps are
discrete – that is, if we have a difference equation, and not a differential
equation – and if there are pairs of alleles that cannot unambiguously be
ranked. Alleles Gi and Gj cannot be ranked unambiguously if there are
alleles Gk and Gl such that the fitness of GGi k is larger than the fitness of
GGj k , but the fitness of GGi l is smaller than the fitness of GGj l. In such a
setting, one could imagine that when not already in equilibrium, the update
step overshoots the equilibrium values in such a way that average fitness
would go down. This is a far from trivial question, and it is the question that
Mulholland and Smith (1959), Schreuer and Mandel (1959) and Kingman
(1961a,b) address. Their answer is positive: also with difference equations,
and allowing for alleles that cannot be unambiguously ranked, average
fitness will go up every step of the way. We do still have to assume that

those fitnesses are not frequency dependent though.
Because Hamilton's result is sometimes also described as a social

version of Fisher's Fundamental Theorem of Natural Selection (FTNS),
it is worth emphasizing that, first of all, Hamilton does not present it as
such – there is no reference to the FTNS in the papers. The papers that
he does cite are only sideways related to the FTNS, and in no way proof
for it, although it should be said that the relation between the results in
those papers and the FTNS was, at the time, not well understood (see
Price, 1972; Ewens, 1989; Lessard, 1997, and Section 2.2 below).

The big difference between Hamilton (1964a,b) and the previous
literature is of course that in Hamilton's Part I the genotypes come with
social effects; they do not only imply fitness effects on the carrier itself, but
also on its relatives, and it is explicitly allowed for this to include different
effects on different relatives, all at the same time. A genotypeGGi j therefore
comes with a vector δa δa( , …, )m ij1 of effects on itself – δa1 – and on the
fitnesses of m − 1 relatives – δa δa, …, m2 – which have relatednesses
r r, …, m2 to the focal individual. Since individual number 1 is the focal
individual itself, r = 11 . Other than that, the setting is the same as in
Mulholland and Smith (1959), Schreuer and Mandel (1959) and Kingman
(1961a,b); we are (1) looking at a difference equation, (2) there is no
frequency dependence, and (3) the fitness effects could be anything. This is
the setting for which the question whether or not average fitness increases
for non-social traits was non-trivial. Also Hamilton assumes that the
frequency of (ordered) genotype GGi j is p pi j, where pi and pj are the
frequencies of allele Gi and Gj. This reflects random mating in a population
with non-overlapping generations, and is in line with Mulholland and
Smith (1959), Schreuer and Mandel (1959) and Kingman (1961a,b), but
not with Fisher's setup (see Section 2.2 below).

The question whether or not average fitness will always increase now
turns into a different one, which is if perhaps it is average inclusive fitness
that will always increase here. The inclusive fitness Rij

• of genotype GGi j is
defined as baseline fitness 1 plus the weighted sum of the fitness effects,
with relatednesses as weights: R r= 1 + ∑ij k

m
k

•
=1 δa( )k ij. Hamilton denotes

average inclusive fitness by R..
•, which is short for p p R∑ ∑i

n
j
n

i j ij=1 =1
•.

The central result in Hamilton (1964a) states that a sufficient
condition for average inclusive fitness to not decrease is that the
average diluting effect is nonnegative. The diluting effect can be seen as
the complement of the inclusive fitness effect. If a social trait has fitness
effects δa δa( , …, )m ij1 , then those effects are divided, and subsequently

aggregated, into the inclusive fitness effect δR r= ∑ij k
m

k
•

=1 δa( )k ij and the

diluting effect δS r δa= ∑ (1 − ) ( )ij k
m

k k ij
•

=1 ; every effect on fitnesses is
weighted by rk for its contribution to inclusive fitness, and by the
remaining r(1 − )k for its contribution to the dilution term. If we then
further aggregate all those dilution terms over all genotypes, we get the
(overall, average) dilution term δS p p δS= ∑ ∑i

n
j
n

i j ij.. =1 =1
•. If this dilution

term is nonnegative, that is, if δS ≥ 0.. , then the result is that average
inclusive fitness will not decrease (Hamilton, 1964a, p. 7).

There are someminor mathematical points that one canmake. The first
is that δS ≥ 0.. is indeed a sufficient condition for the change in average
inclusive fitness not to be negative. Hamilton does however not give an
example of a case where this condition is violated – that is, where δS < 0.. –

and where average inclusive fitness actually goes down. In other words,
from this paper, we do not know if this condition is important to consider,
or if it is really a redundant requirement, and a stronger claim – that
average inclusive fitness will never decrease – will perhaps also hold.

A second minor issue is that Hamilton concludes from this result
that

It follows that R..
• certainly maximizes (in the sense of reaching a

local maximum of R..
•) if it never occurs in the course of selective

changes that δS < 0.. .

For this to follow, we need not just that δS.. is never negative, but
that it is strictly positive everywhere other than at the optimum. With
some additional math, one can show that too (see Theorem 1 in van
Veelen, 2007).

2 Some papers explicitly look only at differences in viability. In simple models, these
also translate linearly into offspring, so nothing is lost if we subsume viabilities in
expected numbers of offspring. One convention is to have every successful gamete counts
for half an offspring, which is what we adopt here. Not all papers are equally explicit
about this, but switching to counting every successful gamete as one full offspring would
amount to a different normalization of fitness, leaving the results intact.
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This result, which is about average inclusive fitness being maximized,
does not imply that individuals will behave as if they all maximize their
inclusive fitness. With a few simple counterexamples one can show that this
is not the case. Assume, for instance, that there are two alleles, and that the
heterozygote has higher inclusive fitness than both homozygotes. In this
case average inclusive fitness is maximized in a population state that has
positive shares of both alleles. This implies that there will always also be
homozygotes, and therefore there will still be an unavoidable share of
individuals that have an inclusive fitness that is not the highest that it could
be. Another counterexample is that with heterozygotes that have an
inclusive fitness that is lower than both homozygotes, the population
dynamics can get stuck in a local optimum, while a trait with a higher
inclusive fitness is still available.

If we want to make the maximization of inclusive fitness by individuals
follow from Hamilton's result, we will have to make an extra assumption.
This extra assumption is that inclusive fitnesses of all heterozygotes GGi j
must lie between the inclusive fitnesses of their homozygote counterparts
GGi i and GGj j (see Theorem 2 in van Veelen, 2007).

It is worthwhile to realize that this is not an innocuous assumption.
As touched upon above, the question whether average fitness increases
in the case of non-social traits is only non-trivial if (1) we have a
difference equation, (2) there is no frequency dependence, and (3)
there are no restrictions on the fitness effects we consider. If we rule
out heterozygote over- or underdominance, in terms of their inclusive
fitnesses, then that means we can rule out coexistence of different
alleles3 – unless they are indistinguishable in terms of their inclusive
fitnesses. In other words, if we make the extra assumption needed for
maximization of inclusive fitness by individuals, then really all that
matters is which homozygote has the largest inclusive fitness. And if we
do look at homozygote fitnesses anyway, we might just as well drop the
diploid model, and consider a haploid version.

From Section 3 onwards we will refer to Hamilton's rule in this
individual sense. Hamilton's rule then states that behaviour with higher
inclusive fitness will be selected for, at the expense of behaviour with
lower inclusive fitness. If there are only two behaviours present in the
population – one benchmark behaviour, with fitness effects 0, and one
alternative behaviour – and the behaviour only affects the fitnesses of the
actor and one typical other agent (such as, for instance, a sibling), then
Hamilton's rule is reduced to its simplest, best known form: the
alternative behaviour is selected when rb c> , or rb c− > 0. As we will
see in Sections 3 and 4, there are different ways to define the costs and
benefits in Hamilton's rule. When we step outside the confines of his
model, in which fitness transfers are independent of the genotype of the
recipient, these different definitions start to diverge, and this is the source
of disagreements on the validity of Hamilton's rule. Following Karlin and
Matessi (1983) we will also consider Hamilton's rule to be qualitatively
valid if higher relatednesses are more conducive to cooperation, in a sense
that will be made more precise in Section 5.

2.2. Fisher's fundamental theorem of natural selection

It is sometimes suggested that Hamilton's model extends or generalizes
Fisher's Fundamental Theorem of Natural Selection (FTNS) into the
domain of social behaviours, or that it was at least inspired by it (see for
instance Grafen, 2004). For the longest time it has been somewhat unclear
what the FTNS actually claimed, which made it hard to judge whether or
not Hamilton's result was in fact a generalization. Now, with the advantage
of later papers on the FTNS (Price, 1972; Ewens, 1989, 1992; Lessard and
Castilloux, 1995; Lessard, 1997; Ewens and Lessard, 2015), we can see that

Hamilton's result is not a generalization of Fisher's Fundamental Theorem,
but of a different result that can be found in the papers that Hamilton
(1964a) cites, and for which it was presumably unclear at the time how they
related to Fisher's Fundamental Theorem.

In order to explain the differences, we first follow the presentation
of the FTNS in Ewens (1989). The fitnesses and frequencies of the
(ordered) genotypes GGi j are denoted by wij and Pij, i j n1 ≤ , ≤ .4 Fitness
wij can be interpreted as the mean number of offspring produced by
individuals whose genotype is ij, from the beginning to the end of the
current generation, where every successful gamete counts for half an
offspring. Ewens (1989) interprets wij as a measure of viability, while
Lessard (1997) suggests a broader definition that also encompasses
fecundity differences. The frequency of allele Gi is p P= ∑i j ij, but it is
not assumed that P p p=ij i j. The frequency of allele Gi in the new

generation is p′ = ∑i j P w w/ij ij , where w P w= ∑i j ij ij, is the mean fitness
of the population.

Rather than looking at the change in mean fitness w , the FTNS, as
interpreted by Ewens (1989), looks at something else. Suppose one
were to choose α α, …, n1 such that they minimize

P w w α α∑ ( − − − )i j ij ij i j,
2. This may look a bit like a statistical exercise,

where the ‘true’ fitnesses w α α+ +i j are estimated by treating wij as
noisy data, and treating the differences between w α α+ +i j and wij as
i.i.d. draws from a random distribution with expectation 0. What it
really does, however, is assign a number αi to each allele Ai that best
represents that allele's contribution to fitnesses in the current popula-
tion; note that wij is a fixed quantity, which is assumed to stay the same
over generations, and not a noisy observation, which would change
with every draw. Being joined with allele Ai might be good news for
allele Ak , and bad news for Al, but on average, given the current type
frequencies, the effect of Ai is quantified by αi. Obviously, which
α α, …, n1 minimizes P w w α α∑ ( − − − )i j ij ij i j,

2 depends on the Pij 's.
Fisher's FTNS, as interpreted by Ewens (1989), states that if we

evaluate the change in frequencies using w α α+ +i j – and not wij –
then this change equals the “additive genetic variance”, divided by the
mean fitness in the population. The additive genetic variance is defined
as σ P α α= ∑ ( + )A i j ij i j

2
,

2, and this is obviously non-negative, and only 0
in equilibrium. In other words,

∑ P P w α α
σ
w

( ′ − )( + + ) = ≥ 0.
i j

ij ij i j
A

,

2

(2.1)

No assumption is made about how the alleles in the new generation are
matched, as long as the frequencies of genotypes in the new generation
are consistent with the frequencies of the alleles in the new generation,
that is, as long as P p∑ ′ = ′j ij i .

Ewens (1989) and Price (1972) convincingly argue that the claim is
correct, but also that the quantity that is shown to be larger than 0 is
perhaps not that interesting to look at, because in the new generation,
the old α 's no longer apply; if we repeat the minimizing exercise for the
new generation, we typically get a different set α α′, …, ′n1 .

The interpretation of Lessard (1997) features two minimizations.
The first one is the same minimization as in Ewens (1989), which
concerns fitnesses wij. The second minimization concerns growth rates

Wij , which are defined as W P P w= ( ′/ )ij ij ij . One of the results in Lessard

(1997) is that minimizing P w w α α∑ ( − − − )i j ij ij i j,
2 gives the same

values for α α, …, n1 as minimizing P W W α α∑ ( − − − )i j ij ij i j,
2. Because

Wij and wij can very well be unequal, the “residual addends” may also
differ. With a mix of the notation in Lessard (1997) and Ewens (1989),
the residual addends are defined as δ w w α α= − − −ij ij i j and
ε W W α α= − − −ij ij i j, both for all i j, (Lessard, 1997, immediately
looks at the multi-locus case, but since Hamilton, 1964a,b, is a single

3 If we rank the alleles such that R R<ii jj implies that i j< , then under the assumption
that there is no over- or underdominance, this implies that there is no fixed point of the
dynamics in which alleles with unequal homozygote inclusive fitnesses coexist. In order
to show that, assume that they do, and compare the allele with the largest homozygote
inclusive fitness with the one with the smallest. The smallest has positive frequency, but
is dominated by the largest.

4 In Ewens (1989) the number of alleles is denoted by m. Since Hamilton already uses
m for the number of individuals affected by the social trait, we stick to using n for the
number of alleles, as in Hamilton (1964a). Also, alleles are denoted with A's in Ewens
(1989), but G 's in Hamilton (1964a,b).
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locus model, here we translate back to the single locus setup that
Ewens, 1989, uses in his first two sections).

Fisher's FTNS, as interpreted by Lessard (1997), does concern the
change in frequencies using wij – and not, as in Ewens' (1989)
interpretation, w α α+ +i j. Lessard (1997) gives a decomposition of
the change in average fitness that also allows for changes in wij (see Eq.
(38) on page 127 in Lessard, 1997). The vectors of effects in Hamilton
(1964a,b), however, are constant, and therefore we will also consider
constant wij 's, as also Ewens (1989) does. This implies that Lessard's
decomposition has two remaining non-zero terms:

∑ P P w
σ
w

P ε δ

w
( ′ − ) = +

∑
.

i j
ij ij ij

A i j ij ij ij

,

2
,

(2.2)

The first term on the right hand side of this equation is the same as the
one term on the right hand side of Eq. (2.1), but now this reflects the
change in average fitness due to changes in frequencies, insofar as they
can be accounted for by the effects of genotypes as described by the
parameters of the linear model. The FTNS is now interpreted as a
statement about this first term only. The total change in average fitness
can of course still be negative, if the second term on the right hand side
is negative, and outweighs the first (the second term is shortened to
cov ε δ w( , )/ in Lessard (1997), which is justified by the observation that

P δ P ε∑ = ∑ = 0i j ij ij i j ij ij, , , and by interpreting the frequencies as prob-
abilities in a random draw from the parent population).

The setup in Mulholland and Smith (1959), Schreuer and Mandel
(1959) and Kingman (1961a,b) is different. Here (ordered) genotypes
at this locus are assumed to be in Hardy–Weinberg proportions – it is
assumed that P p p=ij i j and P p p′ = ′ ′ij i j – and these papers show that

∑ p p p p w( ′ ′ − ) ≥ 0.
i j

i j i j ij
, (2.3)

Hamilton's result is the social version of this latter result. If we take
δa δa( , …, )m ij1 such that δa δa δa( , …, ) = ( , 0, …, 0)m ij ij1 1 for all i and j –
that is, if it reflects a trait with no effect on others – then Rij

• reverts to
being individual fitness, and can be interpreted as wij in Mulholland and
Smith (1959), Schreuer and Mandel (1959) and Kingman (1961a,b).

2.3. Fitness, reproductive value, and topics not covered

We restricted attention to the basic, discrete-time, multi-allele, single-
locus model with nonoverlapping generations. Ewens (1989) also includes a
continuous time version, and a discrete time, multi-locus version. Lessard
(1997) is a multilocus model from the beginning, and also includes both
continuous and discrete time versions, both with and without overlapping
generations. The reason why we restrict attention to the more basic version
is that this setupmatches Hamilton's (1964a,b). It also makes the definition
of fitness – the success in leaving progeny (Darwin, 1859, p. 64) –
uncomplicated; the fitness wij is the mean number of offspring produced by
individuals of genotype ij, one generation down the road. This definition
incorporates viability as well as fecundity differences, if we assume that
mating and reproduction do not change gene frequencies from the current
generation at the time of maturity to the next generation at the time of
conception (for viability selection) and if mating does not change gene
frequencies in the current generation from the time of conception to the
time of reproduction, and if neither meiotic drive nor gametic selection
takes place (for fecundity selection); see Ewens (1989, 1992), Castilloux and
Lessard (1995), Lessard and Castilloux (1995), and Lessard (1997).

With more complicated, or more detailed models, the definition of
fitness may require more than just counting offspring. With haplodiploid
organisms, males and females are not the same in their expected future
contribution to the population (Price, 1970; Oster et al., 1977; Benford,
1978; Pamilo and Crozier, 1982; Frank, 1986; Grafen, 1986; Taylor, 1988).
Helping someone get an extra offspring in the further away future may not
be the same as helping someone get extra offspring now (Fisher, 1930;
Leslie, 1948; Charlesworth, 1980). An offspring on one node in a network

may not contribute to future generations in the same way as an offspring on
another node in a heterogeneous network does (Maciejewski, 2014; Taylor
and Maciejewski, 2014). All of these examples can be encompassed by
defining different classes of individuals (by sex, age, or position in the
network, for instance) and by using this class-structured populations to
define class-specific reproductive values to replace fitnesses (Taylor, 1990;
Grafen, 2006a,b; Barton and Etheridge, 2011).

In the remainder of this paper we will consider models that are all
symmetric, and for which there is a degenerate class structure, with one
class only. Therefore we cannot benefit from the richness that using richer
class structures would allow for. Also there is no need to distinguish
between fitness and reproductive value. Such a simple setup comes with
restrictions on the species and phenomena that can be modeled. One of the
most interesting phenomena in social evolution is eusociality. Symmetric
models like the ones we will see in the following sections are hardly
appropriate to approach the question when and why eusociality will evolve
and be maintained. Also the question which sex ratios to expect requires
different models. In this paper we will therefore not discuss some of the
most interesting topics from the literature in the last 50 years. This implies
that we will also not discuss the eusociality part of Nowak et al. (2010), and
only pay attention to how costs and benefits are defined in part A of their
Supplementary Information, which contains a model setup that is different
from the model of eusociality in part C of their Supplementary Information.
Our setup therefore sidesteps the question whether or not inclusive fitness
helps understand eusociality. The symmetric setup nonetheless leaves us
with more than enough to explore, and allows us to answer interesting
questions concerning the generality of Hamilton's rule.

3. Replicator dynamics

In this section we consider the replicator dynamics combined with
population structure. We also discuss the “counterfactual meth-
od”, which defines costs and benefits by comparing fitnesses
under one behaviour to what they would have been under the
alternative behaviour. This approach was suggested in Karlin and
Matessi (1983). With their method, the inclusive fitness of
cooperation is not necessarily minus the inclusive fitness of
defection, but using a natural, improved version of their approach,
consistency is restored. With costs and benefits according to the
counterfactual method, we find that in order for Hamilton's rule
to agree with the direction of selection, the fitness effects need to
satisfy “equal gains from switching”.

Hamilton (1964b) conjectured that his rule would also be valid outside
the confines of his model. In this section we will look at the replicator
dynamics as an alternative model. The replicator dynamics are haploid,
while Hamilton's model was diploid, but this choice nonetheless connects
relatively naturally with what we found in Section 2. There we have seen
that in order to make Hamilton's central result imply that individuals will
behave as if they all maximize their inclusive fitness – and not just that
average inclusive fitness is maximized – we need to make extra assump-
tions. These extra assumptions restrict heterozygote inclusive fitnesses, and
they imply that all that matters for the outcome of the dynamics is how
homozygote inclusive fitnesses compare. The outcome of the dynamics
under these extra assumptions therefore is not sensitive to a change from a
diploid to a haploid model, where the genotypes are the homozygotes. A
considerable share of the inclusive fitness literature on cooperation more-
over also uses haploid models.

3.1. 2-Player games

Hamilton describes his intuition in a 1963 prequel in the American
Naturalist as follows:

As a simple but admittedly crude model we may imagine a pair of genes
g and G such that G tends to cause some kind of altruistic behaviour
while g is null. Despite the principle of ‘survival of the fittest' the
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ultimate criterion which determines whether G will spread or not is not
whether it is to the benefit of the behaver but whether or not it is to the
benefit of the gene G; and this will be the case if the average net result of
the behavior is to add to the gene-pool a handful of genes containing G
in higher concentration than does the gene-pool itself. With altruism
this will happen only if the affected individual is a relative of the altruist,
therefore having an increased chance of carrying the gene, and if the
advantage conferred is large enough […].

The setup in Hamilton (1964a) is one that follows this intuition,
and therefore he formulates the problem in terms of what economists
would call an “individual choice problem”. The gene G causes its bearer
to give up c in order for its relative (sibling, nephew, niece) to gain b.
All that matters is what happens, on average, to the frequency of copies
of G, and all we need to compare is the loss to the donor and the
relatedness-weighted benefit to the recipient.

The model setup in Hamilton (1964a, p. 2) is “particularly adapted to
deal with interactions between relatives of the same generation”.
Obviously, between any pair of same-generation relatives, both of them
have both roles; both are a possible donor and a possible receiver. It is
therefore very natural to think of a population of pairs, in which every pair
is playing a game. With both of them choosing between giving and not
giving, and with benefits being larger than costs, the game they are playing
becomes a prisoners' dilemma. Because there are more possibilities in
games between pairs of individuals than just prisoners' dilemmas, we will
mention all typical cases. We will also use a way of picturing games that is
more common in economics than it is in biology.

In Hamilton (1964a), costs and benefits are additions and subtrac-
tions to a basic fitness of 1. That implies that the game between two
possible donors is given by the following matrix:

g G
g b
G c b c

1 1 +
1 − 1 + −

The numbers in this matrix are the fitnesses of an individual that has
the genotype that is indicated in the column to the left of the matrix,
when facing the genotype that is indicated in the row above the matrix.
In the replicator dynamics, fitnesses are rates of increase (or decrease).
Following the custom in classical (not evolutionary) game theory,
where games are typically not assumed to be symmetric, we could
complement the entries in the matrix by also indicating what the
opponent gets. With the assumption of symmetry, this is redundant
information – we could infer that from the first matrix already – but it
will useful in rendering the game graphically:

g G
g b c
G c b b c b c

1, 1 1 + , 1 −
1 − , 1 + 1 + − , 1 + −

In Fig. 1, we chose c = 1 and b = 3, and plotted all four payoff
combinations from the payoff matrix. Any two points between which
only one player's choice is different are furthermore joined by a line; for
instance the points (1, 1) and b c(1 + , 1 − ) are joined, because the first
corresponds to g g( , ) and the second to g G( , ).

In this section, and in Sections 5 and 6, we will use the terms
“fitness” and “payoff” interchangeably. As we will see in Section 7, that
is not always OK; payoffs from a game may translate to fitness effects in
intricate ways. The replicator dynamics, however, assume that, even if
interactions are not taking place in a well-mixed population, competi-
tion is totally symmetric, and everyone competes with everyone else
equally intensely. In Section 7 we will consider examples where the
local interaction structure makes both competition and cooperation
local affairs. Here we assume that structure only affects who has the
opportunity to cooperate with whom, while competition is a global
affair, in which everyone's payoffs directly translate into fitnesses. This
fits a situation with kin recognition relatively well, where competition
with those that are recognized as kin may very well be equally intense
as with those that are not recognized as kin.

The game above is described in Nowak and Sigmund (1990) as a
prisoners' dilemma with “equal gains from switching” (see also Wild
and Traulsen, 2007). Equal gains from switching means that the effect
of switching between strategies on one's own fitness as well as the effect
on the other's fitness is independent of what the other individual does.
Sometimes this is also referred to as “additive fitness effects”. This is

Fig. 1. Prisoners' dilemma with equal gains from switching. The four corners of the
lozenge reflect the payoffs to the players for the four possible combinations of strategies;
g g( , ) for the left/down corner, g G( , ) for the right/down corner, G g( , ) for the left/up

corner, and G G( , ) for the right/up corner. The solid lines connect outcomes in which

player 1 is always of the same type, and player 2 switches. The dashed lines connect
outcomes in which player 2 is always of the same type, and player 1 switches. Equal gains
from switching is sometimes also referred to as fitness effects being additive, and for the
picture this implies that the solid lines are parallel and equally long, and the dashed ones
too.

Fig. 2. Prisoners' dilemma with unequal gains from switching, or non-additive fitness
effects. The four corners again reflect the payoffs to the players for the four possible
combinations of strategies; g g( , ) for the left/down corner, g G( , ) for the right/down

corner, G g( , ) for the left/up corner, and G G( , ) for the right/up corner.
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obviously the case in the above game, because of the way it is
constructed in the first place; it is a combination of two mirrored
individual choice problems. However, not every prisoners' dilemma has
this property. Consider the following matrix of fitnesses:

g G
g
G

1.5 4
0 3

In this game, the costs to oneself of switching from g to G are 1.5 if one
is paired with a g, and 1 if one is paired with a G. The benefits to the
other are 2.5 when paired with a g and 3 when paired with a G. This
game therefore does not have equal gains from switching (see Fig. 2).

Altogether different games are also possible between two players
with two actions. The following payoff matrix defines a stag hunt game:

g G
g
G

4 4
1 7

While the games above have only one pure Nash equilibrium, the stag
hunt game has two pure Nash equilibria – g g( , ) and G G( , ) – and one
mixed equilibrium (see Fig. 3). The definition of a Nash equilibrium in
this simple setting is reproduced in Appendix A, and the standard
definition can be found in Chapter 1 in Weibull (1995) or any textbook
on game theory.

The last type of game is the hawk-dove game, a.k.a. the snowdrift
game:

g G
g
G

1 4
2 2.5

This game has no pure symmetric equilibria – only pure asymmetric
ones. The only symmetric equilibrium is a mixed one (see Fig. 4).

3.2. Forming pairs

In order to illustrate how relatedness can feature in a natural way, we
begin with a totally unrealistic, but nonetheless instructive genetical system.
Assume that parent pairs are randomly formed from a very large pool in
which the frequency of cooperators is p and the frequency of defectors is

p(1 − ) – we switch here from g and G to the more standard notation of D
for defect and C for cooperate. That means that a fraction p2 of the parent

pairs are both C, p p2 (1 − ) of the parent pairs are C D{ , } pairs, and
p(1 − )2 of the parent pairs are all D pairs. Assume that both parents are

haploid, and that at reproduction, every offspring has a 50% chance of
inheriting the genotype of either parent. We assume that all parent pairs
produce two offspring, and we will consider those pairs of siblings.
Obviously all C C{ , } parent pairs produce only C offspring, and all
D D{ , } parent pairs produce only D offspring. A C D{ , } parent pair has a
25% chance of producing two C's, a 25% chance of producing two D's and a
50% chance of producing one C and one D. That means that all offspring
pairs together occur in the following frequencies:

D D p p p p p

C D p p p p

C C p p p p p

{ , }: (1 − ) + · 2 (1 − ) = (1 − ) + (1 − )

{ , }: · 2 (1 − ) = · 2 (1 − ) + · 0

{ , }: + · 2 (1 − ) = +

2 1
4

1
2

2 1
2

1
2

1
2

1
2

2 1
4

1
2

2 1
2

If pairs were the result of randommatching – as the parent pairs are – then
the frequencies would be p(1 − )2, p p2 (1 − ), and p2, respectively. If the
pairs were pairs of clones, on the other hand, then the frequencies would be

p1 − , 0, and p, respectively. Because the frequencies of the sibling pairs are
exactly halfway between those, it makes perfect sense that relatedness in
this case should also be halfway between 0 and 1. It also makes perfect
sense to generalize the frequencies of pair types, using an assortment
parameter α:

D D α p α p

C D α p p

C C α p αp

{ , }: (1 − )(1 − ) + (1 − )

{ , }: (1 − ) · 2 (1 − )

{ , }: (1 − ) +

2

2

At α = 0 we get the pair frequencies that random matching would give, at
α = 1 the pair frequencies of clonal pairs, both with a frequency of C's that
is p. In other words, for a given frequency p, the higher α is, the fewer
C D{ , } pairs, and the more D D{ , } and C C{ , } pairs (see Fig. 5 and 6).

The above description gives pair types as a function of frequency p and
assortment parameter α. We would however also like to be able to start at
the other end, with pair frequencies, and work our way back to p and a
measure of assortment or relatedness. This can be done in an easy and
intuitive way too. Denote the frequency of D D{ , }-groups, that is, groups
with 0 cooperators, by f0, denote the frequency of C D{ , }− groups by f1, and
denote the frequency of C C{ , }− groups by f2. The frequency p of C's in the

overall population is then recovered in an obvious way; p f f= +1
2 1 2. Let

Fig. 3. Stag hunt game. The right/up corner represents the payoffs that players get at
G G( , ), the lower point on the diagonal represents payoffs at g g( , ), the bottom corner

represents g G( , ), and the left corner G g( , ).

Fig. 4. Hawk dove game. The left/down corner represents the payoffs that players get at
g g( , ), the higher up point on the diagonal represents payoffs at G G( , ), the right corner

represents g G( , ), and the up corner G g( , ).
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 C C( | ) furthermore denote the probability of facing a C if you are a C
yourself. That probability equals the share of cooperators in the population
that are facing another cooperator, divided by the share of all cooperators in
the population. In other words,

 C C
f

f f
f
p

( | ) =
2

2 +
=2

2 1

2

Let  C D( | ) denote the probability of being paired with a C if you are a D
yourself. That probability equals the share of defectors in the population
that are facing a cooperator, divided by the share of all defectors in the
population:

 C D
f

f f
f

p
( | ) =

+ 2
=

2(1 − )
1

1 0

1

If we define relatedness as the difference between those two conditional
probabilities, then we recover the assortment parameter α;

 r C C C D
f
p

f
p

α p αp
p

α p p
p

α p α α p α

= ( | ) − ( | ) = −
2(1 − )

= 2((1 − ) + )
2

− (1 − )·2 (1 − )
2(1 − )

= (1 − ) + − (1 − ) = .

2 1

2

This property of a population structure is the definition of relatedness that
we will use throughout the paper, although at some points we will use
equivalent definitions to compute it.

In order to illustrate that all combinations of frequencies f0, f1, and
f2 define one combination of p and r and vice versa, we draw a simplex
(see Fig. 7). The proportions f0, f1, and f2 have to add up to 1, and every
point on the simplex represents a vector f f f( , , )0 1 2 with
f f f≥ 0, ≥ 0, ≥ 00 1 2 and f f f+ + = 10 1 2 . The corners of the simplex
are (1, 0, 0), (0, 1, 0) and (0, 0, 1). Note that on this simplex, straight
vertical lines are population states with constant frequency p, and the
curves from the left down corner to the right down corner are lines of
constant relatedness. Any such line, with constant relatedness
r ∈ [0, 1], has to go through the corners where p = 0 and p = 1. The
straight line on the bottom side of the simplex reflects r = 1, as any
population on that line has no mixed groups, and only groups with two
D's or two C's – so  C C( | ) = 1 and  C D( | ) = 0. The higher up the curve
is, the more mixed groups there are, and the lower relatedness is. The
curve for r = 0 follows the shares of the group types that the binomial
distribution with probability p would give.

In the setting of Hamilton's paper, it is natural to assume that
relatedness does not change with frequency p. The production of pairs of
full siblings for instance simply imposes that relatedness is 0.5, whatever
the frequency p of a gene is (the example at the very beginning of
Section 3.2 indicates how that works). One could imagine that perhaps
there are population structures for which this may not be the case, and
where r varies with p, but here we will stick to population structures with a
fixed and constant r , which fits Hamilton's setup perfectly.

For a given r we know for every frequency p how many groups of
the three types there are. With those, and the game payoffs, we can
compute the average payoffs of both strategies. The replicator dy-
namics (Taylor and Jonker, 1978) is a natural way to translate that into
a differential equation; the time-derivative of the frequency of co-
operators p is p times the difference between the average payoff of
cooperators and the average payoff in the population as a whole:

p p π π

p p π π

̇ = ( − )

= (1 − )( − )
C

C D (3.1)

It turns out that with relatedness r and payoff matrix A, the change in
frequency is the same as it is in the replicator dynamics without
population structure, but then with a transformed payoff matrix;
A rB r A′ = + (1 − ) , where B A[ ] = [ ]ij ii, that is, B is a matrix where all
elements on row i are the same as the i'th diagonal element of the
matrix A (van Veelen, 2011b).

Fig. 7 illustrates how Hamilton's rule now shows up nicely on the
simplex. For any game, we can divide the simplex up into two parts:
one where the frequency of cooperators increases and one where it
decreases. For a given prisoners' dilemma with equal gains from
switching, the line that separates the plus-region from the minus-
region has the exact same shape as a line with constant r . This implies
that with a given r , either the population state is always below this line
– that is: it has a higher relatedness than the threshold relatedness – or
it is always above it. Therefore, if cooperation is selected for at one
frequency, it is selected for at all; trajectories go to one corner of the
simplex, irrespective of the starting point on the constant r-curve.
Which corner that is, is given by Hamilton's rule.

Without equal gains from switching, the shape of the line that
separates the plus-region from the minus-region no longer has the
same shape as a line with constant r , and therefore they may intersect.
That implies that it is possible that either the dynamics do not converge
to a corner, or that they do, but that it depends on the starting point

Well mixed (r = 0): 25% 50% 25%

Full sibs (r = 0.5): 37.5% 25% 37.5%

Clones (r = 1): 50% 0% 50%

Fig. 5. Three population structures. In all populations the overall frequency of both
defectors (red) and cooperators (blue) is 50%, but relatednesses are different. (For
interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)

Fig. 6. General population structure.

Fig. 7. The simplex with equal gains from switching. The threshold (green line) for the
game from Fig. 1 is at r = 1

3
. The blue lines are trajectories for r = 0 (top, well mixed

population), and r = 2
3
(down). The bottom of the simplex reflects population states with

r = 1 (clones). The corners represent population states with only D D{ , }− groups (left

bottom), only C C{ , }− groups (right bottom) and only C D{ , }− groups (top). (For inter-

pretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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which corner that is. In other words, we could get stable coexistence –
as is typical in hawk-dove games already at r = 0 – or bistability –

which is typical in stag hunt or coordination games already at r = 0.
In Hamilton's original setup, as well as in the case of equal gains,

costs, benefits, and relatedness are fixed quantities, and they combine
to a rule that predicts the direction of selection for any current
frequency. That is no longer possible, if the direction of selection
changes at the intersection of the threshold (the green curves in Fig. 8)
and a line with constant r (the blue curves in Fig. 8).

In their evaluation of Hamilton's rule – or, as they called it “the
Hamilton rule” – Karlin and Matessi (1983) and Matessi and Karlin
(1984,1986) require costs and benefits to be independent of the “kin-
group structure”, which in their case implies that it must also be
independent of the current frequency of cooperators. We can, however,
choose to allow benefits b and costs c to change with the population
state, and treat Hamilton's rule not as a global prediction for the
success of a cooperative mutant, but as a local criterion, that may
depend on the frequency p of cooperators.

3.2.1. Costs, benefits, and counterfactuals
As we will see, whether or not Hamilton's rule applies, depends on

how b and c are defined. Below we consider the definition according to
the counterfactual method, as used by Karlin and Matessi (1983)
and Matessi and Karlin (1984,1986). In Section 4 we will describe the
definition according to the regression method, as used by Gardner et al.
(2011), along with their application to the same example. We will use
standard notation for entries in the payoff matrix:

D C
D P T
C S R

Cooperators only: In order to compute the costs and benefits of
cooperation, we can go over all cooperators in the population and compare
their current fitness to what their fitness would have been, had they
defected. For those that are matched with another cooperator, this
difference is T R− . For those that are matched with a defector, this
difference is P S− . If we weigh those differences with how many
cooperators are matched with cooperators and how many with defectors,
we find the average cost of cooperating instead of defecting to be

c r r p T R r p P S= ( + (1 − ) )( − ) + (1 − )(1 − )( − ).

Similarly, if we go over all cooperators again, and now compare the fitness
of their interaction partner to what their interaction partner's fitnesses
would have been, had they themselves defected, we find the average
benefits to their interaction partner to be

b r r p R S r p T P= ( + (1 − ) )( − ) + (1 − )(1 − )( − ).

The criterion for C-players to win at frequency p is π π− > 0C D . If we
rewrite that, we find:

r r p R r p S r r p P r pT

r p R S pR p S rp P T p P pT

r p R S p T P p T R p P S

( + (1 − ) ) + (1 − )(1 − ) > ( + (1 − )(1 − )) + (1 − )

((1 − )( − )) + + (1 − ) > ( − ) + (1 − ) +

((1 − )( − ) + ( − )) > ( − ) + (1 − )( − ). (3.2)

This criterion is not the same as rb c> if we use the b and c as we just
computed them, unless P R T S+ = + , that is, unless the game satisfies
equal gains from switching.

One property that costs and benefits should have, however, is that
the cost of cooperating should be minus the cost of defecting, and the
benefits of cooperating should be minus the benefits of defecting. In
other words, it should not matter whether we take the benchmark to be
cooperation or defection. This, however, is not the case for the
definition used by Karlin and Matessi (1983) and Matessi and Karlin
(1984,1986), already for this simple example. If we switch to having
cooperation as the benchmark, and compute the costs and benefits of
defection, we find c r p R T r r p S P= (1 − ) ( − ) + ( + (1 − )(1 − ))( − ) and
b r p S R r r p P T= (1 − ) ( − ) + ( + (1 − )(1 − ))( − ), which are not minus
the c and b we found when defection was the benchmark. The following
alternative definition is not sensitive to the benchmark, and therefore
this is the one we will use in the remainder of the paper.

Cooperators and defectors: In their computation of costs and
benefits, Karlin and Matessi (1983) and Matessi and Karlin
(1984, 1986) only consider those that actually cooperate.
Alternatively, one could consider not only the cooperators, but all
individuals in the population, since every individual had the opportu-
nity either to cooperate, or to defect. For all individuals facing a
cooperator, the difference in their own fitness between cooperation and
defection is T R− . For all individuals facing a defector, this difference
is P S− . The difference to their interaction partner's fitness is R S− , if
their partner is a cooperator, and T P− if their partner is a defector.
Since p is the share of cooperators, p is also the share of individuals
that is matched with one. Average costs and benefits therefore are:

c p T R p P S

b p R S p T P

= ( − ) + (1 − )( − )

= ( − ) + (1 − )( − ). (3.3)

Also with this b and c, Hamilton's rule does not match the criterion for
the frequency of cooperators to increase, again unless we have equal
gains from switching. If indeed P R T S+ = + , then these two defini-
tions using counterfactuals, as well as the regression method definition
from Gardner et al. (2011), all coincide.

3.3. Interactions between more than two individuals

Besides dyadic interactions, there are also interactions that take
place between more than two individuals. In humans, there are football
teams and orchestras, corporations and armies. Also eusocial insects
and cells cooperate in large to astronomical numbers.

Fig. 8. (a) Hawk dove and (b) stag hunt. The green lines separate the plus-regions, where cooperator frequencies increase, from the minus-regions, where cooperator frequencies
decrease, for the games from Figs. 4 and 3, respectively. Since the green line does not have the same shape as the constant r-arcs (the blue lines) there is a range of r 's for which we either
get coexistence (a) or bistability (b). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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With more than two players, it could still be that the costs and
benefits of one individual's possible cooperation are independent from
what the others do, so that a generalized version of equal gains from
switching holds. In this case, average costs and benefits are not
frequency dependent, and all three definitions of b and c coincide.
One would expect that inclusive fitness will therefore agree with the
prediction again – and it does. Theorem 5 in van Veelen (2011b) claims
even more. With “generalized equal gains from switching” not only the
sign of inclusive fitness matters, but also the absolute value; inclusive
fitness becomes a parameter in the replicator equation, and not only
determines the direction of selection, but also the speed. A simple
example of an “n-player game” with equal gains from switching
involves n individuals living in a group, where their living in a group
implies that every so often they get paired with another individual from
the same group to play a prisoners' dilemma with equal gains from
switching. Or, even simpler, every so often one gets the opportunity to
give the other a benefit b at cost c to itself.

Many games of cooperation do not have (generalized) equal gains
from switching though. In football teams and orchestras team perfor-
mance might be as good as the weakest link. When going to war with a
neighbouring tribe, whether or not I contribute may not make much of
a difference if everybody else already does – in which case we will win
anyway – or if nobody does – in which case we lose anyway. Only if
there is a fair chance that I might tip the balance, are there benefits to
be gained from my switching from defection to cooperation.

A general, symmetric n-player game with 2 strategies is determined
by its n2 payoffs; symmetry implies that no one individual is special, so
payoffs only depend on how many cooperators there are in a group, and
whether or not one is a cooperator or a defector oneself. Payoffs
therefore can be denoted by πi C, for i n= 1, …, and πi D, for

i n= 0, …, − 1. The first – πi C, – is the payoff of a cooperator in a
group with i cooperators, including itself. The second – πi D, – is the
payoff of a defector in a group with i cooperators. Together this
amounts to n2 parameters that can be chosen freely.

The population structure is determined by f f, …, n0 , where fi is the
frequency of groups with i cooperators and n i− defectors. Because
these have to add up to 1, there are only n, and not n + 1 degrees of
freedom.With n = 2 these group frequencies are uniquely determined by
r and p; any choice for r and p comes with one unique combination of
f f,0 1 and f2, and any combination of f f,0 1 and f2 that adds up to 1
implies one unique combination of r and p (see Section 3.2). With n > 2
that is no longer true. Because the space of population states has
dimension n, there is a multitude of possible population states that are
consistent with the same value for r and p (see Fig. 9) and in some the
average payoff of cooperators might be higher than that of defectors, and
in others the defectors might have a higher average payoff.

If we just look at what one could describe as the most basic
criterion – whether cooperators have a higher fitness than defectors –
then all of those parameters enter there. The average payoff to a
cooperator is

π
i f π
np

=
∑ · ·

.C
i
n

i i C=1 ,

Similarly, the average payoff to a defector is

π
n i f π
n p

=
∑ ( − ) · ·

(1 − )
.D

i
n

i i D=0
−1

,

The fully general criterion π π>C D will therefore always involve all of
the fi 's. Generalized equal gains from switching puts a restriction on
the admissible games. Suppose all payoffs are defined as follows:
π ib c= 1 + −i C, and π ib= 1 +i D, . Now all payoffs are functions of two
parameters only, and the game satisfies equal gains from switching.
Substituting the payoffs into the above equations, we see that π π>C D
if and only if rb c> , where net aggregate benefits b are given by

n bb = ( − 1) and net costs c by c bc = − .
Without the restriction to games that satisfy equal gains from switching,

knowing relatedness r may not be enough to determine whether coopera-
tion gets selected. The Rock Band game illustrates this (Fig. 10). Suppose a
band only sounds good if all three players have rehearsed. If the band
sounds good, then all players get a payoff of 2 from it. Rehearsing comes at
a personal cost to the individual of 1. Payoffs to each band member
therefore are π = − 1i C, if i = 1 or 2, π = 1i C, if i = 3, and π = 0i D, for all i.

Fig. 9. Population structures with n = 3. The table gives values for f0 , f1, f2 and f3.

Fig. 10. The rock band game. (a) The payoffs of the game and (b) the 3D simplex for the game. A point in this simplex represents a population state f f f f( , , , )0 1 2 3 , with

f f f f+ + + = 10 1 2 3 and f0 ≤ ≤ 1i for i = 0, 1, 2, 3. The vertex closest to us is f = 10 , the rightmost vertex is f = 13 , the leftmost vertex is f = 11 and the top vertex is f = 12 . The surface

that separates the plus-region from the minus region (green) does not have the same shape as a constant-r surface (blue; r = 1
4
). All constant-r surfaces stretch from the vertex

(1, 0, 0, 0), where the frequency of cooperators is 0, to the vertex (0, 0, 0, 1), where the frequency of cooperators is 1. (For interpretation of the references to color in this figure caption,

the reader is referred to the web version of this paper.)

M. van Veelen et al. Journal of Theoretical Biology 414 (2017) 176–230

185



For this game, the criterion π π>C D can be rewritten as >f
p

1
2

3 . From Fig. 9

we can conclude that in the case of siblings, cooperators will be selected for

at p = 0.5, because at that frequency = >f
p

5
8

1
2

3 . For the last population

state in Fig. 9, on the other hand, cooperation is selected against – because

= <f
p

3
8

1
2

3 – even though it has both also a relatedness of r = 0.5 and also a

frequency of cooperators of p = 0.5.
If we use the Karlin and Matessi counterfactual method of calculating

costs and benefits, and only consider cooperators, we arrive at average costs
of f f f p( + 2 − 3 )/31 2 3 and average benefits of f p2 /3 . If, instead, we consider

all individuals, average costs are f f f f+ + −0 1
1
3 2 3 and average benefits are

f f2 +3
2
3 2. Neither of these choices make Hamilton's rule work here.

Karlin and Matessi (1983) and Matessi and Karlin (1984,1986) find
that in order for Hamilton's rule to be valid, the fitness functions for
cooperators and defectors need to be parallel linear functions, which they
find is only true if the game satisfies what we call (generalized) equal gains
from switching (Matessi and Karlin, 1984, p. 697). Their interpretation of
Hamilton's rule is that it is a global criterion, and independent of the
current frequency p. Both the 2-player and the 3-player cases that we
discussed show that the same restriction applies also if we allow Hamilton's
rule to be a local criterion, where costs and benefits are allowed to vary with
p, provided that we stick to the definition of costs and benefits using
counterfactuals. At the end of Section 4, we will revisit these examples, this
time using the definition of costs and benefits that follow from the
regression method (Gardner et al., 2011).

In the literature, there are many papers about n-player games that do
not satisfy equal gains from switching; for example Zheng et al. (2007),
Milinski et al. (2008), Kurokawa and Ihara (2009), Pacheco et al. (2009),
Souza et al. (2009), Wang et al. (2009), van Veelen (2009, 2011a,b),
Archetti and Scheuring (2011, 2012), Gokhale and Traulsen (2010, 2011),
Santos and Pacheco (2011), and van Veelen and Nowak (2012).

4. The regression method

In this section we will discuss the “regression method” for
defining costs and benefits, and we derive the result that, with
costs and benefits defined according to this method, Hamilton's
rule always holds. The starting point for this result, however, is
that we already have chosen a specification for the regression, and
that this specification is linear. What the costs and benefits are
therefore is not necessarily uniquely defined, and may, for one
and the same model (or dataset) differ across alternative linear
specifications. For the regression method to be well-defined for all
possible models (or datasets) it would therefore need to be
combined with a method for choosing between different specifica-
tions. Subsequently, whatever criterion one would use for choos-
ing one linear specification over another should also be used to
choose between linear and non-linear specifications, or between
different non-linear ones. We therefore argue that Hamilton's
rule, using the regression method, cannot both always be uniquely
defined, and generally valid. The general validity depends crucially
on the specification being linear, while any criterion that one
would use for choosing between different linear specifications will
immediately imply that there will also be models, or datasets,
where the same criterion will rule in favour of a non-linear
specification.

The regression method, as employed in Queller (1992a,b), Gardner
et al. (2011), Marshall (2011, 2015) and Rousset (2015), is the basis for the
result that Hamilton's rule always holds, provided that we interpret the
regression coefficients that the method implies as the benefits and costs in
Hamilton's rule. The difference in opinion on the generality of Hamilton's
rule results from a disagreement on whether interpreting the regression
coefficients as costs and benefits is justified (Okasha, 2016; Okasha and
Martens, 2016a,b, see also Birch, 2014; Birch and Okasha, 2015). Because

the regression method is central to the claim of generality, and because the
interpretation of the regression coefficients as costs and benefits is central
to the disagreement (see also Allen et al., 2013a,b), it is worthwhile to
discuss the regression method in detail. Moreover, whether one agrees or
disagrees with that interpretation, in any case it is useful to have a formal
derivation of the result itself at hand.

The name “regression method” suggests a link with statistics, and
the computation of the regression coefficients is indeed the same as
in standard statistical exercises, or at least very similar. There is
however a significant difference. More often than not, the regression
method is applied to theoretical models, computing benefits and
costs for a given fitness function and, possibly, a given state of the
population. This implies that the true model is known. Also the
statement that Hamilton's rule always holds is a claim in the theory
domain; it states that whatever the true theoretical model is, the
regression method will always return costs and benefits such that
Hamilton's rule agrees with the direction of selection. That is an
exercise that is fundamentally different from statistics, where regres-
sions are applied to data in order to uncover an unknown model that
generated those data. In statistics, regressions therefore are inevi-
tably combined with statistical tests.

The result that is the basis for the use of linear regressions in statistics is
the Gauss–Markov theorem. This theorem states that the parameter
estimates (which is how the regression coefficients are interpreted here)
that result from applying an (ordinary least squares) regression have
desirable properties, such as being unbiased, and havingminimum variance
among all unbiased estimators. The trueness of the theorem however does
depend on assumptions concerning the distribution of the noise term, and
on the assumption that the model specification is correct. If the true model
is different from the specification chosen, then the regression coefficients
are typically no longer unbiased estimates of the parameters they are meant
to estimate. Statistical tests are concerned with the model specification part,
and they try to find out if the data are not at odds with the specification that
is chosen, and with the assumptions about the noise term. A statistical
exercise therefore combines finding the correct model specification on the
one hand with regressions that estimate model parameters given that
specification on the other.

The “regression method” has taken the recipe for estimating parameters
out of its statistical domain, and applies it, mostly, to theoretical models.
That means that the rationale for using regressions in statistics (the Gauss–
Markov theorem) no longer applies. Actually, the regression method is
typically applied when the known model is different from the specification
chosen for the regression method, for instance because the true model is
non-linear, while the specification for the regression method is linear. The
interpretation of the regression coefficients therefore cannot be the same as
their interpretation in statistics.

The regression method is silent about the choice of a specification,
and we will see that this presents us with a problem. Below we will
derive the claim that Hamilton's rule always holds. After the formal
derivation, we will point to the fact that the claim of generality is true,
whichever linear specification is chosen (and provided that the
regression does not lead to an underdetermined system of equations;
see Allen and Nowak, 2015). The result therefore implies that
Hamilton's rule holds just as much for costs and benefits that follow
from one linear specification as it does for costs and benefits that
follow from another. This in turn implies that there is a specification
issue that needs resolving in order for Hamilton's rule to be uniquely
defined; if we do not solve the specification issue, we can have multiple
Hamilton's rules, with differing costs and benefits. We will argue that
any sensible criteria that one would use for choosing one linear
specification over the other immediately imply that there are also
cases where the same criteria will decide in favour of non-linear
specifications and against linear ones. This then undermines the
general validity of Hamilton's rule, which requires the specification
to be linear.
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4.1. One variable

Because the regression method is a general approach that can be
applied to populations with a discrete distribution of traits as well as
populations with a continuous distribution of traits, we will use probability
measures to describe population states. This subsumes continuous prob-
ability densities as well as discrete probability measures. A probability
measure μ will reflect the distribution of trait values at time 0, or in the
parent population, and gives probabilities with which a randomly drawn
individual from that population has certain trait values. In case the trait
distribution takes on a discrete set of values x x, …, n1 , with corresponding
frequencies p p, …, n1 , the probability measure μ will be a point measure,
where μ x p( ) =i i. In particular, if x x, …, N1 are distinct trait values in the

parent population, each occurring once, then μ x( ) =i N
1 for each i. In most

applications of the regression method, this represents a population state in
a theoretical model. It is however also possible to have the probability
distribution represent the parent population in a dataset, in which case the
probability measure will automatically be discrete.

Besides a probability measure μ, we have a function f S: → 0
+.

This S is the set of trait values, and f is integrable with respect to μ.
This function typically reflects how reproduction depends on x in a
model, but it could also reflect realized reproduction in a dataset. The
population state after reproduction can be written as a new probability
measure λ, which just reflects what one round of reproduction
according to fitness function f does to the distribution of trait values
in a population starting at μ; ∫ ∫λ T f x dμ fdμ( ) = ( ) /

T
for any measurable

set T . Dividing by ∫ fdμ normalizes the new probability measure, so that
it integrates to 1 again. Sometimes a function f is constructed so that
∫ fdμ = 1 by definition, but normalizing has the same effect.

Together, μ and f contain all the relevant information about a
transition from one generation to the other. In a theory model f is a
fitness function, that determines what the next generation will be like, if the
current is μ. In an empirical exercise, μ and f together represent a dataset,
where μ represents the parent generation, and f and μ together make λ,
which represents the offspring generation. Even though μ and f are
perfectly informative, one might still want to replace f with a polynomial,
without affecting certain characteristics of the transition. For this poly-
nomial with degree n we write g x a a x a x( ) = + + ⋯ +n n

n
0 1 . Suppose

furthermore that the coefficients a a, …, n0 are chosen so that they
minimize the squared difference between f and gn:

∫ f g dμmin ( − ) .
a a n,…,

2

n0

The first order conditions — setting the derivatives w.r.t. a i n, = 0, …,i
equal to 0 – imply that:

∫ ∫x fdμ x g dμ i n= , = 0, …, .i i
n (4.1)

The first two of these n + 1 conditions — the ones for i = 0 and i = 1 –
imply that we can replace f with gn without affecting the change in average
x – of course assuming that n ≥ 1

∫ ∫∫
∫

∫
∫

xfdμ

fdμ
xdμ

xg dμ

g dμ
xdμ− = − .n

n (4.2)

In other words, one can replace f by any polynomial of degree 1 or higher,
without affecting the change in average x, if we choose the polynomial
coefficients so that they minimize the squared difference. If one would want
to replace f by a polynomial of the lowest possible degree and preserve this
property, it is enough to take n = 1.

If we do indeed choose n = 1, then that implies

∫ ∫ ∫ ∫fdμ a a xdμ a fdμ a xdμ= + ⇒ = −0 1 0 1 (4.3)

and

⎛
⎝⎜

⎞
⎠⎟

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

xfdμ a xdμ a x dμ

xfdμ fdμ a xdμ xdμ a x dμ

a Cov X f
Var X

= +

⇒ = − +

⇒ = ( , )
( )

.

0 1
2

1 1
2

1 (4.4)

Moreover, we can use (4.4) and (4.3) to rewrite the condition for the
change in average x to be positive5:

∫∫
∫
xfdμ

fdμ
xdμ a− > 0 ⇔ > 01

(4.5)

Summarizing, we found that one can replace f x( ) by g x a a x( ) = +1 0 1
without consequences for the change in average x, provided that we
choose a0 and a1 such that they minimize ∫ f g dμ( − )1

2 . Moreover, the
average x goes up if and only if a > 01 . It might be useful to also
mention that the function g1 is not a local linearization of f .

4.2. Two variables

For considering cases with two relevant trait values, let μ be a
probability measure on 2. These two quantities can be thought of as
values for two different traits, which will be useful as a reference. They can
also be interpreted as values of the same trait, the first representing the
trait value that the agent itself has, the second representing the trait value
of its interaction partner. The second interpretation will lead to the first
version of Hamilton's rule.

Let f be a function on 2. In the first interpretation, where the two
variables represent different traits in the same individual, this induces a
probability measure λ, representing the distribution of the two traits in the
next generation in the same way as it did with one variable;

∫ ∫λ T f x y dμ fdμ( ) = ( , ) /
T

for any measurable set T in 2. In the second
interpretation, y does not represent a different trait within the same
individual, but the value of the same trait in another individual (the
interaction partner), which is not heritable. This fitness function f therefore
only informs us about the distribution of x in the next generation. We can
use λx to denote the marginal probability measure that represents this
distribution;


∫ ∫λ T f x y dμ fdμ( ) = ( , ) /x T×

for any measurable set T in . If
we would like to arrive at a complete description of the new generation,
then more information is required, or more assumptions need to be made.
One possibility is that the transition as a whole tracks a model, the
assumptions of which imply a fitness function f as well as how individuals
are matched in every new generation. Another possibility is that more
straightforward assumptions about matching are made, which define, for
every distribution of traits x, what the according joint distribution of x and
y is, for instance reflecting interactions between siblings. For derivations of
Hamilton's rule, however, it is enough to have the marginal probability
distribution. Hamilton's rule can perfectly well pertain to one transition
only, in which case the matchings in the next generation do not matter.

Together, μ and f again contain all the relevant information about a
transition from one generation to the other, and again we will replace f
with a function of degree 1, which this time uses 2 variables:
g x y a a x a y( , ) = + +00 10 01 . Suppose that we minimize the squared
difference between f and g:

∫ f g dμmin ( − )
a a a, ,

2

00 10 01

The first order conditions imply that

5 One can use (4.4) to rewrite ∫ xdμ− > 0
∫
∫
xfdμ

fdμ
1

1
1 as ∫ xdμ− > 0

∫ ∫
∫

a xdμ a x dμ

fdμ
0 1 + 1

2
1

1
1 .

With (4.3), this can be rewritten as ∫ xdμ− > 0
∫ ∫ ∫ ∫

∫
fdμ a xdμ xdμ a x dμ

fdμ

( 1 − 1 1) 1 + 1
2

1

1
1 , or

⎛
⎝⎜

⎞
⎠⎟ > 0

∫ ∫

∫

a x dμ xdμ

fdμ

1
2

1 − ( 1)
2

1
. This is true if and only if a > 01 .
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∫ ∫ ∫fdμ a a xdμ a ydμ= + +00 10 01 (4.6)

∫ ∫ ∫ ∫xfdμ a xdμ a x dμ a xydμ= + +00 10
2

01 (4.7)

∫ ∫ ∫ ∫yfdμ a ydμ a xydμ a y dμ= + +00 10 01
2

(4.8)

It is possible that this system does not have a unique solution. That happens
if the distribution μ is such that any individual's y value follows linearly
from their x value. If μ puts positive probabilities only on individuals with
y Ax B= + , for constants A and B, then there are infinitely many
combinations a a,00 10 and a01 that would produce one and the same
function g x y( , ). Therefore, if a given g x y( , ) minimizes ∫ f g dμ( − )2 , then so
do all equivalent choices for a a,00 10 and a01. This naturally shows up in the
first order conditions; in this case (4.8) is equal to A times (4.7) plus B
times (4.6). Eq. (4.8) is then redundant, leaving us with a system with 2
equations and 3 unknowns. One possible way to arrive at such a situation is
if the parent population consists of two x y( , )-combinations only. We will
return to this possibility in Section 4.5.6.

In the typical, and more interesting case where there is a unique
solution to this system of equations, we can use (4.7) and (4.6) to
rewrite the change in average x

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫ ∫

∫

∫
∫

∫ ∫ ∫
∫

∫ ∫ ∫ ∫ ∫ ∫
∫

∫ ∫ ∫ ∫ ∫

∫

∫

xfdμ

fdμ
xdμ

a xdμ a x dμ a xydμ

fdμ
xdμ

fdμ a xdμ a ydμ xdμ a x dμ a xydμ

fdμ
xdμ

a x dμ xdμ a xydμ ydμ xdμ

fdμ

a Cov X Y
Var X

a Var X
fdμ

− =
+ +

−

=
( − − ) + +

−

=
− ( ) + ( − )

= + ( , )
( )

( ) .

00 10
2

01

10 01 10
2

01

10
2 2

01

10 01
(4.9)

If x and y represent different traits, then this equation captures the
possibility that higher values of x can be selected for, not because having a
high value of x is fitness enhancing per se, but because the covariance
between the traits is high enough, and having a high trait value of y is good
for fitness. If we have a model where x is the genotype of the agent, and y is
the genotype of its interaction partner – sometimes also denoted as x′
rather than y – then Cov X Y

Var X
( , )
( )

can be interpreted as the relatedness between

interaction partners. If we moreover interpret a10 and a01 as costs and
benefits (c a= − 10 and b a= 01) then it follows that Hamilton's rule always
holds. In other words, ∫ ∫ ∫xfdμ fdμ xdμ/ − > 0 if and only if

a a+ > 0Cov X Y
Var X10

( , )
( ) 01 .6

In a model with two binary traits, where X = 1 if the agent is a
cooperator, and Y = 1 if its interaction partner is, =Cov X Y

Var X
( , )
( )

 C C C D r( | ) − ( | ) = .7 If μ and f would represent data rather than a
model, this quantity would be the sample covariance over the sample
variance, which would amount to being an estimate of relatedness,
rather than being relatedness itself.

Notice that (4.8) is not actually used in the derivation. That implies
that, even though the regression method prescribes that we minimize
∫ f g dμ( − )2 with respect to all three variables, we could actually have

chosen any value for a01, minimized ∫ f g dμ( − )2 only with respect to a00
and a10, and have arrived at a Hamilton's rule with the exact same
derivation. An alternative choice for a01 will typically lead to a
alternative values for a00 and a10 too, and different choices for a01
would therefore come with different Hamilton's rules, with different b's

and c's, that all still correctly reflect the direction of selection. One
particular alternative choice for a01 would be a = 001 . In that case the
model specification would revert to the case with one variable, where
we wrote a0 for a00 and a1 for a10.

Because specification issues are a recurrent theme, it may help to
stress that if the true model f would be a linear function of both x and y, a
specification with x only would not stop us from getting the direction of
selection right, but will make us draw incorrect conclusions. Suppose that
f x y d d x d y( , ) = + +00 10 01 with d < 010 and d > 001 , and suppose further-
more that f and μ combine in such a way that the average value of the first
trait increases; ∫ ∫ ∫xfdμ fdμ xdμ/ − > 0. If we then choose the specifica-
tion from the previous subsection, with one variable and g x a a x( ) = +1 0 1 ,
then minimizing the squared difference between f and g would have to
return a value a > 01 , because the average trait value has increased. One
would – incorrectly – conclude from this choice of g that having a high
trait value itself is a good thing. If instead we use the specification from
this section, with g x y a a x a y( , ) = + +00 10 01 , we bring this integral all the
way down to 0, and find a d=00 00, a d=10 10, and a d=01 01 – provided that
μ has sufficiently rich support, to avoid trivial cases. We would then
conclude that having a higher trait value for x is in fact not good (a < 010 )
but that it is selected anyway, because it covaries sufficiently much with y,
and higher values of y are good (a > 001 ). Both specifications come with
Hamilton's rules that indicate the direction of selection correctly; the first
specification has one with b a= > 01 and c = 0, and the second specifica-
tion has one with b a= < 010 and c a= > 001 . Given that the second
specification matches f perfectly, it makes perfect sense to suggest that the
first Hamilton's rule is not the right one, even though it also matches the
direction of selection correctly, and that the second Hamilton's rule is in
fact the right one. Here, with only two specifications to choose from, that is
an obvious point to make. In Sections 4.3 and 4.4 we will have a richer set
of specifications to choose from. There we will make the same point, which
then may seem less immediately obvious.

The setup with a function f only allows for a fixed number of
offspring to go with every combination of x and y. This implies that in a
theory model, this restricts attention to models where the number of
offspring is deterministic. Also, if the probability measure represents a
dataset, then this rules out the possibility of having multiple observa-
tions with the same value of x y( , ), but different numbers of offspring.
In Appendix B we show that one can relax this restriction without
changing the results. The arguments there also justify using functions f
that are not restricted to return integers.

4.2.1. More than one equally related interaction partner
The above conclusions hold also if there is not just one interaction

partner, but if individuals interact in groups of size k > 2. In that case
we can take y to be the sum of trait values of all k − 1 interaction
partners. If we do, then Cov X Y

Var X
( , )
( )

amounts to k − 1 times the relatedness

between two individuals in the same group. One can still interpret a01
as the per partner benefits. If we multiply this by the number of
interaction partners – which is k − 1 – then we could interpret that
product as total benefits, and we again get Hamilton's rule; the change
in average x is positive if rb c− > 0, where c a= − 10, b k a= ( − 1) 01,

and r =
k

Cov X Y
Var X

1
− 1

( , )
( ) .

4.3. More than two variables, more than one Hamilton's rule

The starting point in Hamilton (1964a,b) is an array of fitness
effects on individuals with different relatednesses to the agent. Thereby
Hamilton's model not only allows for behaviour with effects on siblings
or on cousins, but also on siblings and cousins at the same time. Also
elsewhere in the literature, behaviours are considered that simulta-
neously affect different individuals that have distinct degrees of
relatedness to the agent (see for instance Grafen, 2007). This can be
encompassed by allowing for more than two independent variables.
The first will then pertain to the agent, the second to the first type of

6 One can also include the normalization in the b and c, and define ∫c a fdμ= − /10 1 and
∫b a fdμ= /01 1. This is also what one gets if the normalization is done at the construction

of f , that is, if we use ∫f f fdμ= / 1 instead of f . This is done in, among others, Gardner
et al. (2011).
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interaction partner, the third to the second type of interaction partner,
and so on. We will therefore allow for f to depend on m independent
variables, and also consider functions g to do the same, but moreover
are linear: g x x a a x a x( , …, ) = + + ⋯ +m m1 0,…,0 1,0,…,0 1 0,…,0,1 . Suppose
again that we minimize the squared difference between f and g:

∫ f g dμmin ( − )
a a a, ,…,

2

0,…,0 1,0,…0 0,…,0,1

The first order conditions imply that

⎛
⎝⎜

⎞
⎠⎟

∫∫
∫

∫

x fdμ

fdμ
x dμ a

Cov X X
Var X

a

Cov X X
Var X

a
Var X

fdμ

− = +
( , )

( )

+ ⋯ +
( , )

( )
( )m

1
1 1,0,…,0

1 2

1
0,1,0,…,0

1

1
0 ,,…,0,1

1

(4.10)

If we now interpret a− 1,0,…,0 as the costs c of the behaviour to the agent,
a0,1,0,…,0 up to a0,…,0,1 as the benefits b2 to bm to differently related

individuals, and Cov X X
Var X

( , )
( )
1 2

1
up to Cov X X

Var X
( , )

( )
m1

1
as relatednesses r2 to rm to these

different types of individuals, then, also in this more general setup, it
follows that Hamilton's rule always holds; ∫ ∫ ∫x fdμ fdμ x dμ/ − > 01 1 if
and only if c r b r b− + + ⋯ + > 0m2 2 2 . This nicely mirrors Hamilton's
original setup (see also Section 2).

The derivation is a straightforward generalization of the derivation
with two variables in Section 4.2. Also here, it only uses the first order
conditions that pertain to the derivatives with respect to a0,…,0 and
a1,0,…,0. Again that implies that there is scope for multiple specifica-
tions, leading to multiple Hamilton's rules, all of which indicate the
direction of selection correctly. We can choose to minimize ∫ f g dμ( − )2

using all coefficients, but we can also set some of them to 0, and only
minimize with respect to the others. As long as a0,…,0 and a1,0,…,0 are
not set to 0, these will all result in Hamilton's rules. Examples in
Section 8.3 illustrate that. Picking the right one is again a relatively
straightforward task if f has the same general form as g; if
f x x d d x d x( , …, ) = + + ⋯ +m m1 0,…,0 1,0,…,0 1 0,…,0,1 , with all coefficients
non-zero, then the squared difference between f and g is reduced to 0 if
we choose the specification that includes all coefficients.

4.4. More than two variables with higher order terms

Although the regression method as a way to determine benefits and
costs is restricted to linear terms (see Gardner et al., 2011, Box 4), we
would also like to allow for a more general setup, where the difference
between f and a polynomial g is minimized. This requires a little
notation. The set of all coefficients that are included in this polynomial
is . This is a finite subset of m

0 , and an element of is a vector,
elements of which indicate the exponents of the variables in the term
they are a (possibly non-zero) coefficient for. In other words,
g a x x x= ∑ …j j

j j
m
j

∈ 1 2 m1 2 . The minimization then becomes

∫ f g dμmin ( − ) .
j∈

2

The first order conditions of this minimization imply a more general
form of the identities in Sections 4.1–4.3, all of which are special cases
of the general version. For brevity, we write X X X X= …j j j

m
j( )

1 2 m1 2 :

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∫ ∑∫

∫ ∫
x fdμ

fdμ
x dμ

Cov X X
Var X

a
Var X

fdμ
− =

( , )
( )

( )

j a

j

j
1

1
∈ ⧹{ }

1
( )

1

1

0,…,0 (4.11)

This implies that the change in average trait value ∫ ∫ ∫x fdμ fdμ x dμ/ −1 1

is larger than 0 if and only if a∑ > 0j a
Cov X X

Var X j∈ ⧹{ }
( , )

( )

j

0,…,0
1

( )

1
.

The derivation is again a straightforward generalization of the
derivations in Sections 4.2 and 4.3, where only the first order
conditions that pertain to (0, …, 0) and (1, 0, …, 0) are used. This
implies that this identity holds, whatever set of coefficients we allow
to be non-zero, as long as (0, …, 0) and (1, 0, …, 0) are included.

This leaves us with a possible multitude of rules. The choice of g –

or in other words: the choice which coefficients to include in – is the
specification. For a given f and μ, different specifications may lead to
different values for the coefficients that are included in both, and all
specifications produce rules that indicate the direction of selection
correctly. Some of those are Hamilton's rules. If the regression contains
only linear terms and a fixed term – in other words, j∑ ≤ 1k

m
k=1 for all aj

with j ∈ – then we are back in the situation described in Section 4.3.
Others, that do include coefficients for non-linear terms, qualify as
proper generalizations of Hamilton's rule, but are not Hamilton's rules
themselves. The specification problem now amounts to finding criteria
for choosing the right .

For functions f that are polynomials themselves, one can imagine
that the recipe for finding the right specification involves starting with a
fixed term, and a coefficient for x1, and then adding ever more
coefficients. What one will typically find is that, as coefficients are
added to , the values of the coefficients that are already in there will
keep changing, until the point where all coefficients that are non-zero
in f are included in g , at which point ∫ f g dμ( − ) = 02 . After this,
every coefficient that is added will get the value 0 in the minimization,
and the coefficients already in there will stop changing. At this point we
have found the right specification, because f g= .

If f x x x x x( , …, ) = 1 − + +m1 1 2 3 – where x1 might represent the
agent's own trait value, x2 the trait value of the agent's sibling, and x3 the
trait value of the agent's cousin – such a recipe will typically choose the
specification g x x a a x a x a x( , …, ) = + + +m1 0,…,0 1,0,…,0 1 0,1,0,…,0 2 0,0,1,0,…,0 3
over g x x a a x( , …, ) = +m1 0,…,0 1,0,…,0 1 and over g x x a( , …, ) = +m1 0,…,0
a x a x+ ,1,0,…,0 1 0,1,0,…,0 2 even though those other two also come with
Hamilton's rules that get the direction of selection right. If
f x x x x( , …, ) = 1 +m1 1 2, then this recipe would choose
g x x a a x x( , …, ) = +m1 0,…,0 1,1,0,…,0 1 2, which comes with a rule, but not a
Hamilton's rule. The examples below, as well as in Section 8.3, illustrate that
further. Of course this recipe would need to be augmented when applied to

( )
( )

f x

g x

1

0
x 10

( )
f

g x

x

1

0
1

( )x

0

Fig. 11. In the theory model (a) ∫ f g dμ( − ) = 01
2 , whereas (b) the randomness in the data causes ∫ f g dμ( − ) > 01

2 .
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functions f that are not themselves polynomials, but for functions f that are,
there is no reason to treat the decision whether or not to include coefficient
a0,0,1 any different from the decision whether or not to include coefficient
a1,1,0.

4.5. Coefficients, models and statistics

Our preferred definition of costs and benefits follows the “counter-
factual method”. This approach compares fitnesses with their counter-
factuals, and has the differences between them determine the costs and
benefits of cooperation. For us, therefore, there is no need to replace fitness
functions f , that we can use directly to derive model implications, with
other functions g, and minimize the squared difference. The regression
method is claimed to be a method for defining costs and benefits, and, for a
given linear specification, it is. What we argue, however, is that the right
specification does not fall from the sky, but has to be chosen too. The
regression method, without a recipe how to chose one, is therefore
incomplete. Moreover, reasonable recipes for choosing between specifica-
tions will sometimes choose non-linear ones too, and once we allow for
non-linear specifications, we basically are back to square one, and have to
decide what the costs and benefits are in the presence of non-zero
coefficients for non-linear terms. For this, the counterfactual method seems
the most logical choice. But if we use the counterfactual method anyway,
there is no reason not to apply it to f directly.

In the remainder of this section we would like to look at a few
examples. The first examples are meant to illustrate the difference
between regressions in models and regressions in statistics. Then we
will reconnect the regression method to the examples from Section 3,
and see how the regression method leads to costs and benefits that
differ from the costs and benefits of the counterfactual method.

4.5.1. Example 1
Suppose we have a theoretical model with f x x( ) = , and let μ be the

uniform distribution on [0, 1]. If we minimize the squared difference
with g x a a x( ) = +1 0 1 we, trivially, find a = 00 , a = 11 , and

∫ f g dμ( − ) = 01
2 (Fig. 11a).

If instead we generate data with a process in which the number of

offspring is normally distributed around x, then the randomness in the
observations implies that if we minimize the sum of squares, using g1,
this minimum will typically be larger than 0 (Fig. 11b). Because the
data are generated by a linear model, with uncorrelated, homoscedastic
errors, the Gauss–Markov theorem implies that the OLS estimator has
minimum variance among the class of linear unbiased estimators. In
other words, the expected value of the estimates of a0 and a1 (i.e., the
estimates of slope and intercept) will be equal to their true values, and
their variances are minimal. Here we know the true values, because we
generated the data ourselves, but typically they will not be known,
because if they were, there would be no need to do statistics. Here we
also happen to know that the assumptions that the Gauss–Markov
theorem requires hold, but these can, and typically should, also be
tested statistically. With the data generated for Fig. 11b, we get
estimates a = 0.030 and a = 0.941 , which are both relatively close to
their true values, which are 0 and 1.

4.5.2. Example 2
Suppose now that f x x( ) = 2, and let μ be the uniform distribution

on [0, 1] again. If we now minimize the squared difference with
g x a a x( ) = +1 0 1 , then we find a = −0

1
6 and a = 11 (Fig. 12c). If we

minimize the squared difference with polynomials of degree 2 or
higher, then we find that only a = 12 , while all other coefficients are 0
(Fig. 12a). Moreover ∫ f g dμ( − ) = 0n

2 if n > 1, but not if n = 1. One
could therefore say that if we use a polynomial of degree 1, then the
reason that least squares minimization gives us a = −0

1
6 and a = 11 ,

instead of both being 0, is that g1 has no coefficient for x2 in it.
If we generate data with a process in which the number of offspring

is normally distributed around x2, then the randomness in the
observations implies that if we minimize the sum of squares, using
g2, this will typically be minimized at some value larger than 0
(Fig. 12b). If, however, we minimize the sum of squares using g1, then
there are two reasons why the sum of squares is larger than 0. One is
again that there is randomness, and the other is that the model is
misspecified – we have used g1 instead of g2, or, in other words, we have

not included a coefficient for x2 (Fig. 12d). Methods in statistics are all
geared towards avoiding the latter. If we now go back to the theory

Fig. 12. If OLS is applied in a statistical setting, then there are two distinct reasons that can make the sum of least squares be larger than 0; randomness (b and d) and misspecification
(d). In a theory context, only misspecification remains (c).

M. van Veelen et al. Journal of Theoretical Biology 414 (2017) 176–230

190



domain, and use g1 instead of g2 there, however, then the only reason

that remains for why ∫ f g dμ( − ) > 0n
2 is that g1 is not equal to f .

It is therefore important to realize that if the regression method is
applied to a deterministic model that is not itself linear, then this is a
different exercise than applying it to data that are produced by a linear,
but noisy data-generating process. Without randomness, the only
reason why ∫ f g dμ( − )n

2 is not 0 is misspecification. Properties such
as those implied by the Gauss–Markov theorem – which is why OLS is
applied in statistics – do not apply here. Eq. (4.2) nonetheless remains
as true as it was before; the direction of selection in a theory model
does not change if we replace f with g1.

4.5.3. Example 3
A simple example with two variables is f x y a xy( , ) = 11 . When the

squared difference between f and g x y a a x a y( , ) = + +00 10 01 is mini-
mized, this will, for many probability distributions μ, lead to non-zero
a00, a10 and a01, while all three of them are in fact 0.

4.5.4. More specification issues
Allen et al. (2013a) give examples that also indicate that the

regression method is blind to specification. They illustrate that if the
standard linear specification is used, regardless of its fit, then one easily
arrives at a c and b that can certainly not properly be interpreted as
describing the costs and benefits of the behavior. One example is
“hanger-on” behavior, where individuals seek out high fitness indivi-
duals to hang out and interact with, but where this interaction does not
confer any benefit to the high fitness individual. The regression method
would then nonetheless conclude that b > 0, and mistake the hanging
on for something with a positive effect on fitness. One could argue that
this is due to the fact that the regression method in this case is clearly
misspecified, but that only underscores the fact that we apparently
apply, and need, criteria for what good and bad specifications are. And
as soon as goodness of fit starts to matter for the specification of the
model, there is no reason why the goodness of fit might not pick a non-
linear model as the winner. We will return to this point in Section 8.
Here we continue with applications of the regression method to
examples that feature in Section 3.

4.5.5. Back to the replicator dynamics for the prisoners dilemma
Gardner et al. (2011) apply the regression method both to the

prisoners dilemma, allowing for unequal gains from switching, and to
the rock band game. For the prisoners dilemma, we include the least
squares minimization in Appendix B, where it should be noted that we
use R, S, T and P for payoffs, as we do throughout this paper, while
Gardner et al. (2011) follow Queller (1985) by parametrizing those
payoffs with B, C and D.

The values that result from applying the regression method are:

c p rp
r

P S p r p
r

T R

b p rp
r

T P p r p
r

R S

= 1 − +
1 +

( − ) + + (1 − )
1 +

( − )

= 1 − +
1 +

( − ) + + (1 − )
1 +

( − ).
(4.12)

These are different from the values we find using the counterfactual
approach (see Section 3.2.1).

4.5.6. One partner versus many partners
In Section 3 we have assumed that each individual is paired with

one partner and with one partner only. Alternatively, one can assume
that each individual interacts with a large, effectively infinite, sample of
the population, and retains the average payoff from these interactions.
In this case every individual cooperator gets the same payoff, equal to
the average for cooperators from the “one partner” case (πC), while
every individual defector is assumed to get πD. This “many partners”
setup leads to the same equation for the replicator dynamics as the one
partner setup (Eq. (3.1)). The counterfactual benefits and costs
described in Section 3 would also remain the same, but a change to

the many partners setup does have an effect when applying the
regression method. The parent population now consist of only two
distinct points: x y α α p( , ) = (1, + (1 − ) ), with frequency p for coopera-
tors and fitness f α α p π(1, + (1 − ) ) = C, and x y α p( , ) = (0, (1 − ) ), with
fitness f α p π(0, (1 − ) ) = D. Because there are only two distinct points, x
and y are linearly related: y αx α p= + (1 − ) . It follows from the
discussion in Section 4.2 that the regression method does not produce
a unique benefit b and cost c in this case.8

4.5.7. Back to the replicator dynamics for the rock band game
For the rock band game, Gardner et al. (2011) find

c p p
p p f f

f
p

b p p
p p f f

f
p

= 1 − 3 (1 − )
9 (1 − ) − 2( + )

× × 2

= 6 − (1 − )
9 (1 − ) − 2( + )

× × 2,

1 2

3

1 2

3

where we have left out the normalization (this is inconsequential; see
Footnote 6). Also these are different from the costs and benefits based
on counterfactuals (see Section 3.3).

How we define costs and benefits is therefore consequential for
whether or not Hamilton's rule holds; it always does if we choose to
define b and c as regression coefficients, but it does not always hold if
we define them by comparing fitnesses to their counterfactuals. A
related, but different question is if it helps understand the dynamics it
describes better, if we rewrite the criterion for cooperators to win with
Hamilton's rule, where b and c follow from the regression method. This
is at least to some extent a matter of preference. Our preference in this
particular case goes to the condition

f
p

> 1
2

.3

All that matters in the Rock Band Game is that more cooperators get 2
instead of 1 than get 0 instead of 1 (see Fig. 10 and Section 3).
Therefore at least half of the cooperators must find themselves in
groups of 3 cooperators. That is exactly what this condition says. For
us, replacing this criterion with its equivalent Hamilton's rule alter-
native, with regression coefficients for costs and benefits, is not a gain
in clarity or insight in the condition:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟p p

p p f f
f
p

r p p
p p f f

f
p

6 (1 − )
9 (1 − ) − 2( + )

× × 2 × − 1 − 3 (1 − )
9 (1 − ) − 2( + )

× × 2 > 0.
1 2

3

1 2

3

4.5.8. Different costs, different benefits, different rules
The idea that the disagreement about the generality of Hamilton's

rule might be the result of a failure to disambiguate different versions
of it was put forth by Birch (2014). He also compares different ways to
define costs and benefits in Hamilton's rule. One of the possibilities he
considers is the regression method, which, in his terminology, leads to
the general version of Hamilton's rule. The other possibility is termed
the special version, and it is meant to capture the way b and c are
defined in Nowak et al. (2010) as well as in van Veelen (2009) and van
Veelen et al. (2012). Since the latter three papers differ in their
treatment of b and c, it is unavoidable that the description of the
special version there has features of both, but reflects neither choice
perfectly. For discussing this, it will be useful to understand a point
made by Grafen (2007), and since this is discussed in Section 7, we will
postpone these more detailed points to the final section.

In the remainder of this paper we will consider Hamilton's rule with

8 This failure of the regression method was first noticed by Allen and Nowak (2015) in
the context of a finite-population model. Rousset (2015) seems to claim that this finding
is erroneous, because it does not reproduce the result of Gardner et al. (2011). However,
Rousset (2015) apparently missed the fact that the “one partner” and “many partners”
setups lead to different outcomes in the regression method. Gardner et al. (2011) and
Rousset (2015) use a “one partner” setup, so it is not surprising that they obtain different
results from Allen and Nowak (2015), who used a “many partners” setup.
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costs and benefits based on counterfactuals, and not on the regression
method. We will find that even then, there is a sizeable domain within
which inclusive fitness works, but also that there is a domain where it does
not. With b and c defined according to the regression method, whether or
not inclusive fitness always aligns with the direction of selection is no
longer a question, as the first order conditions imply that it always does.

5. Comparative statics

Even if Hamilton's rule may not always hold as a quantitative
prediction, it may still be valid qualitatively, in the sense that
higher relatedness is conducive to the evolution of cooperation.
With appropriate definitions of what it means for relatedness to
favour cooperation, this turns out to be true for 2-player games.
For games with more players these comparative statics do not
apply generally, but may apply in reasonably restricted subsets
of all possible population structures.

One of the obvious implications of Hamilton's rule is that related-
ness is good for cooperation. The higher relatedness is, the larger the
scope for the evolution of cooperation, because with a higher r we can
make do with a smaller benefit b to offset the same costs c. In Section 3
we found that Hamilton's rule, with definitions of costs and benefits
based on comparisons with counterfactuals, is only accurate for games
with (generalized) equal gains from switching. But even if rb c> is not
the right criterion to determine whether or not cooperation gets
selected, it could still be that an increase in relatedness is typically
good news for cooperation. In other words, there may be a whole set of
games for which the quantitative prediction does not fit Hamilton's
rule, but for which it remains true that an increase in relatedness
increases the scope for the evolution of cooperation.

In this section we will explore different ways to formalize what we could
mean when we say that an increase in relatedness r is good for cooperation
(Matessi and Karlin, 1984; 1986 call this the qualitative validity of the
Hamilton rule, or the Hamilton Property). We will look at “comparative
statics” (see also Section 3 in Frank, 1998; Milchtaich, 2006; Allen and
Nowak, 2015; Cooney et al., 2016) and find out that, indeed, there are
many 2-player games for which one can unambiguously say that related-
ness fosters cooperation. For games with more than 2 players there are
complications, but even there it is possible to use comparative statics for
specific models within which a similar claim is true.

There is a variety of reasons why this is worth doing. One reason is
that in the debate concerning inclusive fitness and the evolution of
cooperation, kin selection and Hamilton's rule are sometimes con-
flated (some examples are Foster et al., 2006a,b; Nowak et al., 2010;
Birch and Okasha, 2015). When the general validity of Hamilton's
rule is questioned, it is therefore often assumed that kin selection is
under attack. By looking at comparative statics, we show that those
should be treated separately; increasing relatedness does favour

cooperation in an unambiguous sense in almost all 2-player games,
including games for which we already showed that Hamilton's rule
does not predict the direction of selection. We therefore would also
argue that much of the empirical evidence that is claimed to support
Hamilton's rule should really be interpreted as supporting the
comparative statics instead.

Another reason for looking into this is that it is just very interesting
to see if we can formalize and explore if and how relatedness helps
cooperation evolve.

5.1. Definitions, derivatives and isoclines with 2 players

The first question we might ask is how increasing the degree of
relatedness affects the speed at which cooperation grows (or shrinks)
under the dynamics. From Section 3.2 we know the dynamics – they
are given by p p p π π̇ = (1 − )( − )C D . From Section 3.2.1 we know that
π r r p R r p S= ( + (1 − ) ) + (1 − )(1 − )C and π r r p P= ( + (1 − )(1 − ))D

r pT+(1 − ) . In order to evaluate the effect of a change in r , holding
p fixed, we take the first derivative with respect to r to find that

⎛
⎝⎜

⎞
⎠⎟

p
r

p p
π
r

π
r

p p p R S p T P

∂ ̇
∂

= (1 − )
∂
∂

−
∂
∂

= (1 − )[(1 − )( − ) + ( − )]

C D

(5.1)

When this quantity is positive, an increase in r implies an increase in
the rate of increase, or a decrease in the rate of decrease, of
cooperators.9 This is the main comparative static of interest with
regard to cooperation, and it allows us to define the first, strongest
sense in which increased relatedness might “favour” cooperation:

Definition 1. Increased relatedness favours cooperation in the first
sense if ≥ 0p p r

r
∂ ̇( , )

∂ for all p r( , ).

It is immediately clear that for all 2-player games with R S≥ and
T P≥ – which includes all prisoners' dilemmas – increased relatedness
favours cooperation in the strongest sense. It is also clear that if R S< ,
or if T P< , there will be frequencies p for which < 0p p r

r
∂ ̇( , )

∂ ; they are low
frequencies p if R S< and high frequencies p if T P< .

A second definition would be useful in the case where the dynamics
always result in convergence to a pure state comprising only cooperators
or only defectors – except when starting on the boundary between the
plus- and the minus-region. If an increase in r is to favour cooperation,

Fig. 13. Phase planes with sample constant-r trajectories for the prisoners' dilemma. In each case, the green line represents the isocline π π=C D on which the proportion of cooperators

is stationary. In the region above the green threshold the proportion of cooperators is decreasing; in the region below it the proportion of cooperators is increasing. The blue arcs are
constant-r arcs. In the first case the intersection of a constant r arc and the isocline separates the basins of attraction of full cooperation (p = 1) and full defection (p = 0) (a). The middle

case has equal gains from switching, and no intersections if r ≠ c
b
(b). In the third case, the intersection of a constant-r arc and the isocline is a stable and attracting fixed point (c). In

each case, increasing relatedness favours cooperation under the strongest definition. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)

9 It should be noted that the results are not dependent on the linearity of the replicator
dynamics; they generalize to any dynamics with the form
p F p π π F p p π π̇ = ( , − ) = ( , (1 − )[ − ])C C D where the partial derivative F > 02 , since then
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∂
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.
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then the basin of attraction of the cooperative outcome should expand as
we increase r . This would follow if the proportions of cooperators at
unstable fixed points were decreasing in r . These fixed points typically
represent polymorphisms, with both cooperators and defectors present.

Definition 2. Increased relatedness favours cooperation in the second
sense if, writing p r*( ) as the locally unstable equilibrium proportion of
cooperators for a given r , p r*( ) is non-increasing in r .

Finally, in instances where there is a mixed equilibrium comprising
both cooperators and defectors for some r , a third definition is useful.
Relatedness favouring cooperation could then mean that the propor-
tion of cooperators in equilibrium is higher for higher r , where the
equilibrium typically contains defectors as well as cooperators.

Definition 3. Increased relatedness favours cooperation in the third
sense if, writing p r*( ) as the locally stable equilibrium proportion of
cooperators for a given r , p r*( ) is non-decreasing in r .

It can be shown (see Appendix C) that if increased relatedness
favours cooperation under the first definition, then it necessarily does
so under the second and third definitions too. In this sense, Definitions
2 and 3 are weaker than Definition 1. Appendix C also shows that for
every r , there is at most one polymorphic equilibrium, which justifies
defining p r*( ) as the share of cooperators at that equilibrium.

We will go over the games that feature in the previous section in a
systematic way. In all those cases, the line that separates the “plus-
region” from the “minus-region” will be important. That line, the
isocline where π π=C D, gives those values of p r( , ) for which p ̇ = 0, and
hence p is a fixed point of the dynamics.

5.1.1. Prisoners' dilemmas
Prisoners' dilemmas are defined by the ordering of payoffs

T R P S> > > . The first and the third inequality represent that the
individual always gains from defecting. The second represents the
inefficiency of mutual defection relative to mutual cooperation. As a
result, we have R S> and T P> , so, as mentioned already in Section
5.1, higher relatedness always favours cooperation under the stronger
definition of increasing the growth rate of cooperators relative to
defectors. This is a particularly strong result: in precisely those games
where cooperation is best defined and most studied, increasing the
degree of relatedness promotes cooperation under our strongest
definition, with or without equal gains from switching.

Although the first definition is the strongest, and implies the other
two, it is still worth confirming that the second and third do indeed hold
in the respective cases to which they apply. That is illustrated in Fig. 13
(the corresponding calculations are found in Appendix C). In Fig. 13a the
intersection of the constant-r arc and the isocline separates the basins of
attraction of full defection on the left and full cooperation on the right. As
r goes up, and we move to ever lower constant-r arcs, the intersection
moves more to the left, which increases the size of the basin of attraction

of cooperation. In Fig. 13c, the stable fixed point of the dynamics is a point
in the interior of the simplex. As r goes up, we again go to ever lower
constant-r arcs, but now the intersection moves more to the right, where
the equilibrium proportion of cooperators is higher.

5.1.2. Stag hunt games
Stag hunt, or coordination games are defined by the inequalities

R P> , P S> and R T> . For consistency, we again call the strategy
which yields R when mutually played the cooperative strategy. The
difference with prisoners' dilemmas is that there T R> , which, in
combination with the other inequalities, implies that playing D rather
than C always came with higher payoffs. In stag hunt games the best
response to D is D, as it is in the prisoners' dilemma, but the best
response to C is C, as R T> . It is useful to distinguish three cases: (a)
R T P S> ≥ > , (b) R P T S> > > , and (c) R P S T> > ≥ .

In case (a), it follows immediately that increased relatedness favours
cooperation in the strongest sense, because R S> and T P≥ . In cases (b)
and (c), increased relatedness only increases the growth rate of coopera-
tion if the frequency of cooperators p is below a maximum level R S

R P S T
−

+ − −
.

Cooperation is therefore not favoured by increased relatedness under the
strongest definition. However, the fact that selection for cooperation is not
everywhere increased by an increase in r here only implies that there is a
region where selection for cooperation is slower (right of the rightmost
grey lines in Fig. 14b and c). The more important effect of an increase in r
is that it increases the basin of attraction of the cooperative equilibrium,
which implies that relatedness does favour cooperation by the second
definition. Calculations are in Appendix C.

5.1.3. (General) hawk dove games
General hawk dove, or snowdrift games are defined by the inequal-

ities T R> , R P> and S P> . For consistency, we call the strategy
which yields R when mutually played the cooperative strategy, although
that is not as unambiguous a label as with prisoners' dilemmas. It is
again useful to distinguish between three cases: (a) S T R P≥ > > , (b)
T S R P> ≥ > , and (c) T R S P> > > , where the third corresponds to
the usual snowdrift game.

In case (c), the usual snowdrift game, it follows immediately that
increased relatedness favours cooperation in the strongest sense,
because, as in the case of the prisoners' dilemma, R S> and T P> .
In cases (a) and (b), increased relatedness only increases the growth
rate of cooperation if the frequency of cooperators p is above a
minimum level S R

S T R P
−

+ − −
. Cooperation is therefore not favoured by

increased relatedness under the strongest definition. However, the fact
that selection for cooperation is not everywhere increased by an
increase in r only implies that there is a region where selection for
cooperation is slower (the region to the left of the left grey lines in
Fig. 15a and b). The more important effect of an increase in r is that it
shifts the mixed equilibrium in favour of cooperators, which implies
that relatedness favours cooperation by the third definition.

Fig. 14. Phase planes for stag hunt, or coordination games. In case (a), increasing relatedness favours cooperation under the strongest definition. In cases (b) and (c), increasing
relatedness does not favour cooperation under the strongest definition. The rightmost grey line reflects states with p = R S

R P S T
−

+ − −
. To the right of it, increasing relatedness slows down

the growth rate of cooperation. Increasing relatedness however does favour cooperation under the weaker second definition. An increase in r implies that the blue and the green line
intersect at a point with a lower fraction of cooperators, and since here the intersection is an unstable mixed equilibrium, this implies that the basin of attraction of full cooperation
expands. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Calculations are in Appendix C.

5.2. Comparative statics on efficiency (still with 2 players)

So far, we have simply labeled one strategy as cooperative and the
other as defecting, based on the fact that one strategy, when played
against itself, yields more than the other does, when played against itself.
We included a broad spectrum of games that one could consider to be
cooperative dilemmas. Within this broad set, we have shown that, at least
under the weaker two definitions, increased relatedness always favours
cooperators. For some of the games that are included, however, having
more of the strategy that is labeled as cooperative does not always imply
higher average payoffs. For some of the general snowdrift games, for
instance, cooperators increase the average payoff when rare, but not when
abundant. When abundant, playing the strategy we labeled “cooperate” is
therefore not necessarily the cooperative thing to do.

A way around this problem is to ask whether relatedness also
favours efficiency – where we take efficiency to be the average payoff
across the population: π pπ p π= + (1 − )C D. Though our discussion will
be more brief than that around cooperation, it will again be useful to
distinguish between three definitions of ‘favouring’ efficiency, the first
being the strongest, implying the second and third.

Definition 4. Increased relatedness favours efficiency in the first
sense if ≥ 0π p r

r
∂ ( , )

∂ for all p r( , ).

Analysis of the system under this strong definition is somewhat
intractable. We will therefore turn to the two weaker definitions in what
follows.

If we expect convergence to pure states, the basin of convergence
(in terms of p) for the efficient outcome should increase with r . Since
the fully cooperative pure state is, by definition, more efficient than the
fully defecting pure state, this would follow from favouring cooperation
under the earlier second definition.

Definition 5. Increased relatedness favours cooperation (and
efficiency) in the second sense if, writing p r*( ) as the locally unstable
equilibrium proportion of cooperators for a given r , p r*( ) is non-
increasing in r .

In situations where we expect a stable mixed equilibrium, related-
ness favours efficiency if the average payoff at equilibrium increases
with r .

Definition 6. Increased relatedness favours efficiency in the third
sense if, writing p r*( ) as the locally stable equilibrium proportion of
cooperators for a given r , π p r r( *( ), ) is nondecreasing in r .

5.2.1. Prisoners' dilemmas
In the previous section we saw that in case (a) P S T R− > − , we

have, for some r , an unstable mixed equilibrium, and so the second
definition is appropriate. It was shown in Section 5.1.1 that, in this

case, increased relatedness favours cooperation under the second
definition, so it favours efficiency under the second definition too.

In the other case, (c) P S T R− < − , for certain r , there is a stable
mixed equilibrium, and so the second definition is applicable. At the
stable equilibrium the average payoff of both cooperators and defectors
are equal to each other (π π=C D) and therefore also equal to the overall
average payoff:

π pπ p π p π π π π π= + (1 − ) = [ − ] + = =C D C D D D C

The frequency p at the intersection of the isocline and a constant-r
arc is found by taking the equation of the isocline, π π=C D, and

isolating p. This way we find p r*( ) = S R R P r
T R P S

− + ( − ) / (1 − )
( − ) − ( − ) . The equilibrium

is on the isocline, so if we substitute this for p either in π =C
r r p R r p S( + (1 − ) ) + (1 − )(1 − ) or in π r r p P= ( + (1 − )(1 − ))D

r pT+ (1 − ) we find the average payoff as a function of T, R, P and S,
and of r . Either way we find

π π π r R S T P PR ST
T R P S

= = = ( − )( − ) − +
( − ) − ( − )C D

This is increasing in r , since R S> and T P> in the prisoners' dilemma
(the denominator is positive, since P S T R− < − ). Hence, in this case,
increased relatedness favours efficiency under the third definition.

5.2.2. Stag hunt games
In stag hunt, or coordination games, for large enough r , we have an

unstable mixed stationary point: starting off the isocline, the popula-
tion converges either to the fully cooperative or fully defective outcome.
Thus, the second definition of favouring is appropriate. We showed in
the previous section that, in these games, increased relatedness favours
cooperation under the second definition, and so increased relatedness
favours efficiency under the second definition as well.

5.2.3. General hawk dove games
In the hawk dove, or snowdrift game, it was shown that, for sufficiently

low r , we have a stable mixed equilibrium (for higher r , we always have
convergence to the fully cooperative outcome). Thus, the second definition
is apposite. Since, in the mixed equilibrium, π π=D C , we may use the same
simplification as above in writing π π π= =C D. On the isocline, again, we

have p r*( ) = S R R P r
T R S P

− + ( − ) / (1 − )
( − ) + ( − ) , and πC simplifies as in the previous

subsection. So, =π
r

R S T P
T R S P

∂
∂

( − )( − )
( − ) + ( − ) . Since T R S P( − ) + ( − ) > 0 and

T P> in the general snowdrift game, this expression is positive if and only
if R S> . So, increased relatedness favours efficiency in the third sense if
and only if R S> (case (c) in Fig. 15); for R S< , the equilibrium outcome
becomes less efficient as we increase r . The intuition for this negative result
is clear: in these ‘unusual snowdrift’ games, both off-diagonal payoffs, S and
T, are greater than the diagonal payoffs, R and P. Since the effect of
increasing r is precisely to increase the instances of diagonal payoffs relative
to off-diagonal payoffs, in these games, the effect would be to decrease
efficiency.

Fig. 15. Phase planes for the general hawk dove game. In cases (a) and (b), increasing relatedness does not favour cooperation under the strongest definition. The leftmost grey line
reflects states with p = S R

S T R P
−

+ − −
. To the left of it, increasing relatedness slows down the growth rate of cooperation. Increasing relatedness however does favour cooperation under the

weaker third definition. An increase in r implies that the blue and the green line intersect at a point with a higher fraction of cooperators, and since here the intersection is a stable mixed
equilibrium, this implies that there are more cooperators in equilibrium. In case (c), the usual snowdrift game, increasing relatedness favours cooperation under the strongest definition.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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5.3. Comparative statics with more than 2 players

With more than 2 players things are a bit more complicated. If games
are played between n players, a fully general rule that summarizes when
cooperators are selected for is going to have to feature n − 1 parameters for
population structure. Using only one parameter for population structure –
such as r – opens up the possibility of counterintuitive findings. Even in
games where it is unambiguous what the cooperative thing to do is, it can
still be that one population structure has a higher relatedness r while the
other favours cooperation and efficiency more. So here it is certainly not
true that a higher r is always good for cooperation (this is also noted, in a
somewhat more complicated setting, in Matessi and Karlin, 1984;1986).

The possibility of such paradoxical findings exists, because we are
looking for a totally general claim, which is to allow for all combina-
tions of all possible fitness effects on the one hand, and all possible

population structures on the other hand. We can however impose
restrictions on either ingredient. One example, as we have seen in
Section 3.3, is to restrict the set of games, or fitness effects, to those
that have generalized equal gains from switching. If we do, then no
matter which population structure we choose from the set of all
population structures, all that matters is relatedness r . This implies
that for a given game that has generalized equal gains from switching,
the comparative statics are that an increase in r fosters cooperation.
For another example in the domain of group selection, see van Veelen
et al. (2014), which considers a set of models based on Simon (2010),
Simon et al. (2013) and Luo (2014).

Another possibility is that we restrict the set of population
structures. For a game that does not have equal gains from switching,
it is of course still possible to only consider a restricted set of
population structures. It could for instance be that a number of species
are all the same in almost all respects, and only differ along a single
dimension, for instance in the number of matings that a queen has.
That implies that within this set of species, not all population structures
are possible, and we are only looking at those that are attained by
varying the number of matings per queen, for instance, or whatever it is
that the one dimension represents. If this particular subset of all
possible population structures is combined with a game that does not
have equal gains from switching, then it is very well possible that
within this subset, population structures with a higher r favour
cooperation. This is illustrated in the next two figures.

The game in the figures is the same as in Section 3.3; π = − 1i C, if
i = 1 or 2, π = 1i C, if i = 3, and π = 0i D, for all i. There we rewrote the

criterion π π>C D as >f
p

1
2

3 . In Fig. 16, the green surface represents that

threshold; it separates all population states where π π>C D, and
cooperators win, from all population states where π π<C D, and
defectors win. The blue surface are all states with relatedness 1

4
.

Clearly the dissimilarity in shape implies that one can find points with
r < 1

4 where cooperators nonetheless are selected for, and points with

r > 1
4 where defectors are selected for (see Fig. 16).
Fig. 17 shows that within a restricted set of population

structures, the comparative statics may still hold. As an example
we take f α p α p= (1 − )(1 − ) + (1 − )0

3 , f α p p= (1 − ) (1 − )1
2,

f α p p= (1 − ) (1 − )2
2 and f α p αp= (1 − ) +3

3 . For this one-parameter
set of population structures, relatedness equals α. The basins of
attraction of cooperation and defection meet at frequency

p = α
α

1 − 2
2 − 2

, which is decreasing in α – with α0 ≤ ≤ 1. The basin of

attraction of cooperation therefore increases with relatedness. Many
empirical studies may fit such restricted sets of population structures.

6. Adaptive dynamics

In this section we consider adaptive dynamics in structured
populations. For fitness functions that exhibit “equal gains
from switching” globally, Hamilton's rule matches the direc-
tion of selection at any point in time along the trajectory.
Fitness functions that are differentiable will exhibit equal
gains from switching locally, and for those that do not have
bifurcations, Hamilton's rule will again always match the
direction of selection. With bifurcations, Hamilton's rule
matches the direction of selection up to the first bifurcation.
We furthermore generalize the canonical equation from Allen
et al. (2013a,b) to non-differentiable payoff functions. For
those, Hamilton's rule does not apply. For some fitness
functions, moreover, the assumption of monomorphic popu-
lations that adaptive dynamics makes is hard to justify.

Rather than assuming that there are two types to begin with –
cooperators and defectors – one could assume instead that there is a
whole continuum of possible levels of cooperation. Moreover, one could
assume that at any point in time the population is close to being

Fig. 16. Comparative statics in general do not apply. The vertex closest to us is f = 10 ,

the rightmost vertex is f = 13 , the leftmost vertex is f = 11 and the top vertex is f = 12 .

The surface that separates the plus-region from the minus region (green) does not have
the same shape as a fixed-r surface (blue; r = 1

4
). This implies that we can find two

population states, one with r < 1
4
where cooperation is nonetheless selected, and one with

r > 1
4
where defection is nonetheless selected. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 17. Comparative statics in a restricted set of population structures. The black lines
reflect three specific population structures; one with r = 0 (the most outward), one with
r = 0.25 and one with r = 0.5 (the most inward). The green surface separates the basins of
attraction of full defection at f = 10 and full cooperation at f = 13 , for those three

population structures. The figure shows that the basin of attraction of cooperation is
larger for higher r. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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monomorphous. We get a stylized version of being close to mono-
morphous if we assume that selection is much faster than mutation.
Mutations then either go to fixation or go extinct before the next
mutation arises, so at any point in time there are at most two strategies
present: an incumbent, and a (more recent) mutant. One can further-
more assume that mutations are typically local; any mutation is most
likely taking only a very small step on this continuum.

Although the profusion of possible strategies implies an enormous
scope for deviations from equal gains from switching at the global level,
the assumption of local mutations can bring us back to a setting where
locally equal gains from switching is restored. If this is the case,
inclusive fitness will describe the success or failure of a succession of
mutants, and one can easily imagine a dynamics that keeps moving up
to the point where inclusive fitness is maximized. There are however
also exceptions, as we will see below.

A continuous trait space and local mutations are assumptions that
feature in many inclusive fitness papers (some examples are Taylor, 1989;
Taylor and Frank, 1996; Rousset and Billiard, 2000; Roze and Rousset,
2004; Lehmann, 2012). They are also the basic assumptions in adaptive
dynamics (Hofbauer and Sigmund, 1990; Metz et al., 1996; Dieckmann
and Law, 1996; Geritz et al., 1998; Champagnat et al., 2001, 2006; Le
Galliard et al., 2003, 2005; Champagnat and Lambert, 2007; Dercole and
Rinaldi, 2008). Besides sharing a basic setup, there are also differences
between this part of the inclusive fitness literature and adaptive dynamics.
The adaptive dynamics literature typically assumes a well-mixed popula-
tion, and focusses on non-social traits. The inclusive fitness papers are
about traits that do have fitness effects on others, and typically do not
assume a well-mixed population. More recently, some authors have
introduced population structure in adaptive dynamics (Champagnat and
Méléard, 2007; Allen et al., 2013a). This is a nice cross-over, and it turns
out that this approach is also very instructive in describing how inclusive
fitness works, and what its limitations are.

The actual results pertaining to adaptive dynamics with population
structure are mostly in Appendix D. Here in the main text we will apply
them to a few instructive examples. The first two show that inclusive

fitness can describe the evolution of a trait value in a variety of cases. In
the third example inclusive fitness no longer works, but one version of
adaptive dynamics remains a relatively accurate description of dy-
namics with reasonable parameter choices. The fourth example shows
that adaptive dynamics can also cease to be a good description of
evolution altogether. The examples in Section 6.6 illustrate limitations
of inclusive fitness as pointed out by Doebeli and Hauert (2006), based
on Doebeli et al. (2004).

6.1. Four games with continuous trait space

Even for discussing some instructive examples, it is unavoidable to
introduce some notation. Traits will be values in . The first examples
reflect interactions between 2 players that both exhibit a trait in . We
assume, as always, that the game is symmetric. In a 2-player game this
means that if π x y( , )j was to denote the payoff to player j if player 1
plays x and player 2 plays y, then π x y π y x( , ) = ( , )2 1 . This implies that it
is in fact redundant to have vector valued payoff function; it is sufficient
to have a simple payoff function  π: →2 which describes how much
player 1 gets as a function of what player 1 and 2 do. How much player
2 gets immediately follows from interchanging the variables.

Later we will also consider interactions between n players that all
have traits in . Again, a payoff function  π: →n is sufficient to
describe a symmetric game; the payoff of player j in the action profile
x x( , …, )n1 is the value of payoff function π evaluated in the action
profile where x1 and xj have swapped places. Symmetry does, however,
impose a restriction on the payoff function π now, and that is that
π x x x π x p x x( , , …, ) = ( , ( , …, ))n n1 2 1 2 for all permutations p.

The first payoff function generates a prisoners' dilemma with equal
gains from switching for every combination of two different strategies
in [0, ]a

2 , with a > 0:

π x y ay x( , ) = − 2 (6.1)

This function is called additively separable, which means that there are
functions b y( ) and c x( ) such that π x y b y c x( , ) = ( ) − ( ). Additive separ-
ability guarantees that all possible restrictions to 2 by 2 matrix games
exhibit equal gains from switching. If a player changes from playing x
to playing x δ+ , then the opponent gains b x δ b x( + ) − ( ), while that
change implies a loss of c x δ c x( + ) − ( ) to the player itself, regardless of

Fig. 18. The dashed lines give combinations of payoffs that are attained by keeping one
player's trait value fixed (at 1, 2, 3, 4 and 5, respectively) and continuously varying the
trait value of the other, all with payoff function π x y y x( , ) = 10 − 2. With this payoff

function, any two given trait values constitute a bimatrix game with equal gains from
switching. The solid lines represent four such games; with trait values
{1, 2}, {2, 3}, {3, 4} and {4, 5}, respectively. The figure, as well as the formula, shows

that an increase in cooperation gets ever more expensive as the trait value increases.

Fig. 19. With payoff function π x y y xy( , ) = 10 − the bimatrix games with trait values

{1, 2}, {2, 3}, {3, 4} and {4, 5} are games with unequal gains from switching. In the limit

of δ-weak selection, however, one can say that it does have equal gains from switching.
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the action of its opponent. This independence of the action of the
opponent is what defines equal gains from switching. Fig. 18 illustrates
that property. We get this picture by choosing different values for x and
y and plotting the payoffs that they result in. The dotted lines keep the
action of one player fixed and vary the actions of the other continu-
ously, while the solid lines depict a succession of bimatrix games.

The second example is a slight variation; for every combination of
two strategies in [0, )a

2 we still get a prisoners' dilemma:

π x y ay xy( , ) = − (6.2)

Again we assume that a > 0. This function is not additively separable
and it generates a sequence of prisoners' dilemmas that does not have
equal gains from switching. However, for ever smaller mutations we get
ever closer to a game that does have equal gains from switching. In
other words, in the limit of weak selection in phenotype space (or
δ-weak selection; see Wild and Traulsen, 2007), we do arrive at a game
with equal gains from switching. This is visible if we take the limit for
δ → 0 of the appropriately rescaled payoff matrix that comes with
resident t and mutant t δ+ :

⎛
⎝
⎜⎜
⎡
⎣
⎢⎢

⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠
⎟⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

δ
at t a t δ t t δ

at t δ t a t δ t δ
at t

δ
aδ tδ

δt aδ tδ δ
a t

t a t δ
a t

t a t

lim 1 − ( + ) − ( + ]
− ( + ) ( + ) − ( + )

− ( − ) 1 1
1 1

= lim 1 0 −
− − (2 + )

= lim 0 −
− − 2 − = 0 −

− − 2

δ

δ δ

→0

2

2
2

→0
2

→0

The third example is a 2-player version of the minimum effort game
(Van Huyck et al., 1990). This is a well-known game in economics, and
the only difference with the standard minimum effort game is that here
we have quadratic costs:

π x y a x y x( , ) = min( , ) − 2 (6.3)

Again we assume that a > 0. For every combination of two different
strategies in [0, ]a

2 this gives us a stag hunt (or coordination) game,10

which by definition does not have equal gains from switching. This

remains true, even in the limit of δ-weak selection (weak selection in
phenotype space).

This function is obviously not additively separable. The quadratic
costs again ensure that whatever the population structure, there will
always be a point where increases in costs inhibit the evolution of ever
higher values of the trait.

The fourth example could be dubbed a maximum effort game:

π x y a x y x( , ) = max( , ) − 2 (6.4)

In this game it is sufficient for the production of the benefit if only one
individual contributes. This implies that if the other would not
contribute at all, one would be better off choosing a positive trait value
rather than 0, but between the two players, both would obviously prefer
the other to be the one that does the contributing.

Again we assume that a > 0, and for every combination of two different
strategies in [0, ]a

2 this gives us a hawk-dove game,11 which by definition
does not have equal gains from switching. This remains true, even in the
limit of weak selection in phenotype space (δ-weak selection).

This function is obviously not separable either. The quadratic costs
again ensure that whatever the population structure is, there will
always be a point where increases in costs inhibit the evolution of ever
higher values of the trait.

Straightforward n-player versions of these four games are:

1. The n-player linear public goods game, with payoff function
π x x a x n x( , …, ) = ∑ − ( − 1)( )n i

n
i1 =2 1

2,
2. An n-player non-linear public goods game, with payoff function

π x x a x x( , …, ) = ∑ − ∏n i
n

i i
n

i1 =2 =1 ,
3. The n-player minimum effort game, with payoff function

π x x a x x x( , …, ) = min{ , …, } − ( )n n1 1 1
2,

4. The n-player maximum effort game, with payoff function π x x( , …, )n1
a x x x= max{ , …, } − ( )n1 1

2 .

Fig. 21. With payoff function π x y x y x( , ) = 10max( , ) − 2 the bimatrix games with

strategies {1, 2}, {2, 3}, {3, 4} and {4, 5} do not have equal gains from switching.

Fig. 20. With payoff function π x y x y x( , ) = 10min( , ) − 2, the bimatrix games with trait

values {1, 2}, {2, 3}, {3, 4} and {4, 5} do not have equal gains from switching.

10 The matrix is:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ax x
ax x δ

ax x
a x δ x δ

−
− ( + )

−
( + ) − ( + )

.
2

2

2

2

It is a stag hunt game for any x x δ{ , + } for which ax x a x δ x δ− < ( + ) − ( + )2 2 or
xδ δ aδ2 + <2 or x δ a2 + > . This is certainly true if both x and x δ+ are smaller than a

2
.

11 The matrix is:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ax x
a x δ x δ

a x δ x
a x δ x δ

−
( + ) − ( + )

( + ) −
( + ) − ( + )

.
2

2

2

2

Because with δ > 0 it is always the case that a x δ x a x δ x δ( + ) − > ( + ) − ( + )2 2, this
game is a hawk-dove game for any x x δ{ , + } for which ax x a x δ x δ− < ( + ) − ( + )2 2 or
xδ δ aδ2 + <2 or x δ a2 + < . This is certainly true if both x and x δ+ are smaller than a

2
.
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6.1.1. Hamilton's rule with a continuous trait space
If we want to depict Hamilton's rule in a similar figure, we can first

go back to the original setup, where the problem is described as an
individual choice problem. For any given status quo, and from the
viewpoint of player 1, Hamilton's rule defines a straight line with slope
−

r
1 through the fitnesses that belong to the status quo. If π1 represents

the fitness, or payoff, of the agent, and π2 the fitness of its interaction
partner, then the line is given by the equation π rπ K r+ = +1 2 . This

can be rewritten as π = K r π
r2

+ − 1, which makes π2 a function of π1 with

slope −
r
1 . Inclusive fitness rb c− remains constant on that line, and it

separates mutants that are selected for (right/up from the line, with
positive inclusive fitness) from mutants that are not (left/down from it,
with negative inclusive fitness). This is depicted in Fig. 22a, for a status
quo with fitness 1 and relatedness r = 0.5. If a mutant fixes, then we
have a new status quo, because every individual is now both making the
transfer and receiving it. This new status quo is given in Fig. 22b, where
the mirror image of the original situation is also drawn, because that is
what the original situation looks like from the perspective of player 2.
Through the new status quo, there is of course a new line that separates
further mutants that would, and mutants that would not be selected
for. In adaptive dynamics, the status quo changes all the time, so we
can fill 2 with those separator lines (Fig. 22c). Fig. 22d includes those
from the viewpoint of player 2.

Of course not all combinations of payoffs or fitnesses are feasible;
Hamilton's rule only tells us which mutants, if they were to appear, would
be selected for, and which not. What is and what is not feasible, is given by

the fitness function. In order to illustrate what happens with a given
relatedness r and a given payoff function π , we will therefore superimpose
the “Hamilton's rule picture” for that value of r over the game-figure for
that π . The combined figure will then illustrate up to what point we should
expect the trait value to increase (see for instance Figs. 23a, 24a and 26a).

6.2. Game 1: global equal gains

With the first payoff function, Hamilton's rule should work perfectly
well in describing the dynamics. This payoff function is additively
separable, and therefore any two types play a game with equal gains
from switching. That implies that we would not even have to assume that
the typical step size of mutations is small for the dynamics to converge to
the point where rb c= . If we do assume small mutations, we expect the
dynamics to slowly approach this point from below, or from above,
depending on which side of the rest point it happens to have started.

The game payoffs for the first example were given by
π x y ay x( , ) = − 2. If a player changes from playing x to playing x δ+ ,
then the opponent gains aδ, and the player itself loses
x δ x δx δ( + ) − = 2 +2 2 2, which is approximately δx2 for small δ.
Inclusive fitness is therefore positive if x < ra

2 and negative if x > ra
2 .

At x = ra
2 the dynamics should not be expected to move any further, and

the (individual) payoffs of all individuals in the population are

− ( )ra ra
2 2

22
. In Fig. 23, a = 10 and r = 0.5, so the equilibrium value of

x is 2.5, and the payoff there is 75
4
. The outcome of a simulation with

Fig. 22. Hamilton's rule for different choices. A line with equal inclusive fitness through the fitnesses in the status quo separates mutations with an advantage from mutations with a
disadvantage (a). The mutation with a disadvantage is the one with a cross in the figure. After an advantageous mutation has gone to fixation, the status quo has changed, and we have a
new line separating advantageous from disadvantageous mutants. In grey the previous lines, the previous status quo, and mutant fitnesses, both from the perspectives of players 1 and 2
(b). Lines of equal inclusive fitness from the viewpoint of player 1 (c) and from the viewpoint of both players (d).
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only somewhat rare, local mutations (Fig. 23b) indeed matches what
we would expect (Fig. 23a; lines drawn from player 1's perspective
only).

Adaptive dynamics are typically described with a differential
equation that is referred to as the canonical equation. For a setting
with population structure, which is what we have here, Allen et al.
(2013a) arrived at the following canonical equation:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x N N

N
u

π x y
π x x

x
r π x x

x
= − 1 ϵ

( , )
∂ ( ′, )

∂ ′
′

+ ∂ ( , ′)
∂ ′

′
e

x x x x

· 2

= = (6.5)

This is Eq. (5) from Allen et al. (2013a), with a few variables relabeled
(see Appendix D; see also Champagnat and Méléard, 2007;
Champagnat and Lambert, 2007; Lehmann, 2012). The population
size is N , Ne is the ‘effective population size’, u is the individual
mutation probability when producing an offspring, and ϵ is the
standard deviation of the distribution from which the step size of the
mutation is drawn. What the effective population size is depends on the
reproduction process. In the standard Wright–Fisher process, a new
generation is created by choosing N new individuals independently,
and at every draw every individual in the parent generation has a
probability proportional to their payoffs of being drawn as a parent. For
this process the effective population size Ne equals N . If one single
individual is chosen to produce the entire next generation, and every
individual has a probability proportional to their payoffs of being that
one individual, then the effective population size Ne equals 1. If the
payoffs just do not matter at all for the probabilities with which
individuals reproduce, then the effective population size is 0. More
details about effective population size can be found in Allen et al.
(2013a) and in Appendix D. For the simulations, we use a version of
the Wright–Fisher process that allows for positive relatedness. This
process is also used in van Veelen et al. (2012) and García and van
Veelen (2016), and is described in Appendix D.1. For this process the
effective population size Ne equals N

r1 +
.

Arriving at the canonical equation (6.5) involves three steps. The first
is that we imagine the following hypothetical process. Suppose that
mutations arise at a rate Nu. The step size of a mutation is drawn from
some distribution with expected value 0 and standard deviation ϵ. If a
mutant does arise, then instantly it is determined whether it goes to
fixation or goes extinct. The probability with which it fixes is taken to be
the fixation probability that we would get for the actual reproduction
process, given the size of the mutation that is drawn. One difference with
more detailed and less stylized processes such as the one that we use for
the simulations is that there time is discrete, so that mutations can only

arise at times 1, 2,…, when new generations are formed, while here they
can arrive at any moment t > 0. Also, the uncertainty concerning whether
or not the mutation fixes is not resolved immediately in the simulations,
but in however long it takes the mutant to fix or go extinct.

The second step is that the expected change in trait value in one
generation is computed in the limit of tΔ ↓ 0 and ϵ ↓ 0. This expected
change is proportional to u times ϵ2, so with small u and small ϵ this is
going to be a very small number.

The third step is that we consider a deterministic approximation, where
the time derivative of the trait value is set equal to its expected change.

Whether or not the canonical equation describes actual processes of
evolution well depends on how innocuous the assumption of instanta-
neous resolution of the uncertainty is, and how much is lost in step three,
where we go to a deterministic approximation. For both steps the payoff
function matters, and also how small u and ϵ really are can make a
difference. The process that treats the dynamics as if the uncertainty about
the fate of a mutant is resolved immediately is only a good representation
if we can be relatively sure that the fate of one mutant is decided before
the next one arises. For this to be the case, we need to have a sufficiently
low mutation probability u, so that it is very unlikely that a next mutant
arises before the previous one has either gone to fixation or gone extinct.
What sufficiently low is also depends on the payoff function π .

In this first example, we see that the population is certainly not
always monomorphous, implying that mutants typically do not fix or go
extinct before the next one arises. The speed with which the average
trait value in the population moves is therefore somewhat different
from the speed that the canonical equation would give (the simulations
move a bit slower). The direction of selection, however, matches the
adaptive dynamics very well. We can therefore conclude that the
adaptive dynamics describe the stochastic dynamics relatively well,
even with not so small mutation rates, and that inclusive fitness does
determine the direction of selection and the rest point of the dynamics.

6.3. Game 2: local equal gains

The game payoffs for the second example were given by
π x y ay xy( , ) = − . This game is not additively separable, but if we
assume small mutations, the game between resident and mutant is very
close to having equal gains from switching. If a player changes from
playing x to playing x δ+ , then the opponent gains a y δ( − ) , and the
player itself loses yδ. This is evaluated at y = x, so inclusive fitness is
positive if x r a x< ( − ) and negative if x r a x> ( − ). At x = ra

r1 + the
dynamics do not move any further, and the (individual) payoffs of both
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Fig. 23. With π x y y x( , ) = 10 − 2 and r = 0.5 inclusive fitness is maximized at trait value x = 5
2
. The corresponding payoffs are

⎛
⎝⎜

⎞
⎠⎟π , = 185

2
5
2

3
4
. The solid lines in the left picture depict

payoffs for player 1 and 2 for a fixed trait value of player 2 and a varying trait value of player 1, as in Figs. 18–21. Here the fixed trait values for player 2 are 1
2
, 3

2
, 5

2
and 7

2
, respectively.

The broken lines reflect Hamilton's rule, from the perspective of player 1, as explained in Fig. 22. Simulations on the right indeed show an increase in trait value to x = 2.5. The
simulations use a Wright-Fisher process with relatedness r , as described in Appendix D.1.

M. van Veelen et al. Journal of Theoretical Biology 414 (2017) 176–230

199



are
⎛
⎝⎜

⎞
⎠⎟−ra

r
ra

r1 + 1 +

2
2

. The outcome of a simulation with rare, local

mutations (Fig. 24b) again matches this prediction (Fig. 24a; lines
from player 1's perspective only).

It is not only for this particular game that we recover equal gains from
switching locally. This is the case for all differentiable payoff functions. If
we take the limit for δ → 0 of the appropriately rescaled payoffmatrix that
comes with resident t and mutant t δ+ for general differentiable payoff
functions – as we did for this particular game above, where game 2 was
introduced – then we find

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥δ

π t t π t t π t t δ π t t
π t δ t π t t π t δ t δ π t t

lim 1 ( , ) − ( , ) ( , + ) − ( , )
( + , ) − ( , ) ( + , + ) − ( , ) =

0

+δ

dπ
dy

dπ
dx

dπ
dx

dπ
dy

→0

In other words, locally the benefits-to-costs ratio is well defined; we can
think of dπ

dy
as the benefit to the other of a small increase in my trait value,

and of dπ
dx

as its costs to me. Not just for this example, but with
differentiable payoff functions in general, we expect the trait value to go
up if rb c− > 0, with b = dπ

dy
and c = dπ

dx
, as is also reflected in the

canonical equation. The link between differentiability and (local) additiv-
ity was pointed out early on in the literature; see for instance Taylor
(1988, pp. 151–152), Taylor (1989, p. 140), and Rousset (2004, p. 95).

That does not clear us from all problems, even with differentiable
payoff functions, as we will see below in Game 5. But it does imply that
there is a much larger set of payoff functions, on top of the additively
separable ones, for which inclusive fitness also works, if we assume
local and small mutations. Additively separable functions have equal
gains from switching built in there right from the beginning, while
differentiable ones get equal gains in the limit of very small mutations.

6.4. Game 3: minimum effort

The third payoff function is not differentiable; for
π x y a x y x( , ) = min( , ) − 2 the derivative does not exist at the point where
it is most needed, which is at x = y. But differentiable or not, there are
of course still dynamics to be studied. Determining the dynamics here
is complicated by the fact that if an increase in trait value is favoured, a
decrease is no longer automatically disfavoured, and vice versa. Also
the lack of differentiability implies that however small we choose the
mutation size δ, the game between resident and mutant never has equal
gains from switching. As we will see, this implies that the intuition from
Hamilton (1964a,b) that worked in Game 1 and Game 2 no longer
works here. The key is in the fact that the loss of equal gains from
switching implies that it is no longer possible to assume that any effect

I have on others is mirrored by their effect on me.
The game between resident x and mutant x δ+ is given by the

payoffmatrix below. We assume that δ > 0 in order to make the mutant
a proper increase in trait value:

x x δ
x ax x ax x

x δ ax x δ a x δ x δ

+
− −

+ − ( + ) ( + ) − ( + )

2 2

2 2

With relatedness r and a frequency of the mutant that is approaching 0,
the average payoff to the resident x is simply π x x ax x( , ) = − 2. The
average payoff to the mutant when rare is rπ x δ x δ( + , + )+

r π x δ x ax raδ x δ(1 − ) ( + , ) = + − ( + ) .2 Therefore the mutant x δ+
can invade if raδ xδ δ− 2 − > 02 . Assuming that δ is sufficiently small,
this boils down to x < ra

2 .
The game between resident x and mutant x δ− is given by the next

payoff matrix – where the mutant now represents a proper decrease in
trait value:

x x δ
x ax x a x δ x

x δ a x δ x δ a x δ x δ

−
− ( − ) −

− ( − ) − ( − ) ( − ) − ( − )

2 2

2 2

With relatedness r and a frequency of the mutant that is approaching 0,
the average payoff to the resident x is still π x x ax x( , ) = − 2. The
average payoff to the mutant when rare is rπ x δ x δ r( − , − ) + (1 − )
π x δ x a x δ x δ( − , ) = ( − ) − ( − )2 . The mutant x δ− therefore can
invade if aδ xδ δ− + 2 − > 02 , that is, if x > a

2 , assuming that δ is
sufficiently small. (We would get the same answer if we considered
the first matrix, and check how x does when x δ+ is the resident. The
version with x δ− for x δ+ we thought may be a bit more intuitive
though.)

Taking those two thresholds together, we find that for values of x
between ra

2
and a

2
, both an increase and a decrease in trait value is

disfavoured. When we draw a pairwise invasion plot – which is a
traditional way to visualize this in the adaptive dynamics literature; see
for instance Brännström et al. (2013) – then any x between those
bounds is suggested to be stable (see Fig. 25a).

A possible alternative approach might take into consideration that
some disadvantageous mutations are more disadvantageous than
others. Even though for any x ∈ ( , )ra a

2 2 both increases and decreases
are disfavoured, it is still possible that mutants with an increased trait
value are disfavoured more (or disfavoured less) than mutants with an
equally large change, but in the opposite direction. With sufficient time,
it could therefore be that however sticky a trait value, it might still be
more likely to be replaced by a mutant with a higher trait value than it
is to be replaced by a mutant with a lower trait value – or vice versa.
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Fig. 24. With π x y y xy( , ) = 10 − and r = 0.5 inclusive fitness is maximized at trait value x = 10
3
. The corresponding payoffs are

⎛
⎝⎜

⎞
⎠⎟π , = 2210

3
10
3

2
9
. The fixed trait values for player 2 in the

left figure are 4
3
, 7

3
, 10

3
and 13

3
, respectively. Simulations on the right indeed shows an increase in trait value to x = 10

3
.
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In order to determine which direction is more likely, or less
unlikely, it seems natural to use the σ-result from Tarnita et al.
(2009). This result does not (just) look at whether or not a mutant
has an advantage or a disadvantage when rare. The σ-result gives a
criterion that indicates, for two strategies, which one has the larger
fixation probability when appearing as a single mutant in a population
where the other is the incumbent. It therefore by definition does have
the property that if one has the smaller fixation probability, the other
has the larger one, and vice versa. The σ-result assumes weak selection
in payoff contribution (which is sometimes called w-weak selection) but
also works with small mutation size δ (a.k.a. δ-weak selection; see Wild
and Traulsen, 2007, for the difference). We do have to assume that π is
continuous, which it is here, but not that it is differentiable.

With strategies A and B and our simple population structure with
assortment parameter r , the fixation probability of a single A mutant is
larger than the fixation probability of a single B mutant if and only if

π A A π A B π B A π B B( , ) + ( , ) > ( , ) + ( , )r
r

r
r

1 +
1 −

1 +
1 − – see Appendix D.6. If we

now take trait values x and x δ+ , then the second is favoured when
x < r a(1 + )

4 and δ is sufficiently small.12 With a = 10 and r = 2/5 this
threshold value is 3.5 (see Fig. 25c).

The two different possibilities for what to expect from the dynamics,
as depicted in Fig. 25, can also be described somewhat more formally.
The first approach would depend on the fact that increasing the
population size exaggerates even the smallest disadvantages that a
mutant may have. If we keep the distribution of mutants, and therefore
the ϵ constant, as well as mutation probability u, then increasing the
population size would make mutants with even a very small disadvan-
tage have a fixation probability that is ever closer to 0 compared to N1/
(or, in other words, it would make N times the fixation probability
approach 0). Choosing a very large population would then create a
marked separation between the middle part of the trait space, where
x ∈ [2, 5], and the two other parts, with x < 2 or x > 5. In the middle
part, the speed with which the trait moves would be much lower than in
the other two, and this difference in relative speed could be made ever
more pronounced by increasing the population size (see Appendix D.9).

The second option generalizes the canonical equation from Allen
et al. (2013a,b) to non-differentiable payoff functions. This approach
keeps the population size constant, and implies choosing a small u and

taking a limit of tΔ ↓ 0 and ϵ ↓ 0. This is what we do in Appendix D,
where, where we arrive at the same canonical equation, but now with
the symmetric derivative replacing the normal derivative:

⎛
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= − 1 ϵ
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∂ ′
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e
s
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s

s x x

· 2

= = (6.6)

The symmetric derivative is the average of the left- and the right
derivative, both of which exist in our case, and is defined as:

f x
x

f x f x∂ ( )
∂

= lim ( + ϵ) − ( − ϵ)
2ϵ

.s

s ϵ→0

Simulations show that the generic case is relatively well described by the
latter approach. For mutation probabilities that are not actually very small,
and a population size that is not very large, the trait evolves to x = 3.5,
without much noticeable change in speed at x = 2. The third panel from
Fig. 25, with the pairwise invasion plot based on the σ-result, therefore
describes the direction of selection best, even if the mutation probability is
not actually very small. In order to observe a difference between the speed
for x < 2 and x > 2, we have to choose a very large population size.

The simple inclusive fitness intuition that worked for Games 1 and 2
turns out not to work for Game 3. If we draw a figure similar to Fig. 23 (for
Game 1) and Fig. 24 (for Game 2), with the effects of the changes in trait
value on self and on the other, then we get Fig. 26a. The idea “I weigh the
effect I have on myself with 1 and the effect on the other with relatedness
r” is represented by the dotted lines, which did serve us before to separate
the mutants with an advantage from those with a disadvantage. This
picture now suggests that at trait values 1, 2, 3 and 4 both increases and
decreases in trait value reduce inclusive fitness, as all the solid lines are
below their respective broken counterparts. The catch is that at the
diagonal, all games between mutant and incumbent, however small δ is,
are coordination games. This figure keeps the strategy of the other player
constant. With equal gains that is not a problem, because the effects then
do not depend on what the other is. Without equal gains, however, keeping
the strategy of the other player constant is not inconsequential. For those
games we have seen in Section 3 that inclusive fitness does not work. For
the mutant, playing against a copy of itself really is quite different from
playing against the incumbent – and this difference would not have been
there if the payoff function π had been differentiable.

6.5. Game 4: maximum effort

The fourth payoff function is also not differentiable; for
π x y a x y x( , ) = max( , ) − 2 the derivative does not exist, again, at x = y.
Again there are complications for the dynamics, although somewhat
different ones.

The game between resident x and mutant x δ+ is given by the

Fig. 25. Pairwise invasion plot for π x y x y x( , ) = 10min( , ) − 2 with r = 2/5. It describes, given a trait value of the incumbent (the variable on the horizontal axis), whether a trait value of a

mutant (on the vertical axis) would give that mutant an advantage or a disadvantage. For x between 2 and 5 both increases and decreases are disadvantageous (a). One can also use the σ-
result from Tarnita et al. (2009) to determine which mutant is favoured. There, the two balance at trait value x = 3.5 (c). Both criteria are combined in the middle panel (b).
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payoff matrix below, where we still assume δ > 0:

x x δ
x ax x a x δ x

x δ a x δ x δ a x δ x δ

+
− ( + ) −

+ ( + ) − ( + ) ( + ) − ( + )

2 2

2 2

With relatedness r and a frequency of the mutant that is approaching 0,
the average payoff to the resident x is simply π x x ax x( , ) = − 2. The
average payoff to the mutant when rare is π x δ x δ( + , + )=
a x δ x δ( + ) − ( + ) .2 The mutant x δ+ therefore can invade if
aδ xδ δ− 2 − > 02 , that is, if x < a

2 , assuming that δ is sufficiently small.
The game between resident x and mutant x δ− is given by the next

payoff matrix – where the mutant now represents a proper decrease in
trait value:

x x δ
x ax x ax x

x δ ax x δ a x δ x δ

−
− −

− − ( − ) ( − ) − ( − )

2 2

2 2

With relatedness r and a frequency of the mutant that is approaching 0,
the average payoff to the resident x has not changed: it is still
π x x ax x( , ) = − 2. The average payoff to the mutant when rare is
rπ x δ x δ r π x δ x ax raδ x δ( − , − ) + (1 − ) ( − , ) = − − ( − )2. The mutant
x δ− therefore can invade if raδ xδ δ− + 2 − > 02 , that is, if x > ra

2 ,
assuming that δ is sufficiently small.

Taking those two thresholds together, we find that for values of x
between ra

2
and a

2
, both an increase and a decrease in trait value are favoured.

We can obviously hope to get around this in a way that is similar to the
way we did for Game 3. With both increases and decreases in trait value
being advantageous, we can again use the σ-result in order to determine
which direction is more likely. With trait values x and x δ+ , increases in
trait value are favoured when x < r a(1 + )

4 and δ sufficiently small.13 With

a = 10 and r = 2/5 this threshold value is 3.5 (see Fig. 27c).
The trouble with this, though, is that the adaptive dynamics limit must

assume mutation rates that are sufficiently small such that previous
mutants typically have either gone extinct or gone to fixation before the
next mutant arises. With games between mutants and incumbents that are
anti-coordination games, this requires mutation rates that are spectacu-
larly low. Moreover, if we are not that close to the limit, the dynamic
behaviour is very different, as we can see in the simulations. The starting
point of adaptive dynamics – monomorphic populations on the move –

therefore turns out to be inappropriate for such a game, where also
mixtures are prone to invasions beyond the extremities of the mixture. The
canonical equation therefore is not a good approximation of the dynamics.

In Section 6.6 we will see more examples, including differentiable ones,
where heterogeneity is to be expected, and where the adaptive dynamics
framework requires such extremely low mutation rates that the limit
results that the adaptive dynamics framework offers are no match with
dynamic behaviour with reasonable mutation rates. These and similar
issues are also pointed out by Barton and Polechová (2005).

6.5.1. Life without adaptive dynamics
Game 4 suggests that there are cases in which it is not reasonable to

assume that populations are almost always relatively close to being
monomorphous. With the point of departure of adaptive dynamics out
the window, what else can we do to describe where we should expect
evolutionary dynamics will take us? Monomorphous populations are
one extreme; the other extreme is a distribution of strategies on a
continuum. The alternative approach is therefore to look for stable
distributions (see van Veelen and Spreij, 2009).

A necessary condition for a distribution to be stable is that every
strategy in it should earn the same payoff (if that would not be the case,
some strategies would be selected for, and hence the distribution could
not have been stable in the first place). This requires that the derivative,
taken with respect to the trait, must be 0 for every trait value that is in
the distribution. Let the probability distribution be given by the
function  f : → . The payoff function is defined for interactions
between trait values x and y (in this case it is π x y a x y x( , ) = max( , ) − 2),
but we would like to extend the definition to include the expected
payoff of trait value z against the entire distribution f , and include
relatedness r . For this, we write π z f( , )r .
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Fig. 26. With π x y x y x( , ) = 10min( , ) − 2 and r = 2/5 the simulations will take the population to a trait value of around 3.5. This is the trait value where Tarnita's σ-result applied to this

game suggests that neither increases nor decreases in trait value have a selective advantage. The corresponding payoffs are
⎛
⎝⎜

⎞
⎠⎟π , = 227

2
7
2

3
4
. The solid lines in the left panel are payoff

combinations for a fixed trait value of player 2, and a varying trait value of player 1. When the trait value of player 1 is below the trait value of player 2, increases in trait value by player 1
increase the minimum. This always increases the payoff of player 2, and when the derivative of x2 is not too high, the payoff of player 1 increases as well, but less so. This is reflected in
the upward sloping part. When the trait value of player 1 is above the trait value of player 2, then increases in trait value by player 1 do not increase the minimum. Hence, the payoff to
player 2 remains the same, while the payoff to player 1, which includes the x2 term, decreases. This is reflected in the horizontal part. The dotted lines reflect points with equal inclusive
fitness for r = 2/5. If we follow the logic of Figs. 23 and 24, then for trait values of 1, 2, 3 and 4 both increases and decreases in trait value would be at a disadvantage. The analysis of the
dynamics shows that this is not correct; for y = 1 an increase is actually favoured, and for y = 2 and 3 the dynamics also go up.
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Against x z≤ , the payoff of z is az z− 2, and against x z> the payoff
of z is ax z− 2. The payoff therefore is

⎡
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⎤
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⎛
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∫ ∫

∫ ∫

π z f rπ z z r π z f

r az z r a zf x dx a xf x dx z

a rz r z f x dx xf x dx z

( , ) = ( , ) + (1 − ) ( , )

= ( − ) + (1 − ) ( ) + ( ) −

= + (1 − ) ( ) + ( ) −
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z

z

z
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This implies that we are looking for a distribution that satisfies

dπ z f
dz

a r r F z z
( , )

= ( + (1 − ) ( )) − 2 = 0r

where ∫F z f x dx( ) = ( )
z

−∞
.

Because F z( ) must lie between 0 and 1, the uniform distribution on
the interval [ , ]ar a

2 2 must be invariant:

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎧
⎨⎪
⎩⎪
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2

2 −
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if
2

≤ <
2

0 if <
2

( ) =
2

(1 − )
if

2
≤ <

2
0 elsewhere

Although the population is of course at no point an actual uniform
distribution, this does describe the simulation results much better than
the adaptive dynamics does (see Fig. 28).14

6.6. Game 5: bifurcations

There are two good reasons why it is worth looking at another example.
The first is that both differentiability and non-differentiability are of course
stylized characteristics of a model with a continuous trait space, where we
allow for mutations of any size. Mutations are typically not infinitesimally
small though, and discussing whether differentiability is a reasonable
assumption, or a particularly unreasonable one, is therefore a little artificial
from the get go. We can try to circumvent that issue altogether by looking
at different (continuous, differentiable) payoff functions that differ gradu-
ally as for how strongly the payoff function is bent at x y= , and see if the
things we see in Game 4 really depend on non-differentiability per se.
Within the following family of payoff functions, the “curvature” at the
diagonal varies with a parameter β. In the limit of β → ∞, the function
ceases to be differentiable, as it converges to the payoff function of Game 4.

Therefore we can approach Game 4 with a sequence of payoff functions
that themselves are all differentiable.

An even better reason is that with this family of payoff functions, we
can illustrate how, even if we make all the assumptions that are
required for adaptive dynamics to work in examples like Game 1 and
Game 2 – differentiable payoff function, local, small and infrequent
mutations – we can still end up in a situation where inclusive fitness
does not determine entirely what happens in an evolving population.
The problem is caused by the fact that Hamilton's rule may help find a
“singular point” – a point where rb c= , and where a monomorphous
population ceases to move – but that once at such a singular point,
there are still different possible scenarios, depending on the properties
of the payoff function – as pointed out by Ajar (2003), Doebeli and
Hauert (2006) and Wakano and Lehmann (2014); see also Doebeli
et al. (2004). One is that the population remains where it is forever.
Another is that we see a bifurcation. After a bifurcation, we get two
divergent subsets of the population. In that case, despite the fact that
we have local and small mutations, and a differentiable payoff function,
the population ceases to be monomorphic, and will consist of indivi-
duals with increasingly different trait values. In this case we therefore
get substantial deviations from equal gains from switching.

The family of payoff functions we consider is a x y x( + ) −β β β
1

2. For
β = 1, the payoff function simplifies to a x y x( + ) − 2. For β → ∞ the
payoff function simplifies to a x y xmax ( , ) − 2. For ease of comparison,

we choose a = 10(2 )− β
1

in all examples below. If we do, then the

Fig. 27. Pairwise invasion plot for π x y x y x( , ) = 10max( , ) − 2 with r = 2/5. It describes, given a trait value of the incumbent (the variable on the horizontal axis), whether a trait value of a

mutant (on the vertical axis) would give that mutant an advantage or a disadvantage. For x between 2 and 5 both increases and decreases are advantageous (a). One can also use the σ-
result from Tarnita et al. (2009) to determine which mutant is favoured. There, the two balance at trait value x = 3.5 (c). Both criteria are combined in the middle panel (b).

Fig. 28. With π x y x y x( , ) = 10max( , ) − 2 and r = 2/5 the simulations take the population

to distributions of the trait value stretching from 2 to 5. Heterogeneity is the rule for this
game; one needs extremely low mutation rates to maintain the assumption of mono-
morphic populations, even more so than with Game 3. Moreover, when mutation rates
are not actually sufficiently low, the dynamics nonetheless still followed what the σ-result
in Tarnita et al. (2009) implied with Game 3 (see Fig. 26), while here that is not the case.

14 An analytical stability check could be done by showing global superiority of the

uniform distribution on the interval
⎡
⎣⎢

⎤
⎦⎥,ar a

2 2
. Then local superiority is obviously implied in

any metric, which is sufficient to imply asymptotic stability in any metric; see van Veelen
and Spreij (2009). Here we just rely on the simulations, which suggest that the uniform
distribution is not only invariant, but also stable.
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derivatives are
dπ
dx

x= 5 − 2
y x=

and
dπ
dy

= 5
y x=

, which implies that the

adaptive dynamics would see an increasing trait value for x r< (1 + )5
2 ,

regardless of β .
Fig. 29 shows that we do indeed get ever more bifurcations as β

increases, and the payoff functions get ever more curved around the
diagonal. After the bifurcations, equal gains from switching no longer
applies, and both the dynamics and the equilibrium distribution can no
longer be described with inclusive fitness.

6.7. An example of how equal gains is sometimes implicitly assumed

One of the classic references in the inclusive fitness literature is
Rousset and Billiard (2000). Given a population structure of n demes,
located on a circle, Rousset and Billiard (2000) allow for a structure of

effects on the fecundity of others that is very general in one sense. The
average trait value in a deme j is allowed to have an effect on fecundity
of individuals in all other demes, with the only restriction that these
effects have to be symmetric.

“Migration rates between demes depend only on their relative
position, so that the relative contribution of an individual in deme
j to gametes competing in deme l may be written as gl j− (where
g g=l j j l− − )” (p. 817).

Our setting, where individuals only have an effect on the individuals
they are interacting with, is a special case of Rousset and Billiard (2000)
in the sense that effects on fecundity of individuals on demes other than
the one an individual is on itself are assumed not to exist. This implies a
simplification to the island model, which is also treated by Rousset and
Billiard (2000) as a special case (pp. 820–821).

Fig. 29. With π x y x y x( , ) = 10·2 ( + ) −β β β β− 1 1
2 inclusive fitness is maximized at trait value x r= (1 + )5

2
. The corresponding payoffs are

⎛
⎝⎜

⎞
⎠⎟π r r r r(1 + ), (1 + ) = 25(1 + ) − (1 + )5

2
5
2

25
4

2.

These figures all have have r = 0.3, and go from β = 2 (top row), to β = 7 (middle row), to β = 17 (bottom row).
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There is, however, one aspect in which their setting is less general.
Both in the general formulation (Eqs. (2) and (3) on page 817) and in
the island model (p. 820) the arguments of the functions gr and w are
average trait values (gr is a function that returns the relative
contribution of an individual to gametes competing in a deme r steps
apart on the circle, and w is the fitness function). If we take their island
model, where w w z z z≡ ( , , )• 0 1 is the fitness function, and try to match it
with Game 2, we see that we cannot, because it is not enough only to
know averages. In their function w w z z z≡ ( , , )• 0 1 the variables z z,• 0 and
z1 are the focal individual's own phenotype, the average phenotype on
the focal individual's own deme (excluding the focal individual) and the
average phenotype of all individuals in other demes. In our Game 2,
where the payoff function is π x y ay xy( , ) = − , we choose again a = 10.
The cases below all have three groups of size 2:

Case 1: Trait Trait values 1, 1 1, 3 1, 3
Payoffs 9, 9 27, 7 27, 7

If we take as a focal individual the first individual in group 1, then its
fitness is 9

86
. Furthermore z z= 1, = 1• 0 and z = 21 . Below, the z z,• 0 and z1

are the same, but the fitnesses are different; for the focal individual it is 9
78
:

Case 2: Trait Trait values 1, 1 1, 1 3, 3
Payoffs 9, 9 9, 9 21, 21

The reason why they are different is that games with this payoff function do
not satisfy equal gains from switching. The effect on total payoff of the two
individuals with trait value 3 is not the same if they both arematched with an
individual with trait value 1 compared to if they are matched with each other.

This particular example can easily be encompassed by reformulat-
ing their islands model as a special case of their general model, by
replacing the variable z1, which now is the average over all demes other
than the one the focal individual is on, by a vector which gives per deme
averages, as is possible in their more general setup. This, however,
would still not allow a fitness function based on averages to capture
everything. If we compare Case 1 with Case 3 below, we find that the
deme averages are still the same (1, 2 and 2, respectively) but the
fitness of the focal individual is still different; now it is 9

82
:

Case 3: Trait Trait values 1, 1 2, 2 2, 2
Payoffs 9, 9 16, 16 16, 16

Note that if we want tomake a payoff function for which we can in fact derive
a fitness function for the island model that depends only on the trait value of
the individual and on the average trait values per deme, we are restricted to a
set of payoff functions that not only are additively separable (which implies
that all games satisfy equal gains from switching) but also has constant costs
and benefits of (more) cooperation; only π x y c y b x y xc b( , ) = ( ) − ( ) = −
works here, where the bold b and c are constants. This is not the most
interesting case, because the value added of a model with a continuum of
trait values lies exactly in the possibility that marginal costs and benefits of
cooperation are not constant. If the benefit/cost ratio of an increase in
cooperation is the same everywhere, we expect that an increase in coopera-
tion is selected for (or against) everywhere, whereas we aremost interested in
finding a point up to which increases in the level of cooperation are selected
for, but beyond which further increases are not.

Again, differentiability of payoff function π offers an escape here. In the
limit of small mutations, and with the fitness function π x y( , ) differentiable
at all points where x y= , the games between mutant and incumbent do
exhibit equal gains from switching, and payoffs are even locally linear in x
and y. One way of encompassing that is to acknowledge that with a
differentiable payoff function, the true fitness of a focal individual can be
approximated properly with a fitness function w that uses averages, if, of
course, trait values are sufficiently close to each other (which we get if we
assume few mutants, and small mutations). It is worth observing, though,
that equal gains from switching is built in this model from the get go.

7. Local interaction vs. local competition

In this section we discuss cancellation effects. Wilson et al.
(1992) and Taylor (1992a,b) found that cooperation may not
evolve in populations with local reproduction, even though
that makes relatedness between interacting agents positive.
The reason for this is that in such models not only the
opportunities for cooperation are local, but competition is
local too. We illustrate this by combining the cycle – which is a
very simple stylized population structure – with different
update rules. This is the most important deepening of our
understanding of kin selection since Hamilton (1964a,b).
What matters is not so much that interacting agents are
related; what matters is that there is a discrepancy between
how assorted the opportunities for cooperation are, and how
assorted competition is. A classic way to generate such a
discrepancy is kin recognition.

One of the ways in which interactants could end up being related is by
reproduction not being a global affair, but a local one –which it typically is.
Assuming that individuals also find their opportunities to cooperate locally,
this implies that if two individuals interact, they are close by, and if they
are close by, they are more likely to share common ancestry than with
individuals that are further apart. Limited dispersal therefore may seem to
be a good way to get cooperation to evolve. In Hamilton (1964a, p. 10)
“population viscosity” is therefore suggested to foster cooperation:

With many natural populations it must happen that an individual
forms the centre of an actual local concentration of his relatives
which is due to a general inability or disinclination of the organisms
to move far from their places of birth. In such a population, which
we may provisionally term “viscous”, the present form of selection
may apply fairly accurately to genes which affect vagrancy. It follows
from the statements of the last paragraph but one that over a range
of different species we would expect to find giving-traits commonest
and most highly developed in the species with the most viscous
populations whereas uninhibited competition should characterize
species with the most freely mixing populations.

Whether or not viscosity would have that effect was investigated in
a paper by Wilson et al. (1992). With a specific choice of how to
generate viscosity, they found that there was no such effect. This was
confirmed in a more formal and general way in Taylor (1992a,b), and
the reason why the suggested effect was not found, was that limited
dispersal also implies that competition is local, and the effect of that
was left out of the equation.15 What is needed to have altruism evolve,
is therefore not just that opportunities for cooperation are local, and
with related individuals, but that the symmetry between local competi-
tion and local opportunities for cooperation is broken.

In this section we will illustrate this with a simple example of a local
interaction structure: the cycle. The cycle is sufficiently stylized to make
for a good, insightful illustration, and also illustrates how different
approaches have advantages and limitations of their own. The setup
was introduced by Ellison (1993), Eshel et al. (1998), Lieberman et al.
(2005), Ohtsuki et al. (2006) and Ohtsuki and Nowak (2006), and the
analysis was repeated, but now in inclusive fitness terms, in Grafen
(2007) and Taylor et al. (2007a,b).

7.1. Different intuitions

There are different ways to form an intuition about how kin selection
works. One is the core intuition from Hamilton (1964a,b), which looks at
the effects of the behaviour on the actor itself, and at the effects on other

15 Considerations that do include local competition are also found earlier; Hamilton
(1971), Boyd (1982), Grafen (1983) and other references in Wilson et al. (1992) and
Taylor (1992a,b). See also Ohtsuki (2012).
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individuals. It then considers whether or not those combined effects result
in a net plus or a net minus for the gene. Alternatively, since many settings
are symmetric in some relevant sense, all behaviours can also be mirrored.
That is, instead of considering the effect that I have on, say, my sibling, and
include his or her change in fitness in my books, one could also consider the
effect that my sibling has on me instead. With equal gains from switching,
we can be sure that this is an unambiguous swap, and that the numbers in
the overall accounting system do not change. This different way of
accounting does however foster a different intuition – where different is
neither superior nor inferior – and the second way of balancing the books is
typically referred to as “neighbour modulated fitness”.

The “neighbour modulated fitness” intuition says that population
structure can make cooperation evolve, because it gives those that
cooperate with others an increased probability of also receiving
cooperation. With population structure, what you are will be informa-
tive about what you are likely to face, and if you are a cooperator
yourself, you are extra likely to also face a cooperator and get the
benefits of being on the receiving end too.

The intuition for the counterbalancing effect of local competition
can now be described as a complication within this neighbour
modulated fitness idea. With local dispersion, you find not only your
possible cooperators close by, but also your competition. And one can
easily imagine that the competition in a cluster of cooperators is also
extra intense. Those that you are interacting with have an increased
probability of being cooperators too – which is good for you, because
you will benefit from their cooperation. But those that you are
competing with also have an increased probability of being cooperators
too, and, more importantly, they have an increased chance of being
surrounded by cooperators too, just like you do. Which implies that the
competition is also enjoying increased fitness benefits because of the
proximity of other cooperators – and that is bad for you.

7.2. Cooperation on the cycle

In order to illustrate this, we will look at three examples. The first
example is the Birth Death process on the cycle. Here local competition
completely washes out the effect of local opportunities for cooperation. The
second example is Death Birth on the cycle, and there the cancelling out is
only partial. The last example is a mixture of the two, with a twist that
allows for a complete breaking of the symmetry, and no cancelling at all.

Individuals are organized on a circle. They play a game with their
two neighbours. Here we will consider a simple prisoners' dilemma
with equal gains from switching:

D C
D b
C c b c

0
− −

These payoffs are then translated into scaled payoffs to allow for a
parameter that reflects the intensity of selection. In the earlier papers,
the scaled payoffs were: w w1 − + ·payoffs, where w is the intensity of
selection (Ohtsuki et al., 2006; Ohtsuki and Nowak, 2006). In more
recent papers ew payoffs· is also used (Gokhale and Traulsen, 2010; van

Veelen and Nowak, 2012). These scaled payoffs determine probabilities
in the update step.

In the Birth Death process, the probability with which an individual
is chosen to reproduce is proportional to its scaled payoff. In other
words, the probability with which any specific individual begets an
offspring is its scaled payoff divided by the sum of all scaled payoffs.
Then one of the neighbours of the individual that reproduces dies –
where both neighbours are chosen with equal probability – and is
replaced by the new individual.

In the Death Birth process, first an individual is chosen to die,
where all individuals have equal probability to be chosen. The two
neighbours of the just vacated spot then compete to put an offspring
there, and their chances are again proportional to their scaled payoffs.

In the Shift process (Allen and Nowak, 2012), the probability with
which an individual is chosen to reproduce is again proportional to its
scaled payoffs. Then either the offspring is placed between the parent
and its left neighbour, or between the parent and its right neighbour,
both with probability one half. One individual is also chosen to die,
where all have equal probability of being chosen. The individuals in
between the new offspring and the vacated spot move one position, so
that we again have a full circle with no empty spots. The offspring
thereby pushes the neighbours away towards the vacated place. If the
parent is chosen to die, then the offspring just takes the parent's place.

The first two processes are analysed in Ohtsuki et al. (2006) and
Ohtsuki and Nowak (2006) using the Moran process. The central
measure of expected evolutionary success is the fixation probability of a
mutant. There are two criteria that can be used to classify mutants as
advantageous or disadvantageous. One can compare the fixation
probability of a mutant cooperator in a world of defectors to the
fixation probability of a neutral mutant, which is one over the
population size N . Another possibility is to compare the fixation
probability of a mutant cooperator in a world of defectors to the
fixation probability of a mutant defector in a world of cooperators. For
the Death Birth and the Birth Death process on the cycle, Ohtsuki et al.
(2006) find that these criteria give the same results. These results imply
that, in the limit of weak selection, cooperation is never favoured in the
Birth Death process, and cooperation is favoured in the Death Birth
process if >c

b
N
N

− 4
2 − 4 , which, for large N , comes down to b c>1

2 .
It is tempting to see Hamilton's rule already in there. Ohtsuki et al.

(2006) did notice the similarity, but it is important to realize, as Grafen
(2007) pointed out, that b and c are only payoff parameters, which in this
case cannot be equated to fitness effects. Also relatedness is not 1

2
; one can

easily imagine that in a process where the cooperators are always grouped
together in one string, and defectors in another, with only two boundaries,
relatedness should be larger than 1

2
. For large population size N it should

actually get close to 1. The fitness effects of being a cooperator instead of a
defector are found by looking at how these payoffs affect reproduction.
They are given, along with relatedness for both the Birth Death and the
Death Birth process, in Table 1 of Grafen (2007). Below, this table is
reproduced, and an extra row is added to also give the fitness effects in the
third process. Relatedness for this process may be different from the
relatedness for the Birth Death and the Death Birth process.

Table 1

These examples illustrate how cancellation effects work. Relatedness is computed in the limit of low mutation; r = limk u
qk q

q↓0
−

1 −
, where qk is the stationary IBD probability of neighbors at

distance k – which depends on mutation probability u – while q is the average IBD probability among all pairs (see also Grafen, 2007; Allen and Nowak, 2012).

Individual j−3 j−2 j−1 j j + 1 j + 2 j + 3
Relatedness to j N N

N

2 − 18 + 53
2 − 1

N N

N

2 − 12 + 23
2 − 1

N N

N

2 − 6 + 5
2 − 1

1 N N

N

2 − 6 + 5
2 − 1

N N

N

2 − 12 + 23
2 − 1

N N

N

2 − 18 + 53
2 − 1

≈ 1 −
N
18 1 −

N
12 1 −

N
6 1 1 −

N
6 1 −

N
12 1 −

N
28

Effect on payoff 0 0 b+ −2c b+ 0 0
Fitness effect (BD) 0 b− /2 b c+ + b c− − 2 b c+ + b− /2 0
Fitness effect (DB) b− /4 c+ /2 b+ /4 −c b+ /4 c+ /2 b− /4
Fitness effect (shift) − b c

N
2( − ) − b c

N
2( − ) b+ − b c

N
2( − ) c−2 − b c

N
2( − ) b+ − b c

N
2( − ) − b c

N
2( − ) − b c

N
2( − )
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Birth Death on the cycle: In the first case the opportunities for
cooperation that one has are with the exact same individuals that one is
competing with. In this case cooperation never evolves – that is, not as
long as c > 0. Somewhat more formally: if c > 0, there is always a
population size N such that the fixation probability of a cooperator is
larger than the fixation probability of a defector (this actually holds for
any intensity of selection; see Proposition 5 in van Veelen and Nowak,
2012). Inclusive fitness suggests the same; going over all affected
neighbours, and weighing the effects on them with relatednesses,
Grafen (2007) finds that the inclusive fitness effect of cooperation is

N N
N

b N N
N

b c b c b c N
N

− − 12 + 23
− 1

+ − 6 + 5
− 1

(2 + 2 ) − − 2 = 12( − ( − 1))
− 1

2

2

2

2 2

For every c > 0 this will be negative from some N onwards. In this case
local competition completely cancels out local opportunities for
cooperation.

One can think of the effects in this formula as effects a player has on
itself and its neighbours. The effect I have on myself is b c− − 2 ; I twice
lower my chance of being picked for reproduction by c, and I twice lower
it by another b/2 through adding benefit b to my neighbours. The effect I
have on my left and right neighbour is b c+ + on both sides; me being a
cooperator increases their fitness with b plus half of the decrease in my
payoff, which is c2 . The effect I have on my left and right neighbours twice
removed is b− /2 on both sides; by cooperating, I lower their chances by
b/2, as I did to myself, since I am the other neighbour of my neighbour.

These effects can of course also be mirrored. My neighbour being a
cooperator would increase my fitness by b c+ , for the exact same reason
why me being a cooperator would increase his or hers. Similarly, the
neighbour one further removed being a cooperator hurts me b− /2. The
latter perfectly captures the cancellation effect. With this type of local
interaction, if I am a cooperator, it is quite likely that my neighbour is
too. But my neighbour also has an increased opportunity to border with
another cooperator on the other side as well, which makes me face
increased competition. In this case these two effects cancel out exactly.

Death Birth on the cycle: In the second case the opportunities for
cooperation and competition do not overlap anymore; one competes
with neighbours twice removed, and interacts for cooperation with
direct neighbours. This discrepancy helps avoid full cancellation,
although there is still some. In this case cooperation evolves if
c b/ > 1/2. Somewhat more formally: if c b/ > 1/2, there is always a
population size N such that the fixation probability of a cooperator is
larger than the fixation probability of a defector (see Proposition 7 in
van Veelen and Nowak, 2012). Inclusive fitness suggests the same:

N N
N

b N N
N

c N N
N

b c

N b N c
N

− − 18 + 53
− 1 2

+ − 12 + 23
− 1

+ − 6 + 5
− 1 2

−

= 6(( − 4) − (2 − 4) )
− 1

2

2

2

2

2

2

2

If c b/ > 1/2 this will be positive from some N onwards.
In this case local competition does not completely cancel out local

opportunities for cooperation. I might benefit frommy direct neighbours on
both sides in competing with my two neighbours twice removed, who both
may also benefit from their two direct neighbours, one of which is my
neighbour too, and one of which is my neighbour three times removed.

Shift on the cycle: The third example is extreme, in that there is no
cancelling at all. The opportunities for cooperation are local – with the
direct neighbours – but competition is global, because who reproduces
and who dies is not linked, and any increase in aggregate payoffs hurts
every individual on the cycle equally. It will come as no surprise that
here cooperation can evolve as soon as it implies an efficiency gain, that
is, when b c> . A standard computation shows that, indeed, if b c>
then there is a population size N such that cooperation is favoured from

that N onwards.16 The process is analyzed in much more detail in Allen
and Nowak (2012).

The relatednesses for the shift process may not be the same as for
the Birth Death and the Death Birth process. A nice property of
relatednesses on the cycle, however, is that they by definition add up to
0.17 This implies that if we take all − b c

N
2( − ) terms and weigh them by

relatedness to the actor, they also add up to 0. Inclusive fitness is
therefore positive if

r b c>2

where rn is the relatedness to the individual n − 1 spots removed. With
rlim = 1N→∞ 2 , and with b c> , this will also be true from some N

onwards.

8. Empirical testing

In this section we look at how we can test empirically whether
or not Hamilton's rule holds. First we return to the replicator
dynamics. With costs and benefits according to the regression
method, Hamilton's rule always holds, so there is no need for
empirical testing. With costs and benefits according to the
counterfactual method, we can get violations, but if we want to
observe violations in equilibrium, we need to look for equilibria
where cooperators and defectors coexist. With no scope for
finding violations in equilibria where either one has gone to
fixation, the “false negatives” in an overview by Bourke (2014)
need explaining too. We furthermore discuss empirical com-
plications if we assume a continuous trait space with adaptive
dynamics, and we look at a hypothetical statistical exercise that
tries to distinguish between different update rules on the cycle.

There is, obviously, an enormous empirical literature that is inspired
by or based on Hamilton's rule. Describing it would be amassive task, well
beyond the scope of this paper, and we will not attempt to do that. What
we will do in this section, is discuss explicit empirical tests of Hamilton's
rule. For that we first need to determine what a violation of Hamilton's
rule would look like. This is best done by going back to the setting with the
replicator dynamics from Section 3. We will start with that in Section 8.1.
Here we can, again, choose to define costs and benefits using the
counterfactual method, or the regression method.

With the regression method, no true model would ever violate
Hamilton's rule. With the counterfactual method, true models can
violate Hamilton's rule, in the sense that Hamilton's rule can disagree
with the direction of selection. In many empirical studies, however, it is

16 The core ingredient of the computation is the ratio of two probabilities; Ti
+ is the

probability of going up one state, from i to i + 1, and Ti
− is the probability of going down

one state, from i to i − 1, where i is the number of cooperators and N i− the number of
defectors (see Lieberman et al., 2005; Ohtsuki et al., 2006; Ohtsuki and Nowak, 2006;
Nowak, 2006; van Veelen and Nowak, 2012):
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See also the caption of Table 1.
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moreover assumed, tacitly or explicitly, that the system we observe is in
equilibrium. In this section we will show that, if this is a monomorphic
equilibrium, in which either cooperators or defectors have gone to
fixation, then, in equilibrium, Hamilton's rule will also not be violated
when we use costs and benefits according to the counterfactual method.
It is important to realize that this does not mean that Hamilton's rule
generally holds after all. It can still point in the wrong direction
concerning out-of-equilibrium dynamics, and it can still give the wrong
answer to the question if the behaviour would still be stable if
relatedness is increased or decreased by a certain amount.

If the equilibrium is a mixture of cooperators and defectors, and we
use the counterfactual method to determine costs and benefits, then we
can observe a violation of Hamilton's rule in equilibrium. This does
moreover require that we allow our statistical model to be non-linear –
provided, of course, that this is what the data tells us.

Bourke (2014) reviews 12 explicit tests of Hamilton's rule. None of
these papers look at polymorphisms, and none of these papers use non-
linear statistical models. This implies that we should expect no
violations of Hamilton's rule. Yet there are quite a few, and therefore
we will also discuss what could have caused these “false negatives”.

In Section 8.2 we will switch to adaptive dynamics. We will discuss
some empirical difficulties that arise when one would want to try to
establish empirically whether or not a population finds itself at the
equilibrium trait value, for which rb c= , as the results in Section 6
predict for a considerable set of fitness functions.

In Section 8.3 we will revisit the cycle. This setup was used in Section
7 to illustrate cancellation effects. Models like the cycle are meant to
illustrate a principle, and not as a model that matches the local
interaction structure of a specific organism particularly well. It can
nonetheless be instructive to imagine an empirical exercise, where we
know that individuals are organized on a cycle, but not which update rule
is used. Since the different update rules imply different fitness effects,
trying to reconstruct the update rule becomes an empirical exercise in
measuring fitness effects and model specification.

8.1. Replicator dynamics and actual tests

When considering empirical tests of Hamilton's rule, one relevant
question is: which Hamilton's rule are we testing? In Sections 3 and 4 we
have seen that there are different definitions of costs and benefits,
depending on whether we use the counterfactual method (see Karlin
and Matessi, 1983; Matessi and Karlin, 1984;1986, and Section 3.2.1) or
the regression method (see Gardner et al., 2011, and Section 4). With the
latter definition of costs and benefits, Hamilton's rule always holds.

The fact that with this definition, Hamilton's rule leaves no scope for
testing its validity empirically is of course not a bad thing. The idea that
natural selection works because fitter genotypes are more likely to survive
than less fit genotypes also escapes empirical testing, if the fitness of a
genotype is measured by counting how many survive and procreate and
how many do not. In this sense, natural selection is also tautologically
occurring, and, needless to say, this in no way diminishes the relevance
and importance of the idea of evolution by natural selection. What it does
imply, however, is that when there are papers that set out to test the
validity of Hamilton's rule empirically, then it is to be expected that they
will not be using the regression method to compute b and c, because that
would render the actual data-collection a waste of energy, as we already
know that whatever the data, Hamilton's rule will always be confirmed.

The studies in the review by Bourke (2014) cover a range of
behaviours; egg dumping in lace bugs (Loeb, 2003); guarding and
worker behaviour in a variety of bees (Hogendoorn and Leys, 1993;
Stark, 1992; Bourke, 1997; Richards et al., 2005); female joining
behaviour in a variety of wasps (Queller and Strassmann, 1988; Nonacs
and Reeve, 1995; Noonan, 1981; Metcalf and Whitt, 1977; Gadagkar,
2001); kin discrimination in cannibalizing behaviour in larvae of tiger
salamanders (Pfennig et al., 1999); cooperative lekking in wild turkeys
(Krakauer, 2005); and helping at the nest in the white-fronted bee-

eater (Emlen and Wrege, 1989). Seven of those studies find that the
behaviour has positive inclusive fitness (rb c> ), one of them finds a
negative inclusive fitness (rb c< ), three studies have mixed results
(some cases or years with rb c> , some with rb c< ) and one finds
inclusive fitness equal to 0 (rb c= ).

These studies are summarized in the review as follows:

Overall, the studies considered in this review strongly confirm the
predictions of Hamilton's rule regarding the conditions and likely causes
that underpin social evolution at ecological and evolutionary timescales.

That is a remarkably positive aggregation of these results, which
contain quite a few violations of Hamilton's rule. Observed worker
behaviour in halictid bees was found to have negative inclusive fitness
in Richards et al. (2005). Guarding behaviour in allodapine bees was
found to have positive inclusive fitness for observations from 1987, and
negative for observations from 1988 (Stark, 1992; Bourke, 1997). Female
joining behaviour was found to have negative inclusive fitness in Polistes
annularis for 5 out of 5 group sizes observed in 1977, and for 3 out of 5
group sizes observed in 1978 by Queller and Strassmann (1988). Female
joining behaviour was found to have negative inclusive fitness in Polistes
fuscatus for 3 out of 4 group sizes (Noonan, 1981), and to be not
statistically different from 0 in Polistes dominulus in Nonacs and Reeve
(1995). It is true that Hamilton's rule is confirmed quite a few times (7 out
of 12 studies, where one study is taken to be a set of two papers on the
same behaviour and species). But together these 12 studies certainly do
not imply that Hamilton's always holds – assuming that we have
confidence in the statistical power of the individual studies. After all,
one behaviour in one species for which we are confident that the data
imply that inclusive fitness really is negative is enough to reject the claim
that Hamilton's rule always applies.

There are some statistical concerns though, that imply that the
violations of Hamilton's rule that are found do not have to be the final
answer in these specific cases. Also it is worth trying to answer the
question what could have generated the violations, and whether the
authors were using the regression method, the counterfactual method, or
neither, to compute the costs and benefits. But most of all it is worth
finding out what violations would look like if we are trying to find them in
an empirical study. For that it will be useful to return to Section 3, in
which individuals also face a binary choice. That is what we will do below.

8.1.1. Violations of Hamilton's rule in equilibrium
Hamilton's rule always holds if we use the regression method to

define costs and benefits. If we use the counterfactual method, and the
game has equal gains from switching, then Hamilton's rule also always
holds. One would therefore only expect possible violations in an empirical
study if the counterfactual method is used, and if the game moreover
does not satisfy equal gains from switching. There are two cases to be
considered: the case where bistability is possible (P S T R− > − ) and the
case that allows for coexistence (P S T R− < − ).

P S T R− > − , the defecting equilibrium: If we expect to find a popula-
tion in equilibrium, then P S T R− > − implies that the population will
either be in the corner of the simplex where the frequency of cooperators
is 0, or in the corner where that frequency is 1. At the first corner, the
inclusive fitness of the cooperative behaviour, if b and c are defined
according to the regression method, is negative, because with this
definition, inclusive fitness always matches the direction of selection.
With Eq. (4.12), and filling in p = 0, we find that
b T P R S= ( − ) + ( − )regr r

r
r

1
1 + 1 + , and c P S T R= ( − ) + ( − )regr r

r
r

1
1 + 1 + .

For benefits and costs according to the counterfactual method, we use
Eq. (3.3), and filling in p = 0, we find that b T P= −count and
c P S= −count . Since we assumed that P S T R− > − , the costs according
to the counterfactual method in this corner are higher than the costs
according to the regression method, while the benefits are lower.
Therefore, given that in this corner rb c<regr regr, certainly rb c<count count .
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P S T R− > − , the cooperative equilibrium: The situation in the other
corner is the mirror image with the same conclusion; in equilibrium, there
is no scope for observing violations. With Eq. (4.12), this time filling in
p = 1, we find that, according to the regression method,
b T P R S= ( − ) + ( − )regr

r
r r1 +

1
1 + , while c P S T R= ( − ) + ( − )regr

r
r r1 +

1
1 + .

For benefits and cost according to the counterfactual method, we use Eq.
(3.3) again, and filling in p = 1, we find that b R S= −count and
c T R= −count . Since we assumed that P S T R− > − , that implies that
in this corner, the costs according to the counterfactual method are lower
than the costs according to the regression method, while the benefits are
higher. Therefore, given that in this corner rb c>regr regr, certainly
rb c>count count . In equilibrium, such a violation would therefore never be
observed. For violations, we would need to see selection in action in the
region between the solid and broken green lines in Fig. 30, but in
equilibrium, this will not be observed, also not with the counterfactual
method.

P S T R− < − : The case with coexistence does allow for violations of
Hamilton's rule to be observed in equilibrium. The equilibrium
fraction of cooperators is p r( ) =

r
r S rR P

S R T P
1

1 −
(1 − ) + −

− + − (see Appendix C). If
we fill in this frequency in (3.3), we get
b T S r P R S T= ( − + ( − + − ))count r

1
1 − and c R P= ( − )count

r
r1 − , which

implies that rb c T R P S r P T S R− = ( − + − + ( − + − ))count count
r

r1 − .
With P S T R− < − , this is non-zero, except where the solid green
line intersects the dashed one in Fig. 31. If we would like to find
violations of Hamilton's rule in equilibrium, therefore, we should
focus on cases that allow for coexistence.

8.1.2. What causes the violations in the empirical studies?
Given that there are so many ways not to find violations of

Hamilton's rule, it is interesting to find out what causes the relatively
large number of studies that find that the prevalent behaviour has
negative inclusive fitness. It will also be interesting to find out how
costs and benefits are computed in such empirical studies. In order to

answer those questions, we first look at the right/down corner of
Fig. 30, where the share of cooperators is 1. In that corner, there are no
defectors around. By lack of observations of defectors, both the
regression method and the counterfactual method would be at a loss.
(The reason why the counterfactual method would also be at a loss
there, is that it also depends on estimating a statistical model that
describes how fitnesses depend on behaviours. A difference is that the
counterfactual model does not restrict the statistical model to being
linear, but both need observations of cooperators and defectors.)

The absence of defectors does not have to imply that it is impossible
to recover what the fitnesses would be without giving or receiving help.
One can gather observations on individuals that do not give or receive
help for reasons other than being a defector, or their partner being one.
One such reason could be that they have no interaction partner to
receive help from, or to give help to, to begin with. Such observations
offer a perfect way to get around a possible lack of defectors.

The studies surveyed in Bourke (2014) do indeed typically use
clever workarounds to get at the payoff of defectors. They do, however,
use linear specifications. Linearity is a feature that is shared with the
regression method, while a discrepancy between Hamilton's rule using
the counterfactual method on the one hand, and the direction of
selection on the other, would hinge on the true relation between
fitnesses and the type of oneself and one's interaction partner not being
linear. The question therefore remains what generates the violations.
We will discuss three possible reasons.

The observations are only a sample, and the number of offspring is
a random variable: Suppose the population is not actually in the
corner with cooperators only, but we have a population in which there
are still some defectors around. Suppose we now draw a number of
pairs from that population. Fitness is only the expected number of
offspring, and clearly the number of offspring has to be a random
variable. In the sample, it might be that the individuals in DD-pairs
happen to all have many offspring. This then could lead to inclusive
fitness within our sample being negative, even though in the population
as a whole inclusive fitness is positive, and the fraction of cooperators
in the population as a whole is still rising. Notice that with the
regression method, it is still tautologically true that inclusive fitness
is positive if and only if the frequency of cooperators is going up. Here

Fig. 30. The solid green line separates the region with rising shares of cooperators
(below it) from the region with declining shares of cooperators (above it). The dashed
green lines separate the regions where inclusive fitness is positive (below) and negative
(above), when benefits and costs are computed according to the counterfactual method.
In the left corner, the dashed line is below the solid green line, implying that if defection
is stable, then certainly inclusive fitness with the counterfactual method is negative too.
In the right corner, the dashed line is above the solid green line, implying that if
cooperation is stable, then certainly inclusive fitness with the counterfactual method is
positive too. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 31. The equilibrium is found at the intersection of the solid green line and the blue
constant-r arc, and this intersection is below the green dotted line, which means that
inclusive fitness with costs and benefits according to the counterfactual method would
incorrectly suggest that selection would lead to a further increase of the frequency of
cooperators. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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that only implies that if randomness gives us a sample in which
inclusive fitness is negative, then within this sample, indeed the share
of cooperators went down – or vice versa. An ever larger sample size
would reduce the probability of this happening ever more.

Relatedness is estimated separately: Relatedness in Eq. (4.9) is
computed based on the distribution of cooperators and defectors in that
sample; it is defined as Cov X Y

Var X
( , )
( )

, where X and Y pertain to with the

distribution of cooperators over pairs in the sample. Note that this is only
an estimate of the true relatedness, but one that would make Hamilton's
rule work. That, however, is not how relatedness is computed in
empirical studies. Some find r using the pedigrees of the interacting
individuals (Metcalf and Whitt, 1977; Emlen and Wrege, 1989; Stark,
1992; Hogendoorn and Leys, 1993; Richards et al., 2005; Gorrell et al.,
2010). Others use genetic marker testing when gathering genetic
information of the organisms is feasible (e.g. in Loeb, 2003; Krakauer,
2005; Hatchwell et al., 2014). Replacing Cov X Y

Var X
( , )
( )

with another measure

for r implies that Eq. (4.9) no longer is a tautology, and it becomes
possible that inclusive fitness – with benefits and costs according to the
regression method, but Cov X Y

Var X
( , )
( )

replaced with a different estimate of r – is

positive, while in the sample the frequency of cooperators goes down.
Again, more data will reduce the likelihood of this problem occurring.

The workaround might get the frequencies of pair types wrong: For
the third reason, we take a closer look at the computation of the costs and
benefits according to the regression method, when applied to the replicator
dynamics for the prisoners' dilemma. This is done in Appendix B.3 (see also
Gardner et al., 2011). The important thing to observe, is that the solution to
the minimization depends on the shares f0, f1 and f2 of, respectively, DD-
pairs, CD-pairs, and CC-pairs, unless we have equal gains from switching.
With equal gains from switching, fitnesses of different types in different
pairs can be made to match the linear model exactly, which makes the
minimization independent of f0, f1 and f2. Without equal gains from
switching, this is no longer the case. If we have obtained our observations
not from matches with defectors, but from not being matched at all, for
instance, then there is no reason to assume that the numbers of the
different types of observations happen to be the same as the f0, f1 and f2
that would go with the relatedness r at hand, in combination with a small p.
This problem cannot be reduced by just gathering more data.

Because one would not expect to observe a violation of Hamilton's
rule in a model with a binary choice and without coexistence, we would
think that the violations of Hamilton's rule are there because of these
three reasons. Notice that this implies that, while chance events may
make for underestimations of the inclusive fitness in some cases, they
will make for overestimations in others.

8.2. Adaptive dynamics

For the setup of Section 6, where a continuous trait is assumed to
evolve, one could also ask what the empirical implications of the
observations there would be. Suppose therefore that we do indeed
observe a trait that can naturally be seen as continuous. This would be
in line with a fair share of the inclusive fitness literature, such as, for
example Taylor and Frank (1996) and Rousset and Billiard (2000), as
well as with adaptive dynamics; see for example Metz et al. (1996),
Dieckmann and Law (1996), Champagnat et al. (2001, 2006), and
Champagnat and Lambert (2007).

A first question is, again, if we expect to see evolution in action, and
watch a mutant for which rb is larger than c take over the population, or
if we expect to observe a population in equilibrium. The first option
would imply that we start in a disequilibrium state. In experiments one
could get a disequilibrium state by manipulating either the phenotype of
the species, for instance by knocking out some genes, or activating
others, or one could manipulate the environment to change the selective
pressure. Fig. 32a illustrates this; we would like to see a mutant with

rb c> appear and succeed. In this figure, the intersection of what is
feasible (below the curved solid line) and which mutants would have
increased inclusive fitness (above the straight dashed line) is non-empty.

Alternatively, one might want to assume that the trait is at its
equilibrium value. In the cases of games 1 and 2 from Section 6, that
would imply that the intersection of what is feasible and what would
increase inclusive fitness is empty. This is illustrated in Fig. 32b. A possible
empirical test of Hamilton's rule, with costs and benefits according to the
counterfactual method, would then need an estimate of the slope of the
curved line that separates the feasible from the infeasible phenotypes at
the status quo. This slope should equal −

r
1 .18 Of course, estimating this

slope is a problem. One option could be that with a little diversity, one
could hope to get a cloud of observations that might serve as a proxy for
the trade off. But even if that would lead to an estimate of the slope that is
significantly different from−

r
1 , this would not necessarily imply a violation

of Hamilton's rule. Suppose that the estimated slope is found to be smaller
than−

r
1 . That would suggest that there are traits that are more cooperative

than the current ones that have a higher inclusive fitness. It could very well
be, however, that this is really caused by the fact that it is easier to trace
fitness effects between interactants than it is to pick up cancellation effects.
Counterfactuals that pertain to the immediate effects between interactants
are easier to establish, while counterfactuals that pertain to cancellation
effects (which might consist of many small effects) are harder to pinpoint.
If those cancellation effects are not picked up by the statistics, then one
would overestimate the inclusive fitness of an increase in trait value.

If the observations are suggestive of a continuously differentiable
fitness function, as they are in Fig. 32c, and especially if they suggest a
convex set of feasible points, one would also have no reason to expect
that Hamilton's rule would actually fail. Only if even locally, coopera-
tive behaviours are strategic complements, or if diversity is too large to
maintain the assumption that the population is close to monomorphic,
would one expect Hamilton's rule, with costs and benefits according to
the counterfactual method, to fail.

None of the empirical tests of Hamilton's rule that are reviewed by
Bourke (2014) treat their cooperative trait as continuous. Many choices
are also binary by definition. Pfennig et al., (1994, 1999) study
cannibalizing larvae, and eating or not eating a fellow brood member
is an all or nothing choice, because eating half a fellow brood member
is not an interesting option. Such a case could provide a test of
Hamilton's rule. One might first of all check qualitatively if they
developed kin recognition, and whether kin are less likely to eat kin.
One could however also check quantitatively whether the threshold
matches what one would expect from Hamilton's rule (see Fig. 32d).
Other traits may not be binary by definition; helping at the nest could
also be a continuous trait, as the amount of help may vary. One could,
however, make a case for treating it as a binary choice if the amount of
help provided has one peak at 0 and one at a different amount of help.

8.3. The cycle and the regression method

Suppose we observe a population of individuals that are organized
on a cycle of length N . Each individual interacts with both neighbours.
We moreover observe that there are two types only, and that there is
one string of i consecutive individuals of type C and one string of N i−
consecutive individuals, all of type D. This puts us firmly within the
setup of Ohtsuki et al. (2006), Ohtsuki and Nowak (2006), Grafen
(2007), and Section 7. We do, however, not know what the update
process is; it could be Birth Death, Death Birth, or Shift. We would like
to figure out, by looking at how the population changes from one

18 The dotted lines in Fig. 32 represent points with inclusive fitnesses equal to the
point where both agent and interaction partner have fitness 1. Therefore, if π1 represents
the fitness, or payoff, of the agent, and π2 the fitness of its interaction partner, then the
line is given by the equation π rπ r+ = 1 +1 2 . This can be rewritten as π = 1 + π

r2
1 − 1 ,

which makes π2 a function of π1 with slope −
r
1 .
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moment in time to the next, which of these processes we are dealing
with, and what the benefits and costs according to the regression
method are. Because we assume that the game in payoff terms has
equal gains from switching, we should expect that the game in fitness
effect terms does too, and hence also that the counterfactual method
will result in the same costs and benefits as the regression method.

Every reproduction event gives us a population at two moments in
time, which we can feed into the regression method as discussed in
Section 4. Let us say that variable x1 now reflects the type of any
individual itself; x = 11 for a C-player, while being a D-player implies
that x = 01 . Variable x2 reflects the average type of the two direct
neighbours – which means that it could be 0, 1

2
, or 1 – and variable xm

reflects the average type of the two neighbours m − 1 steps away. The
fitness f of an individual is 0 if it dies and does not reproduce, 2 if it
reproduces and does not die, and 1 otherwise.

Looking at one reproduction event will not be very informative; one
can of course apply the regression method, and it would give a b and a
c, but which b and c that is, will depend on which reproduction event
that happens to be. With one transition, that will be a very noisy signal,
from which one cannot draw any conclusions. What one would need is
very many observations, starting from the same population state, which

would then have to be aggregated, such that we get a less noisy measure
of how fitnesses of individuals depend on their own type and on the
types of their neighbours. The most interesting positions on the cycle to
look at will be the ones at or close to the boundaries, where C-players
and D-players meet. Fig. 33 shows the expected values of those
fitnesses, if the underlying process is Birth Death, Death Birth, and
Shift, respectively. These values are found simply by applying the
fitness effects from Grafen (2007); see also Table 1 in Section 7.

The easiest process is the Shift process. If we have a sample that is
sufficiently large, we can be confident that the fitnesses are relatively
close to the expected values from Fig. 33c. If we were to run the simple
two-variable regression on these expected values, we would find
a = 1 − i b c

N00
2 ( − ) , a c= − 210 and a b= 201 . With a sufficiently large

sample generated by the Shift process, the regression run on the data
will be likely to return values close to these. If we were to rerun the
regression with more variables – for instance x1, x2 and x3 instead of
just x1 and x2 – then the fixed term as well as the coefficients of x1 and
x2 would still be close to the same values, while the newly introduced
coefficients would be close to 0. Notice that the expected values from
Fig. 33c exactly match the description according to the regression
model: b c a1 − 2( − ) =i

N 00, b c b a a1 − 2( − ) + = +i
N 00

1
2 01 (where a1

2 01

Fig. 32. The dotted lines are lines with equal inclusive fitness through the fitnesses in the status quo (which are assumed to be 1 for both players). They separate mutations with an advantage
from mutations with a disadvantage. The curved, solid lines separate feasible fitness effects and non-feasible fitness effects. (a) A mutant that is both feasible and that implies an increase in
inclusive fitness. (b) An equilibrium state, where no increases in inclusive fitness are feasible. (c) A cloud of observations near equilibrium. (d) A binary choice. Eating a fellow brood member
would have positive inclusive fitness when it concerns an unrelated individual (vertical line), but negative inclusive fitness when it is a sibling (downward sloping line).
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represents the benefits of having one out of two neighbours cooperat-
ing), b c b a a a1 − 2( − ) − = + +N i

N
−

00 10
1
2 01, and b c a a a1 − 2( − ) = + +N i

N
−

00 10 01.
Running the two-variable regression on expected values of the Birth

Death process gives
⎛
⎝⎜

⎞
⎠⎟a b= 1 + 1 −i

N
Ni i

Ni i N00
−

− −

2

2 , a b c= − − 210 and

a b c= + 2Ni i
Ni i N01

−
− −

2

2 . In this case, however, if we rerun the regression

method with variables x1 to x3 instead of just x1 and x2, we do find
differences. While the coefficients of x1 remains b c− − 2 , the coefficient of
x2 will change to b c2 + 2 , and the coefficient of x3 will become b− . After
this, adding more variables does not induce more such changes, and the
additional coefficients will be 0. Again, with a sufficiently large sample
generated by the Birth Death process, the regressions run on these data,
instead of the expected values, will be likely to return values close to these.

One important thing to notice here is that we have now found two
Hamilton's rules for the Birth Death process. Both are derived with the
regression method: one by using variables x1 and x2, and one by using
x1, x2, and x3. If we now return to the derivation of the result that
Hamilton's rule always holds, in Section 4, we see that the same logic
applies to both rules equally, even though they return different fitness

effects; the effect on a neighbour once removed is c+b Ni i
Ni i N2

−
− −

2

2 in the

first, and b + c in the second, while the effect on a neighbour twice
removed is set to 0 in the first, and equal to − b

2 in the second.
The Death Birth process combined with the regression method gives

three Hamilton's rules: one for the regression that uses variables x1 and x2,
one for the regression that uses x x,1 2 and x3, and one for the regression
that uses x1 to x4. Again, the logic of the derivation of the result that
Hamilton's rule always holds does not depend on which variables are used,
as long as the fixed term and x1 are included (see Section 4, Eq. (4.10)).

It seems natural, though, to think that benefits and costs should be
uniquely determined quantities, which would give us one Hamilton's
rule per case only. The most natural choice seems to be to choose the
regression with a fixed term and x1 to x4 for the Death Birth process, the
regression with a fixed term and x1 to x3 for the Birth Death process,
and the regression with a fixed term and x1 and x2 for the Shift process,
because those are the smallest sets of variables that return the true
benefits and costs as computed in Grafen (2007).

We started out, however, with a situation where we did not know what
the process is, and only have the data to infer that from. A natural thing to
do here would therefore be to do a specification test. First we run a
regression including x1 to x4, and do a statistical test on whether or not
a0001 is zero. If a0001 is significantly different from 0 then one would
conclude that the underlying process is Death Birth. If not, then one

would conclude that it must be one of the other two (assuming that the
test has sufficient power). In that case, one would repeat this exercise with
independent variables x1 to x3 and test if coefficient a0010 is significantly
different from 0, which would then help decide between Birth Death and
Shift (again assuming that we have sufficiently many observations to give
such a test sufficient power). These tests determine which variables
should be included in the final regression, that will estimate the fitness
effects, from which we then back out the parameters b and c. Notice that
the setup with parameters b and c – not to be confused with actual fitness
benefits and costs – implies that neighbours play a game with equal gains
from switching in payoff terms. This translates to fitness effects that also
satisfy equal gains from switching. This, in turn, implies that if we
compute benefits and costs with the regression method, we will not be
choosing a different specification than we would in a statistical exercise
that is not a priori restricted to a linear model. The counterfactual
method, combined with an unrestricted, standard statistical search for an
appropriate model would therefore result in the same costs and benefits.
There would be a difference between the two only if the game between
neighbours does not satisfy equal gains from switching.

None of these considerations are anything out of the ordinary. The
reason why it is still worth discussing them is that they illustrate a point
made in Section 4. The point there was that nothing in the derivation of the
result – that Hamilton's rule always holds, provided that we interpret the
regression coefficients as costs and benefits – depends on the choice of
variables which are included in the function g, as long as g is assumed to be
linear in all of them (see Section 4). That suggests that model choice might
be irrelevant for the validity of Hamilton's rule. The example shows,
however, that there is no avoiding model choices, if we want Hamilton's
rule to be uniquely defined. The example also suggests that if f and μ
represent data, a natural criterion would be a statistical test on coefficients
a0001 and a0010. This also implies that reducing the squared difference
between f and g a whole lot by adding one variable only would be a
relevant reason to include that variable ( f represents the data here, and g
the statistical model; see Section 4). There is, however, no difference
between statistical tests for whether or not a0001 is different from 0, and
statistical tests for whether a1100 or a2000 is non-zero or not. Those tests are
not just conceptually the same; also the actual test is exactly the same for
variable x4 as it is for the variable x x1 2 or the variable x( )1

2. Therefore, when
choosing between specifications, there is no reason to treat the question
whether or not to include x4 as any different from the question whether we
should include x x1 2 or x( )1

2. The derivation of the result that Hamilton's rule
always holds, however, crucially depends on x x1 2 and x( )1

2 not being
included.

Fig. 33. Fitnesses with different update rules. Red individuals are D-players, blue ones play C. Notice that the b and c's here are just parameter values, as in Ohtsuki et al. (2006),

Ohtsuki and Nowak (2006), Grafen (2007) and Section 7. Independent of the process, and according to the regression method, r = =m
Cov X Xm

Var X
N i m i

Ni i

( 1, )
( 1)

( + 1 − ) − 2

− 2 for m i N i< min{ , − }.
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A few more small remarks are in order here. One is that average
fitnesses are not the only type of useful information in the data. If we want
to figure out which of the three processes we are looking at, then it might
be worthwhile, and certainly more efficient, to also look at the variances in
fitnesses. Cooperators and defectors in the Birth Death as well as in the
Death Birth process all have an expected fitnesses of 1 if they are
sufficiently far removed from the boundary. In the Death Birth process,
cooperators and defectors have the same birth rate and they also have the
same death rate. In the Birth Death process they do not; cooperators
surrounded by sufficiently many cooperators have both a higher birth rate
and a higher death rate than defectors. This means that if we wait for a
fixed time interval, even though both have the same expected number of
offspring (where still being alive oneself counts for a fitness of 1), the
variance in the number of offspring in the Birth Death process is larger for
cooperators surrounded by at least two cooperators on either side than it
is for defectors surrounded by at least two defectors on either side. More
generally: a richer statistical model, which estimates birth and death rates,
depending on variables x1 to xm, will give statistical tests with much more
power, because only the reproduction events at or close to the boundaries
count as informative if we depend on estimating a model with fitnesses,
while every reproduction event is informative if we depend on estimating
birth and death rates (Fig. 34).

9. Discussion

Fifty years after the introduction of Hamilton's rule, its generality is
still debated. The spectrum of positions stretches all the way from the
claim that “Hamilton's rule almost never holds” (Nowak et al., 2010) to
inclusive fitness being “as general as the genetical theory of natural
selection itself” (Abbot et al., 2010). The debate seems to be a
disagreement about the validity of a well-defined, agreed upon rule.
One key to the disagreement, however, is that there are different ways
to define the benefits and costs in the rule (Birch, 2014, see also Birch
and Okasha, 2015). In Section 4 we have seen that if the regression
method is used to determine b and c, then indeed Hamilton's rule
always holds, provided that we have a given, linear specification, and
that we do not have an underdetermined system. In Section 3 we have
seen that if we determine costs and benefits by comparing current
fitnesses to what they would have been under alternative behaviour
(the counterfactual method), then Hamilton's rule is only guaranteed to
match the direction of selection if we assume “equal gains from
switching”, in which case both definitions result in the same b and c.
Finally, some papers have parameters b and c determine the payoffs in
a prisoners dilemma with equal gains from switching, and choose those
for benefits and costs in Hamilton's rule (Ohtsuki et al., 2006, and the

first version of Hamilton's rule in the SI, Part A.7, of Nowak et al.,
2010). In this case, Hamilton's rule only applies if, on top of the
assumption of equal gains from switching, payoffs translate linearly to
fitnesses. This is not the case with many local interaction models
(Grafen, 2007). This third option – b and c as parameters – is not how
we think benefits and costs should be defined. Hamilton's rule is about
fitness effects, and not model parameters, and therefore we restrict
attention to the first two options: b and c according to the regression
method; and b and c according to the counterfactual method.

It might be helpful to realize that the difference in definitions drives
the difference in claims concerning the generality of Hamilton's rule. That
is not going to be the end of the debate, though, because the obvious next
point of disagreement is which definition is preferable. Choosing between
those two does leave room for individual preferences, and therefore for
persisting disagreement. Some authors view the general validity of
Hamilton's rule, with the regression method determining b and c, as a
deep, fundamental insight (for instance Gardner et al., 2011; Marshall,
2011, 2015; Rousset 2015). Our view is that it “makes” Hamilton's rule
work by allowing for just the right kind of model misspecification.
Sections 4 and 8.3 explain why we see it that way.

The regression method minimizes the squared difference between a
fitness function (either reflecting a model, or observed numbers of
offspring) and a linear function (which we, for lack of a better word,
refer to as the statistical model). The central result here is that Hamilton's
rule always holds, when costs are defined as the coefficient of the variable
that represents the individual's own level of cooperation (which is 0 or 1 in
models with binary choice), and when benefits to interaction partners in
different roles (e.g., siblings, nephews and nieces, nearby neighbours,
faraway neighbours) are defined as the coefficients of the variables that
represent the levels of cooperation of the interaction partners in those
roles. One observation we make in Section 4 is that the derivation of that
result does not assume anything about the specification of the statistical
model – that is, it is silent about which variables are to be included in the
regression and which are not. With the regression method, Hamilton's
rule therefore is not necessarily uniquely defined, as the costs and benefits
of the cooperative behaviour may depend on which variables are included.
The benefits of having a cooperative sister as computed by the regression
method, for instance, may depend on whether or not the level of
cooperation of nieces is included as a variable.

In order to overcome the problem that Hamilton's rule is not
uniquely defined, one could add a criterion for model choice to the
minimization of the squared difference. A natural criterion would be:
all the variables that play a role should be included, and not more. If
the fitness function is a theoretical model, or follows from one, then
that criterion is relatively straightforward to apply. If it reflects data,
that requires statistical testing. In neither of the two cases is there a
reason why that criterion should apply when we choose whether or not
to include different linear terms in the model (such as, for instance, the
cooperativity of one's nephews or nieces), but not when we choose
whether or not to include non-linear terms (such as, for instance, the
interaction term between my cooperativity and my sibling's). Also, the
statistical test for those two choices is one and the same. The general
validity of Hamilton's rule, however, depends on all non-linear terms
not being included. This implies that either model choice does matter,
in which case non-linear terms should be allowed to be included, and
Hamilton's rule does not generally hold, or model choice does not
matter, in which case Hamilton's rule is not always uniquely defined.

The counterfactual method is also not without complications. Karlin
and Matessi (1983) and Matessi and Karlin (1984,1986) compute the
costs and benefits of cooperation by going over all cooperators, and
comparing their current fitness to what their fitness would have been, had
they defected. That does have an intuitive appeal, given that it is the actual
cooperators that, in Hamilton's words, “add to the gene-pool a handful of
genes containing G [the altruistic gene] in higher concentration than
does the gene-pool itself”. A problem with this definition, is that the
inclusive fitness of a cooperator is not necessarily minus the inclusive

Fig. 34. Not all models that explain the evolution of helping behaviour are kin selection
models. Sexual selection, or signalling models more generally, may explain helping
behaviour. Models of reciprocity with repeated interactions may too. These do not
necessarily violate inclusive fitness, but Hamilton's rule does not provide the relevant
criterion. Not all models that explain the evolution of helping behaviour have a prediction
that follows Hamilton's rule; not even all kin selection ones – unless we use the
regression method to determine costs and benefits.
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fitness of a defector. A choice that we prefer, and that solves this
inconsistency, is to consider everyone, cooperators and defectors. A
cooperator then actually incurred those costs, and provided the benefits,
and a defector faced them too, but acted differently.

Karlin and Matessi (1983) and Matessi and Karlin (1984,1986)
moreover imposed that costs and benefits should be fixed, and
independent of the current frequency of cooperators. They found that
Hamilton's rule only applies if fitnesses are linear in the frequency of
cooperators, which translates directly to equal gains from switching.
We allow for a local definition, where costs and benefits are allowed to
change with the frequency of cooperators, but find that the same
restriction still applies; also locally, Hamilton's rule applies only with
equal gains from switching, provided that we define b and c with either
version of the counterfactual method.

For games with equal gains from switching – that is, in the
absence of synergy or the opposite of synergy – the regression
method and both versions of the counterfactual method lead to the
same costs and benefits. Hamilton's rule then applies, whichever way
we define costs and benefits. Equal gains from switching can be a
basic assumption of a model, or it can be implied by other choices,
such as local mutations in combination with restrictions on the fitness
function. In Section 6 we have seen that in an adaptive dynamics
context, where we assume local and infrequent mutations, this results
in a relatively large domain where inclusive fitness works, with costs
and benefits defined according to the counterfactual method. If we
have a differentiable fitness function, and no bifurcations, then locally
we regain equal gains from switching, and therefore dynamics
according to Hamilton's rule.

Birch (2014) also compares different ways to define the benefits and
costs in Hamilton's rule. He distinguishes the general version of
Hamilton's rule (HRG) from the special version (HRS). The first version
uses the regression method to define b and c. The second version uses
payoff parameters, which is to capture how b and c are defined in Nowak
et al. (2010) as well as in van Veelen (2009). These two papers however
differ in their treatment of b and c. In the Hamilton's rule in Part A.7 of
the Supplementary Information of Nowak et al. (2010), the b and c are
indeed parameters that determine the payoffs in a prisoners dilemma with
equal gains from switching, and it is those parameters that are indeed
considered to be the benefits and costs in Hamilton's rule. This is also
done in Ohtsuki et al. (2006), and Grafen (2007) pointed out that these
payoffs do not reflect the fitness effects of playing C instead of D in the
local interaction model from Ohtsuki et al. (2006). Since the b and c in
Hamilton's rule should represent fitness effects, Grafen (2007) argued
that it is not correct to use those parameters instead.

In van Veelen (2009), on the other hand, the translation from
payoff to fitness is not a problem, as the fitness effects there by
definition align linearly with the payoffs (see also van Veelen, 2011b,
and Section 3). Moreover, no specific choice for the b and c in
Hamilton's rule is made there. All that the counterexamples (pp.
594–595) do, is show that there exists no b and c that are independent
from the current population state, and that combine with r to a
Hamilton's rule that matches the direction of selection for any
frequency. One can therefore say that van Veelen (2009), like Karlin
and Matessi (1983), was looking for a global rule, with fixed,
frequency-independent costs and benefits. Without stating what the
proper definition of b and c would be, it showed that no choice for b and
c would produce such a global rule, unless the game has (generalized)
equal gains from switching.

In this paper we did allow for b and c to depend on the current
population state. Here we found that even if we allow for Hamilton's
rule to be a local rule, with frequency-dependent b and c, equal gains
from switching is required for it to work, if we choose the b and c
according to the counterfactual method. Finally, between the counter-
factual and the regression method, neither one of the two is more
special or more general than the other. For any given game and
population state, both methods will simply produce a b and a c.

9.1. Helping behaviour, kin selection, and inclusive fitness

The discussion about kin selection and inclusive fitness is some-
times also clouded by a lack of distinction between kin selection and
inclusive fitness (see for example Foster et al., 2006a,b; Nowak et al.,
2010; Birch and Okasha, 2015). We would like to stress that kin
selection and inclusive fitness are not the same. The replicator
dynamics and the adaptive dynamics typically have equilibrium out-
comes that depend on relatedness. If with positive relatedness the
outcome differs from what we get at r = 0, then it is safe to say that this
is the result of kin selection. But, absent equal gains from switching,
inclusive fitness may not point to the equilibrium outcome, if we let b
and c be determined by the counterfactual method. That was more or
less a recurrent theme in this paper. But also the opposite is possible,
for instance if positive assortment is not caused by common descent.
Individuals can for instance also self-assort on phenotypic similarity
(Fletcher and Doebeli, 2009) or there can be other endogenous reasons
for phenotypic assortment (Richerson & Boyd, 2004). When the game
has equal gains from switching, Hamilton's rule, with

 r C C C D= ( | ) − ( | ) as a measure for assortment, can still hold, even
though this is not kin selection (see Section 3 for the definition of r).

It is also useful to stress that not all explanations for helping behaviour
are kin selection explanations or even rely on other sources of assortment.
If someone jumps into the river to save her sister, then that can be
explained by a kin selection model. If someone jumps into the river to
save a friend, then that can be explained by a model in which the value of
saving the other lies in the fact that the other is unable to return the favour
when dead, as suggested in Eshel and Motro (1981). In settings that are
less all-or-nothing, helping behaviour can also be explained with classical
repeated interaction models, where only the willingness to help is affected,
and not the capacity. Finally, sexual selection models can also explain
helping behaviour. If someone jumps into the river to save an unrelated
stranger and ends up producing healthy offspring happily ever after with a
top quality partner who happened to have witnessed the act of bravery, or
gets to spend time with more partners than otherwise, then sexual
selection can explain that (Miller, 2001).

In the latter two examples, Hamilton's rule is not necessarily
violated, although it is also not the condition to look to for an answer
to the question whether or not helping behaviour will evolve. In a
typical model of sexual selection, the only thing that matters is whether
or not behaviour promotes the fitness of the one that performs it. The
one that gets saved is just lucky, and typically not assumed to be related
to its saviour. With relatedness 0 to the helped individual, a behaviour
that serves the actor well through better mating chances trivially has
positive inclusive fitness. But whether or not helping behaviour can
evolve depends crucially on whether or not the fitness cost function
satisfies the ‘single crossing’ condition (Kreps and Sobel, 1994, see also
Zahavi, 1997). Including the effect on the helped individual and
weighing that with 0 does not add to this.

The situation with repeated interactions is somewhat similar. There
typically is a multiplicity of equilibria. With relatedness 0, none of the
equilibria violates Hamilton's rule; at all of them, deviating would be bad
for the one who deviates, and that would trivially reduce its inclusive
fitness. But Hamilton's rule does not help finding equilibria, nor does it
provide assistance in determining if some equilibria are perhaps more
stable or more likely to be played than others (some references for
repeated games are Friedman, 1971; Axelrod and Hamilton, 1981; Boyd
and Lorberbaum, 1987; Fudenberg and Maskin, 1986, 1990; Binmore
and Samuelson, 1992; Bendor and Swistak, 1995; Cooper, 1996; Volij,
2002; Imhof et al., 2005; García and van Veelen, 2016. For a general
analysis with relatedness, see van Veelen et al., 2012).

9.2. Understanding cancellation effects is a major step ahead

In Section 7 we have seen that being related is not enough for
cooperation to evolve. What matters is that there is a discrepancy
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between with whom there are opportunities for cooperation and with
whom there is competition. Cooperation and altruism evolve when
these two do not coincide – and of course they have to not coincide the
right way; if the discrepancy is in the other direction, spite can evolve
(see for instance Boyd, 1982). The setting in Sections 3, 5 and 6 is
actually an explicit way to break the symmetry, as interactions in which
the games are being played are decoupled from competition, both in
the replicator dynamics with population structure, and in the adaptive
dynamics with population structure. Even in Hamilton's original paper,
now that we have this new insight, it is true that in order for his setup
to be valid, the fitness effects should be interpreted as final, and not
imply uneven in- or decreases in competition. Kin recognition therefore
is a good fit with those models, and a good tool to break the symmetry.
Once past a phase where for instance siblings also compete more
intensely for parental attention and resources, they may no longer
compete any more intensely with each other than with anyone else. Kin
that seek each other out for cooperation therefore will break the
symmetry in the exact same way as the stylized replicator dynamics
do (see Section 3; see also Lieberman et al., 2003, 2007 for interesting
findings on kin recognition in humans). Some of the empirical
examples in Section 8 also concern kin recognition. Also life cycles
where opportunities for cooperation occur in a phase that is different
from the one in which competition happens can help breaking the
symmetry. In some settings, one can combine interaction and competi-
tion effects in one “effective” payoff matrix (see for instance Lessard,
2011). The insight that local competition can (partially) cancel out local
opportunities for cooperation, as described by Wilson et al. (1992) and
Taylor (1992a,b), might very well be the most important refinement of
our understanding of kin selection since Hamilton's (1964a,b) paper.

9.3. Empirical tests of Hamilton's rule

Hamilton's rule will by definition never be violated if the regression
method is used to compute costs and benefits. Therefore, whatever the

specification, there is no scope for empirical testing with the regression
method. If we use the counterfactual method instead, then there is
scope for violations, and hence for empirical testing. It is important,
though, to know what a violation would look like. In Section 8 we have
seen that in a setting with the replicator dynamics the particulars of the
mismatch between Hamilton's rule and the direction of selection imply
that we cannot observe violations of Hamilton's rule in a pure
equilibrium, whether it consists of cooperators only or of defectors
only. Violations can only be observed out of equilibrium, as selection
happens, or in equilibrium, if that equilibrium is a polymorphism. In
either case the statistics should allow for non-linear terms in order to
be able to detect a violation.
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Appendix A. Nash equilibria in 2×2 games

Chapter 1 of Weibull (1995) provides a perfect introduction to the relevant notions from noncooperative game theory, as do many textbooks on
game theory. Here we will only reiterate the definition of a Nash equilibrium in the simplest possible setup of a symmetric game with 2 players, each
of which can chose between 2 pure strategies.

Besides playing one of the two pure strategies, players can also randomize between them. Therefore we write p for the probability with which
player 1 plays strategy 1, and q for the probability with which player 2 plays strategy 1, where p q0 ≤ , ≤ 1. A strategy profile is a tuple
p q( , ) ∈ [0, 1]2, representing a combination of two probabilities with which the two players play strategy 1.

We will furthermore write aij for the payoff to player 1 if player 1 plays strategy i, and player 2 plays strategy j. For asymmetric games we would
write bij for the payoff to player 2 if player 1 plays strategy i, and player 2 plays strategy j, but because we only consider symmetric games, which
implies that b a=ij ji, everything can be expressed without bij 's.

A best-reply correspondence for player 1 is denoted by β q( )1 , and it assigns to q the set of all mixed strategies that maximize the expected payoff
to player 1 when player 2 plays q. In other words, p β q* ∈ ( )1 if p* maximizes pqa p qa p q a p q a+ (1 − ) + (1 − ) + (1 − )(1 − )11 21 12 22 under the
restriction that p ∈ [0, 1]. A best-reply correspondence for player 2 is denoted by β q( )2 and defined similarly. A strategy profile p q( *, *) is a Nash
equilibrium if p β q* ∈ ( *)1 and q β p* ∈ ( *)2 . Because of the symmetry of the game, β β β= =1 2 , so we could also define a Nash equilibrium of a
symmetric game as a strategy profile p q( *, *) for which p β q* ∈ ( *) and q β p* ∈ ( *). Symmetry of the game does not imply that all equilibria are
symmetric; if a a= = 011 22 and a a= = 112 21 , then (0, 1) and (1, 0) are both Nash equilibria, but not symmetric.

Appendix B. The regression method

B.1. One independent variable

In the main text, the function f assigned a fixed fitness to every x. Here we relax that, by letting y be the fitness, and by letting probability
measure μ be defined over x y y{( , ) ∈ | ≥ 0}2 . We will also need probability measures that are implied by the marginal distribution of x (which we
denote by μx) and by the conditional distribution of y given x (denoted by μy x| ).

Minimizing least squared differences with g x a a x a x( ) = + + ⋯ +n n
n

0 1 now implies that
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Because there is no y in x gi n, we can replace probability measure μ by μx in the integral on the right; ∫ ∫x g dμ x g dμ=i
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This brings us back to the case from the main text, where f x y x( ) = [ | ].

B.2. Two or more independent variables

This is basically the same as the previous subsection, but the presence of more than one independent variable implies that we will need to do this
using more notation. We have m ≥ 2 independent variables, x x, …, m1 , and one dependent variable; xm+1. For the indexing, we need to define as a

finite subset of m
0 , and it represents all the terms for which polynomial g allows non-zero coefficients; g a x x x= ∑ …j j

j j
m
j

∈ 1 2 m1 2 . We will also need
probability measures that are implied by the marginal distribution of x x, …, m1 (denoted by μx x,…, m1

) and by the conditional distribution of xm+1 given
x x, …, m1 (denoted by μx x x| ,…,m m+1 1

).

Minimizing least squared differences with g now implies that
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Because there is no xm+1 in x x x g…j j
m
j

1 2 m1 2 , we can replace probability measure μ by μx x,…, m1
in the integral on the right;

∫ ∫x x x g dμ x x x g μ… = …j j
m
j j j

m
j

x x1 2 1 2 ,…,
m m
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1
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This brings us back to the case from the main text, where f x x x x x( , …, ) = [ | , …, ]m m m1 +1 1 .

B.3. Application to prisoners dilemmas allowing for unequal gains from switching

The regression method considers two moments in time, and uses numbers that belong to these two discrete moments in time. The model we are
considering is a replicator dynamics with relatedness r and game

D C
D P T
C S R

This is a continuous time model, and therefore the regression method should also be used in a marginal version, using derivatives instead of discrete
changes. For a simple population with only one type and constant growth rate a, the fitness w typically depends on how long a time interval one
would take, as w e= at . At any instance, though, one could instead look at the marginal change, by considering alim = =t

w t t w t
t t

dw
dt tΔ →0

( + Δ ) − ( )
Δ =0 =0

,

where t = 0 is the moment we are considering.
Here we will do the same, and with two types in the population, we now have four growth rates to consider; the growth rate P of D individuals

matched with D individuals, and T, S, and R for their respective combinations. The regression method writes these growth rates as a linear function
of whether the individual itself is a cooperator or a defector and whether its interaction is a cooperator or a defector; g x y a a x a y( , ) = + +00 10 01 ,
where x = 0 if an individual is a defector, x = 1 if an individual is a cooperator, y = 0 if its interaction partner is a defector, and y = 1 if its interaction
partner is a cooperator. The population state is given by the frequencies f f f, ,0 1 2 of the different types of pairs. As before, a− 10 will be interpreted as
costs, a01 as benefits, and a00 as baseline fitness, so we will write this as g x y w cx by( , ) = − +0 . A perfect fit with least squares 0 would be achieved if
we would fit this to the functional form g x y a a x a y a xy( , ) = + + +00 10 01 11 ; with a P=00 , a S P= −10 , a T P= −01 and a R P S T= + − −11 all growth
rates are equal to g x y( , ). With g x y w cx by( , ) = − +0 , on the other hand, we minimize
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f P w
f

T w a
f

S w a f R w a a( − ) +
2

( − ( + )) +
2

( − ( + )) + ( − ( + + ))0 0
2 1

0 10
2 1

0 01
2

2 0 10 01
2

If we denote this sum of squares with E, then the choice of w b,0 and c that minimizes E should satisfy = = = 0dE
dw

dE
db

dE
dc0

. If we take those

derivatives, we find the following equations:

dE
dw

f P w f T S w b c f R w b c

dE
db

f T w b f R w b c

dE
dc

f S w c f R w b c

= 0 ⇔ − 2 ( − ) − ( + − 2 − + ) − 2 ( − − + ) = 0

= 0 ⇔ − ( − − ) − 2 ( − − + ) = 0

= 0 ⇔ ( − + ) + 2 ( − − + ) = 0

0
0 0 1 0 2 0

1 0 2 0

1 0 2 0

From the last two equations together, we can immediately see that c b T S+ = − . Using f f f+ + = 10 1 2 and p f f= +1
2 1 2, the conditions can be

simplified to

w f P f T S f R p c b

pw f T b f R b c

pw f S c f R b c

= + ( + ) + + ( − )

= ( − ) + ( − + )

= ( + ) + ( − + )

0 0
1
2 1 2

0
1
2 1 2

0
1
2 1 2

Finding the solution to this system of equations requires some not very exciting algebra, but if we do it anyway, we find that the solution is:

b p rp
r

T P p r p
r

R S

c p rp
r

P S p r p
r

T R

w
r

p r pr p rp P r p p r p S T R

= 1 − +
1 +

( − ) + + (1 − )
1 +

( − )

= 1 − +
1 +

( − ) + + (1 − )
1 +

( − )

= 1
1 +

{(1 + + − )(1 − + ) × + (1 − ) ( + (1 − ))( + − )}0

This is Eq. (4.12) from the main text. It is equally unexciting, but straightforward, to check that this is a solution indeed; just fill them in the three
equations above, and use f r p r p= (1 − )(1 − ) + (1 − )0

2 , f r p p= (1 − )2 (1 − )1
2 and f r p rp= (1 − ) +2

2 .

B.4. Straightforward construction of b and c according to the regression method

Because we know that Hamilton's rule applies if we define b and c according to the regression method, we can also find those directly. The
condition π π>C D for the prisoners dilemma is rewritten as

r p T P p R S p T R p P S( ( − ) + (1 − )( − )) > ( − ) + (1 − )( − )

in Section 3. If we multiply by r1 + and subtract r p T R p P S( ( − ) + (1 − )( − )) left and right we get

r r p T P p R S r p T R p P S(1 + )( ( ( − ) + (1 − )( − ))) > (1 + )( ( − ) + (1 − )( − ))

r r p T P p R S r p T R p P S p T R p P S(1 + )( ( ( − ) + (1 − )( − ))) − ( ( − ) + (1 − )( − )) > ( ( − ) + (1 − )( − ))

r pT r r p R r r p P r p S p T R p P S+ ( + (1 − )) − ( + ) − (1 − ) > ( ( − ) + (1 − )( − )).2 2 2 2

Then we add r p T R rp P S(1 − )( − ) + ( − ) left and right and reorganize to obtain

r pT r r p R r r p P r p S r p T R rp P S

p T R p P S r p T R rp P S

r p rp T P p r p R S p r p T R p rp P S

+ ( + (1 − )) − ( + ) − (1 − ) + (1 − )( − ) + ( − )

> ( − ) + (1 − )( − ) + (1 − )( − ) + ( − )

((1 − + )( − ) + ( + (1 − ))( − )) > ( + (1 − ))( − ) + (1 − + )( − ).

2 2 2 2

Then we divide by r1 + again, and find

r
r

p rp T P p r p R S
r

p r p T R p rp P S· 1
1 +

((1 − + )( − ) + ( + (1 − ))( − )) > 1
1 +

(( + (1 − ))( − ) + (1 − + )( − )).

This is rb c− > 0, with

b p rp
r

T P p r p
r

R S= 1 − +
1 +

( − ) + + (1 − )
1 +

( − )

and

c p rp
r

P S p r p
r

T R= 1 − +
1 +

( − ) + + (1 − )
1 +

( − ).
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Appendix C. Comparative statics

C.1. Proofs that Definitions 2 and 3 are implications of Definition 1

C.1.1. Definition 1 ⇒ Definition 3
We prove the stronger claim that, if for all (p, r), ≥ 0p p r

r
∂ ̇( , )

∂ , then if p r( ′, ′) and p r( ″, ″) are distinct locally stable fixed points, we must have
p p r r( ′ − ″)( ′ − ″) > 0. We may restrict our attention only to cases of stable fixed points p r( ′, ′) with p′ ∈ (0, 1) and r ∈ (−1, 1).

Claim (1): For each r ∈ (−1, 1), there is at most one p′ ∈ (0, 1) such that p r( ′, ′) is on the isocline. (Note that this justifies the term ‘the locally
stable’ in the definition.)

Proof. The isocline is defined by π π=C D. Isolating p then gives a unique solution:

p r
r

r S rR P
S R T P

( ) = 1
1 −

(1 − ) + −
− + −

. □
(C.1)

Claim (2a): If p r( ′, ′) is locally stable on r r= ′, then p r( ′, ′) is, for p ∈ (0, 1), globally stable on r r= ′. That is, if∃ ϵ > 0 such that p p p p r( − ′)[ ̇( , ′)] < 0
for all p p p p∈ ( ′ − ϵ, ′ + ϵ)⧹{ ′}, then p p p p r( − ′)[ ̇( , ′)] < 0 for all p ∈ (0, 1).

Proof. Suppose that p r( ′, ′) is locally stable, but that there is p p″ > ′ such that p p ṙ( ″, ′) ≥ 0. If p p ṙ( ″, ′) = 0, we have a contradiction of Claim (1), so
assume p p ṙ( ″, ′) > 0. Now from local stability of p r( ′, ′) and Claim (1), δ p p∃ ∈ (0, ″ − ′) such that p p r p p p δ̇( , ′) < 0 ∀ ∈ ( ′, ′ + ]. Now we have
p p δ ṙ( ′ + , ′) < 0 and p p ṙ( ″, ′) > 0, with p δ p′ + < ″. Since p ṙ(·, ′) is continuous, the intermediate value theorem requires that p p δ p∃ ‴ ∈ ( ′ + , ″)
such that p p ṙ( ‴, ′) = 0, in contravention of Claim (1). The case where there exists p p″ < ′ such that p p ṙ( ″, ′) ≤ 0 yields a similar contradiction. □

Now suppose that there exist p r( ′, ′) and p r( ″, ″) on the isocline with r r′ > ″ and p p′ < ″ (we need not worry about the case p p′ = ″, since each p
defines at most one r on the isocline). Since ≥ 0p p r

r
∂ ̇( , )

∂ for all (p, r), we have p p r p p ṙ( ″, ′) ≥ ̇( ″, ″) = 0. If p p r p p ṙ( ″, ′) = ̇( ″, ″) = 0, we have a
contradiction of Claim (1). If p p r p p ṙ( ″, ′) > ̇( ″, ″) = 0, we have a contradiction of Claim (2a).

C.1.2. Definition 1 ⇒ Definition 2
This follows similarly from Claim (1) and Claim (2b), which is: if p r( ′, ′) is locally unstable on r r= ′, then p r( ′, ′) is, for p ∈ (0, 1), globally

unstable on r r= ′. The proof of Claim (2b) is similar to that of Claim (2a).

C.2. Prisoners' dilemmas

Definition 2 applies to cases where both extreme frequencies p = 0 and p = 1 are locally stable, which is the case when P S T R− > − . Definition
3 requires there to be a stable mixture, which is the case when P S T R− < − . The distinction between those two cases shows in the shape of the
isocline, which describes an arc in the simplex. This arc hits the corner f = 10 (where p = 0) at the same slope as the arc r = ∈ (0, 1)P S

R S
−
− , and it hits

the corner f = 12 (where p = 1) at the same slope as r = ∈ (0, 1)T R
T P

−
− . Along constant-r arcs that lie above the isocline, the proportion of cooperators

is decreasing; below the isocline, the proportion of cooperators is increasing. We can discern three cases: (a) r r> , (b) r r= , and (c) r r< which
amount to P S T R− > − , P S T R− = − , and P S T R− < − respectively. In case (b), we have equal gains from switching.

In case (a), r r> , and so the isocline is a right-skewed arc, with maximum attained for p > 1
2 . Thus, for any given r r r∈ ( , ), the constant-r arcs

begin above the isocline at f = 00 , intersect the isocline at some p p r= *( ), and reach f = 12 from below the isocline (see Fig. 11a). For these
constant-r arcs, cooperation is increasing if p p r> *( ), and decreasing if p p r< *( ). Here, P S T R− > − , so now p r*( ) is decreasing in r (with
r r r< < ensuring p r0 < *( ) < 1). Increasing relatedness therefore favours cooperation under the second definition, that the threshold proportion of
cooperation above which full cooperation eventuates decreases as we increase relatedness. Since the first definition of favouring applies and is
stronger than the second, this is to be expected.

In case (c), r r< , and so the isocline is skewed leftward, with its maximum attained for p < 1
2 (see Fig. 11c). Since the constant-r arcs are symmetric

about p = 1
2 , we have that for all r r r∈ ( , ), the constant-r arcs begin below the isocline at f = 10 , intersect the isocline at some p p r= *( ) ∈ (0, 1), and

reach f = 12 from above the isocline (see Fig. 11a). On these constant-r arcs, cooperation is increasing at all p p r< *( ), and decreasing for all p p r> *( ), so
that the intersection point p p r= *( ) is the unique stable equilibrium proportion for each r . For r r< , cooperation decreases for all p, while for r r> ,
cooperation increases for all p. We find the intersection by solving π π=C D to p for a given r , and if we do, we get p r*( ) = S R R P r

S T R P
− + ( − ) / (1 − )

+ − − . Since

P S T R− < − , the equilibrium frequency p r*( ) at the intersection is increasing in r (with the further condition r r r< < ensuring that it is between 0
and 1). Increasing relatedness therefore favours cooperation under the third definition, that it never decreases the equilibrium proportion of cooperators.
Again, this is to be expected, since we know that the first definition applies in this case, and is stronger than the third.

Finally, in case (b), that of equal gains from switching, the isocline is symmetric about p = 1
2 , so that it coincides with the particular constant-r

arc r = ∈ (0, 1)P S
R S

−
− . For higher r , we have full cooperation in equilibrium; for lower r , we have full defection.

C.3. Stag hunt games

In order to describe the dynamics in the simplex, we will still need the intersection of the isocline and the r-arc, which is still at the point
p r*( ) = R S R P r

R P S T
− − ( − ) / (1 − )

+ − − – only slightly rewritten to have both enumerator and denominator positive. This function is decreasing in r , which implies
that relatedness favours cooperation in the second sense, as it increases the basin of attraction of cooperators. Moreover, the isocline hits the left
corner point, where f = 10 , and therefore p = 0, with a slope equal to the slope of the arc r = P S

R S
−
− . We will furthermore need two more points; the

point p** where the isocline hits the edge of the simplex, and the point p*** where p p r
r

∂ ̇( , )
∂

changes sign.
In cases (a) and (b), the isocline goes from the corner where f = 10 , and therefore p = 0, to a point on the simplex face where f = 00 . This

intersection of the isocline and the simplex face is at the point p** = R S
R S T

−
2 − − , r** = − R T

R S
−
− . In case (c), the isocline intersects the other simplex face,
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where f = 00 , and it does so at the point p** = P S
P S T

−
2 − − , r** = − P S

P T
−
− .

Left of the isocline (the green lines in Figs. 13a–c), the proportion of cooperators is decreasing. We therefore have two possible outcomes of the
dynamics. If r ≥ P S

R S
−
− , cooperation is always increasing on constant-r arcs, and the dynamics take the population to the corner where p = 1. If

r < P S
R S

−
− , then for p p r< *( ) the dynamics take the population to the left down corner, where p = 0, and when p p r> *( ) the dynamics take the

population to the right down corner, where p = 1.
In all cases, relatedness favours cooperation under the second definition: p r*( ) is decreasing in r , and therefore the basin of attraction of the

cooperative equilibrium increases with r . In cases (b) and (c) relatedness does not favour cooperation under the first definition, as for high p, the growth
rate of cooperator decreases as r increases. In case (a), increased relatedness does favour cooperation also under the strongest first definition.

C.4. (General) hawk dove games

In order to describe the dynamics in the simplex, we will still need the intersection of the isocline and the r-arc, which is at the point
p r*( ) = S R R P r

S T R P
− + ( − ) / (1 − )

+ − − . This function is increasing in r , which implies that relatedness favours cooperation in the third sense, as it increases the
equilibrium proportion of cooperators. Moreover, the isocline hits the right corner point, where f = 12 , and therefore p = 1, with a slope equal to the

slope of the arc r = T R
T P

−
− . We will furthermore need two more points; the point p** where the isocline hits the edge of the simplex, and the point p***

where p p r
r

∂ ̇( , )
∂

changes sign.
In case (a), the isocline goes from a point on the simplex face where f = 00 to the corner where f = 12 , and therefore p = 1. This intersection of

the isocline and the simplex face is at the point p** = S R
S T R

−
+ − 2 , r** = T R

R S
−
− . In cases (b) and (c), the isocline intersects the other simplex face, where

f = 02 , and it does so at the point p** = S P
S T P

−
+ − 2 , r** = P S

T P
−
− .

Right of the isocline (the green lines in Figs. 12a–c), the proportion of cooperators is decreasing. We therefore have two possible outcomes of the
dynamics. If r ≥ T R

T P
−
− , cooperation is always increasing on constant-r arcs, and the dynamics take the population to the corner where p = 1. If

r < T R
T P

−
− , then for given r , there is a stable equilibrium proportion p r*( ) of cooperators. For p below it, the proportion of cooperators is increasing,

for p above it, the proportion of cooperators is decreasing.
In all cases relatedness favours cooperation under the third definition: the equilibrium proportion p r*( ) of cooperators is increasing in r . In cases

(a) and (b) relatedness does not favour cooperation under the first definition, as for low p, the growth rate of cooperator decreases as r increases. In
case (c), increased relatedness does favour cooperation also under the strongest first definition.

Appendix D. Adaptive dynamics with pairwise interactions and fixed relatedness

D.1. A model for games in finite populations with relatedness

The update process is the same as the one used in van Veelen et al. (2012) and García and van Veelen (2016). It is a version of the Wright–Fisher
that allows for positive assortment.

The parent population consists of individuals i N= 1, …, . We will make a new generation, consisting of N1
2 interaction pairs as follows. For the

first individual in pair 1, a parent is drawn from the parent population, where every individual from the parent population has a probability of being
drawn proportional to their payoff. For the second individual in pair 1, a nested procedure applies. First with probability r , the same parent is
chosen. With probability r1 − , a parent is drawn from the entire parent generation, where, again, every individual from the parent population has a
probability of being drawn proportional to their payoff. This procedure creates one pair with relatedness r . This entire procedure is repeated N1

2
times to create an entire new population of interacting pairs.

D.2. Adaptive dynamics with interaction structure for piecewise-differentiable fitness functions

Here we generalize Allen et al. (2013a) to games whose payoff functions are piecewise-differentiable rather than differentiable. We consider a
class of evolutionary processes for which a trait value x evolves under rare and incremental mutation, with interactions described by the game
π x y( , ). This class is defined by a set of general assumptions specified below. The canonical equation we will arrive at is the following differential
equation:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x N N

N
u x

π x x x
π x x σ

σ x
π x ẋ = − 1 ( )

( , )
× ϵ

∂
∂ ′

( ′, ) + − 1
+ 1

∂
∂ ′

( , ′) .
x x x x

e
2 s

s ′=

s

s ′= (D.1)

Above, N is the equilibrium population size, Ne is the effective population size, defined in Section D.3, u is the per capita rate of stochastic mutant
appearance (which may depend on the resident trait value x), π x y( , ) is the payoff to an individual with trait x interacting with an individual with
trait y, ϵ2 is the variance in mutational steps in the trait value, and σ is the structure coefficient of Tarnita et al. (2009), also defined in Section D.3.
The notation ∂

∂ •
S

S
refers to the symmetric partial derivative, as defined below.

This equation is arrived at in three steps, as described in the main text. We assume that mutations arise at intensity Nu x( ), and that the
uncertainty about whether it will fixate or go extinct is resolved instantly, of course according to the true fixation probability. If xΔ is the change in
the population trait value from time t to time t t+ Δ , then with those assumptions, we show that  x[Δ ] satisfies


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

x
t

N N
N

u x
π x x x

π x x σ
σ x

π x x Q x t[Δ ]
Δ

= − 1 ( )
( , )

× ϵ
∂

∂ ′
( ′, ) + − 1

+ 1
∂

∂ ′
( , ′) + ϵ ( , Δ , ϵ),

x x x x
e

2 s

s ′=

s

s ′=

2

(D.2)

where Q x t( , Δ , ϵ) is a function satisfying

Q x t xlim lim ( , Δ , ϵ) = 0 for all ∈ .
tϵ→0Δ →0
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Section D.3 introduces the symmetric derivative and other basic concepts. In Section D.4 we define the classes of evolutionary models to which our
result applies, and prove basic results about these models. The derivation of Eq. (D.2) appears in Section D.5.

D.3. General definitions and lemmas

D.3.1. One-sided and symmetric derivatives
Definition 7. Let  f : → be a continuous function. We define

• The left derivative of f at x ∈ as

d f
d x

x f x f x( ) = lim ( + ϵ) − ( )
ϵ

,−

− ϵ→0−

• The right derivative of f at x ∈ as

d f
d x

x f x f x( ) = lim ( + ϵ) − ( )
ϵ

,+

+ ϵ→0+

• The symmetric derivative of a continuous function  f : → at x ∈ is defined as

d f
d x

x f x f x( ) = lim ( + ϵ) − ( − ϵ)
2ϵ

,s

s ϵ→0

where each derivative above is defined only if the corresponding limits exist. If so, we say f is left-, right-, or symmetric-differentiable at x,
respectively.

If f is instead a function of n real arguments x x, …, n1 , then the left, right, and symmetric partial derivatives of f in the kth argument, denoted

f
x

f
x

f
x

∂
∂

,
∂
∂

, and
∂
∂

,
k k k

−

−

+

+

s

s

are defined as the corresponding derivatives of the function

x f x x x↦ ( , …, , …, ).k k n1

We state without proof the following elementary lemmas:

Lemma 8 (Multivariate chain rule for one-sided derivatives). Let f x x( , …, )n1 be a differentiable function of n real arguments, and let
a t a t( ), …, ( )n1 be continuous functions which are left- (resp., right-, symmetric-) differentiable at t = 0. Then the function g defined by

g t f a t a t( ) = ( ( ), …, ( ))n1

is left- (resp., right-, symmetric-) differentiable at t = 0, and

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑d g

d t
f
x

a a d a
d t

d g
d t

f
x

a a
d a
d t

d g
d t

f
x

a a
d a
d t

(0) = ∂
∂

( (0), …, (0)) (0) resp ., (0) = ∂
∂

( (0), …, (0)) (0), (0) = ∂
∂

( (0), …, (0)) (0) .
k

n

k
n

k

n

k
n

k

n

k
n

−

− =1
1

−

−

+

+ =1
1

+

+

s

s =1
1

s

s

Lemma 9. If f is left- and right-differentiable at x ∈ , then f is symmetric- differentiable at x and

⎛
⎝⎜

⎞
⎠⎟

d f
d x

x d f
d x

x
d f
d x

x( ) = 1
2

( ) + ( ) .s

s

−

−

+

+

Lemma 10. If f is differentiable at x ∈ , then f is left-, right-, and symmetric-differentiable at x and

d f
d x

x
d f
d x

x
d f
d x

x( ) = ( ) = ( ).−

−

+

+

s

s

D.3.2. Scaling of functions
Definition 11. Let  U: → be an integrable function. For ϵ > 0, we define the ϵ-scaling of U to be the function  U : →ϵ with

⎛
⎝⎜

⎞
⎠⎟U x U x( ) = 1

ϵ ϵ
.ϵ

Note that Uϵ is integrable and

∫ ∫U x dx U x dx( ) = ( ) ,
−∞

∞

ϵ
−∞

∞

for all ϵ > 0.
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D.4. Models of adaptive dynamics in structured populations

Our results apply to a class of models representing evolution in populations with interaction structure. Here we define this class by specifying the
assumptions that each model in this class must satisfy. We separate our assumptions into those describing competition between resident and
mutant types (C1–C6), those describing the game (G1), and those describing the process of evolution by trait substitutions (M1–M3).

D.4.1. Resident-mutant competition
We first describe the class of resident-mutant competition models by stating the assumptions that define this class. In the definition, S refers to

the set of all states, F S⊂M is a subset of states that corresponds to mutant fixation, and the probability distribution μ quantifies the likelihood of a
being in state at the moment after a mutation first appears (at which point resident-mutant competition is initiated). For a given resident-mutant
competition model and payoff matrix G, we define the fixation probability ρ as the probability the Markov chain associated to G hits FM, given that
its initial state is sampled according to μ.

C1. There is a finite set S with an associated probability distribution μ, and a distinguished subset F S⊂M which is assigned zero probability by μ.
C2. For any payoff matrix G of the form

⎛
⎝⎜

⎞
⎠⎟G

a a
a a= ,MM MR

RM RR (D.3)

where the entries reflect payoffs from interactions between mutants (M) and residents (R), there is a collection p{ }s s s s S′ | , ′∈ of transition
probabilities, giving S the structure of a Markov chain.

C3. The Markov chain associated to any such payoff matrix G has the following properties:
(a) There is zero probability of transitioning from a state in FM to a state not in FM.
(b) For any s S∈ which is assigned positive probability by μ, and any s F′ ∈ M, there is a positive integer n for which the probability of

transitioning from s to s′ in n steps is positive.
C4. The transition probabilities ps s′ | vary twice differentiably with respect to the entries of G.
C5. If the payoff matrix G is multiplied by a constant K > 0, the probability that the Markov chain hits FM, given that its initial state is sampled from

μ, is unaffected.
C6. The probability ρ is increasing in aMM and aMR, and decreasing in aRM and aRR, for all values of aMM, aMR, aRM, and aRR sufficiently close to 1.

We define the reverse matrix G∼ to be the payoff matrix in which the roles of resident and mutant are switched,

⎛
⎝⎜

⎞
⎠⎟G

a a
a a= .∼ RR RM

MR MM

and the reverse fixation probability ρ∼ is the fixation probability associated to G∼.

Lemma 12. For any resident-mutant competition model satisfying Assumptions C1–C4, the fixation probability ρ varies twice differentiably
with respect to the entries of the game matrix G.

Proof. Assumption C3 implies that ρ varies smoothly with respect to the transition probabilities ps s′| (see, for example, Theorem 3.3 of Iosifescu,
1980). By Assumption C4, ρ varies twice differentiably with respect to the entries of G. □

For given G and δ > 0, we denote

⎛
⎝⎜

⎞
⎠⎟G δG= 1 1

1 1 + .δ

This allows us to analyze the case of weak selection (δ << 1). We let ρδ and ρ ′δ denote the fixation probabilities associated to Gδ and G ′δ , respectively.

Theorem 13 (Structure coefficient theorem of Tarnita et al., 2009). For any resident-mutant competition model satisfying Assumptions C1–C6,
there is a positive constant σ such that, given any payoff matrix G, ρ ρ> ∼

δ δ for all sufficiently small δ > 0 if

σa a a σa+ > + .MM MR RM RR (D.4)

Conversely, ρ ρ< ∼
δ δ for all sufficiently small δ > 0 if

σa a a σa+ < + .MM MR RM RR

Definition 14. For a fixed resident-mutant competition model, we define the effective population size as

N N
N

ρ
s

=
− 1

∂
∂

,
s

e

2

=0 (D.5)

where ρ is the fixation probability of mutants in the game

⎛
⎝⎜

⎞
⎠⎟G s s= 1 + 1 +

1 1
.

(D.6)

In the game G above, mutants and residents have constant payoff s1 + and 1, respectively (regardless of interaction partners), so that s can be
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identified as the mutant's selection coefficient. For models that are amenable to the diffusion approximation, Ne is equal to the variance effective
population size (Kimura, 1964).

D.4.2. Piecewise-differentiable games
The definitions, assumptions, and results in Section D.4.1 apply to 2×2 matrix games. We will use these results to study the long-term evolution

of real-valued strategies in a continuous game, using the adaptive dynamics approach. We assume that the game payoff function π x y( , ) satisfies

G1. For each x ∈ , π x y( , ) is positive and left- and right-differentiable in both arguments at y x= .

D.4.3. Evolution by trait substitution
We now describe the class of models representing long-term evolution by a stochastic trait substitution sequence. Suppose a resident-mutant

competition model has been fixed. For x x, ′ ∈ , let ρ x x( ′; ) denote the fixation probability ρ for this model, as defined in Assumption C5, with the
entries of G given by

a π x x a π x x

a π x x a π x x

= ( ′, ′), = ( ′, ),

= ( , ′), = ( , ).
MM MR

RM RR

The class of long-term evolution models is defined by the following assumptions:

M1. In a monomorphic population with trait value x, mutants appear as a Poisson process with rate Nu x( ) per unit time, where u is a positive-valued
function.

M2. When a mutant appears, a mutational step y ∈ is sampled from a probability distribution with density functionU y U y( ) = (1/ϵ) ( /ϵ)ϵ , where ϵ is
a positive constant and U is an integrable, compactly supported function that is symmetric about 0 and has unit variance:

∫ y U y dy( ) = 1.
−∞

∞
2

(D.7)

The trait value x′ ∈ of the mutant is then assigned to be x x y′ = + .
M3. If a mutant of trait value x′ arises in a monomorphic population with trait value x, then with probability ρ x x( ′; ) the population becomes

monomorphic with trait value x′; otherwise it reverts to being monomorphic with trait value x. (The fixation or disappearance of trait value x′ is
regarded as instantaneous.)

We note that the distribution Uϵ of mutational steps that appears in Assumption M2 has variance ϵ2.
Overall, Assumptions M1–M3 imply a Markov jump process representation of evolution, in which the population jumps stochastically from one

monomorphic trait value to another. The rate of transition from a trait value x to x′ is given by the density Nu x U x ρ x x dx( ) ( ′) ( ; ′)ϵ .

D.5. Results

Lemma 15. For any model satisfying C1–C4 and G1, the fixation probability ρ x x( ′; ) is left- and right-differentiable in both arguments at x x′ = .

Proof. This follows from Lemmas 8 and 12 and Assumption G1. □

Theorem 16. For any model satisfying Assumptions C1–C4, G1, and M1–M3, the expected change in trait value  x[Δ ] from a given value x in
the time window t t t[ , + Δ ) satisfies

 x
t

Nu x
x

ρ x x Q x t[Δ ]
Δ

= ( )ϵ
∂

∂ ′
( ′, ) + ϵ ( , Δ , ϵ),

x x

2 s

s ′=

2

where Q x t( , Δ , ϵ) is a function satisfying

Q x t for all xlim lim ( , Δ , ϵ) = 0 .
tϵ→0Δ →0

Proof. Assumptions M1–M3 imply that the expected change in trait value,  x[Δ ], satisfies

 ∫x
t

Nu x y ρ x y x U y dy S x t[Δ ]
Δ

= ( ) ( + ; ) ( ) + ( , Δ , ϵ),
−∞

∞

ϵ

where S x t( , Δ , ϵ) is a function satisfying

S x t xlim ( , Δ , ϵ) = 0 for all ∈ and all ϵ > 0.
tΔ →0

We separate the positive and negative values of y:

 ∫ ∫x
t

Nu x y ρ x y x U y dy Nu x y ρ x y x U y dy S x t[Δ ]
Δ

= ( ) ( + , ) ( ) + ( ) × ( + , ) ( ) + ( , Δ , ϵ).
−∞

0

ϵ
0

∞

ϵ (D.8)

By changing variables and invoking the symmetry of Uϵ, we can rewrite the first integral on the right-hand side of (D.8) as follows:

M. van Veelen et al. Journal of Theoretical Biology 414 (2017) 176–230

222



∫ ∫
∫

y ρ x y x U y dy y ρ x y x U y d y

y ρ x y x U y dy

( + , ) ( ) = (− ) ( − , ) (− ) (− )

= − ( − , ) ( )

−∞

0

ϵ
∞

0

ϵ

0

∞

ϵ

This allows us to recombine the two terms on the right-hand side of (D.8) to yield

 ∫x
t

Nu x y ρ x y x ρ x y x U y dy S x t[Δ ]
Δ

= ( ) [ ( + , ) − ( − , )] ( ) + ( , Δ , ϵ).
0

∞

ϵ

The integrand above is symmetric around y = 0, allowing us to write

 ∫
∫

x
t

Nu x y ρ x y x ρ x y x U y dy S x t

Nu x y ρ x y x ρ x y x
y

U y dy S x t

[Δ ]
Δ

= ( ) ( + , ) − ( − , )
2

( ) + ( , Δ , ϵ)

= ( ) ( + , ) − ( − , )
2

( ) + ( , Δ , ϵ).

−∞

∞

ϵ

−∞

∞
2

ϵ

We now substitute U y U y( ) = (1/ϵ) ( /ϵ)ϵ and change variables from y to z y= /ϵ. This yields

 ∫

∫

x
t

Nu x y ρ x y x ρ x y x
y

U y d y S x t

Nu x z ρ x z x ρ x z x
z

U z dz S x t

[Δ ]
Δ

= ( ) ( + , ) − ( − , )
2

( /ϵ) ( /ϵ) + ( , Δ , ϵ)

= ( )ϵ ( + ϵ, ) − ( − ϵ, )
2 ϵ

( ) + ( , Δ , ϵ).

−∞

∞
2

2

−∞

∞
2

(D.9)

Since ρ x x( ′, ) is symmetric-differentiable in x′ at x x′ = , we can write

ρ x z x ρ x z x
z x

ρ x x R x z( + ϵ, ) − ( − ϵ, )
2 ϵ

=
∂

∂ ′
( ′, ) + ( , ϵ),

x x

s

s ′=

where

R x zlim ( , ϵ) = 0
ϵ→0

for each fixed z ∈ . Substituting this into (D.9), we obtain

 ∫ ∫x
t

Nu x
x

ρ x x z U z dz Nu x z R x z U z dz S x t[Δ ]
Δ

= ( )ϵ
∂

∂ ′
( ′, ) ( ) + ( )ϵ ( , ϵ) ( ) + ( , Δ , ϵ),

x x

2 s

s ′=
−∞

∞
2 2

−∞

∞
2

which simplifies, using (D.7), to

 ∫x
t

Nu x
x

ρ x x Nu x z R x z U z dz S x t[Δ ]
Δ

= ( )ϵ
∂

∂ ′
( ′, ) + ( )ϵ ( , ϵ) ( ) + ( , Δ , ϵ).

x x

2 s

s ′=

2

−∞

∞
2

We now define

∫Q x t Nu x z R x z U z dz S x t( , Δ , ϵ) = ( ) ( , ϵ) ( ) + 1
ϵ

( , Δ , ϵ)
−∞

∞
2

2 (D.10)

so that

 x
t

Nu x
x

ρ x x Q x t[Δ ]
Δ

= ( )ϵ
∂

∂ ′
( ′, ) + ϵ ( , Δ , ϵ)

x x

2 s

s ′=

2

as required. It only remains to consider the limit

∫Q x t Nu x z R x z U z dzlim lim ( , Δ , ϵ) = ( ) lim ( , ϵ) ( ) .
tϵ→0Δ →0 ϵ→0 −∞

∞
2

(D.11)

Above, we have used the fact that S x tlim ( , Δ , ϵ) = 0tΔ →0 for all x and all ϵ > 0; thus

S x tlim lim 1
ϵ

( , Δ , ϵ) = 0.
tϵ→0Δ →0 2

SinceU is compactly supported, there exists some ϵ > 00 such that the integrand in (D.11) is bounded, for each ϵ < ϵ0, by the integrable function

B x z z U z M x( , ) = ( ) ( ),2

with

M x R x z( ) = sup ( ; ϵ).
z U∈Supp

ϵ<ϵ0
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The supremum above is finite as long as ϵ0 is sufficiently small, since R x z( , ϵ) converges to zero for each fixed x as zϵ approaches zero. Therefore, by
the Lebesgue dominated convergence theorem, the limit and integral in (D.11) can be interchanged, yielding

⎛
⎝⎜

⎞
⎠⎟∫Q x t Nu x z R x z U z dzlim lim ( , Δ , ϵ) = ( ) lim ( ; ϵ) ( ) = 0,

tϵ→0Δ →0 −∞

∞
2

ϵ→0

for each x, completing the proof of the theorem. □

By Theorem 16, the approximation

 x
t

Nu x
x

ρ x x[Δ ]
Δ

≈ ( )ϵ
∂

∂ ′
( ′, )

x x

2 s

s ′=

becomes increasingly accurate as ϵ → 0. We therefore consider the following deterministic approximation to the dynamics of x:

x Nu x
x

ρ x ẋ = ( )ϵ
∂

∂ ′
( ′, ).

x x

2 s

s ′=

Theorem 17. For any model satisfying Assumptions C1–C6 and G1, the fixation probability ρ x x( ′; ) satisfies

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x

ρ x x N N
N π x x x

π x x σ
σ x

π x x
∂

∂ ′
( ′, ) = − 1

( , )
∂

∂ ′
( ′, ) + − 1

+ 1
∂

∂ ′
( , ′) ,

x x x x x x

s

s ′=
e 2

s

s ′=

s

s ′=

where σ is the structure coefficient from Tarnita et al. (2009) and Theorem 13.

Proof. This proof is organized in three steps.
Step 1: Obtain ρ in terms of partial derivatives of π
Using Lemma 8 we obtain

⎛
⎝⎜

⎞
⎠⎟

∑
x

ρ x x ρ
a

a
x

∂
∂ ′

( ′, ) = ∂
∂

∂
∂ ′

.
x x j k M R jk G π x x

π x x
π x x
π x x

s jk

s x x

s

s ′= , ∈{ , } = ( , )
( , )

( , )
( , )

′=
(D.12)

By Assumption C5, each of the payoff values ajkcan be divided by a π x x= ( , )RR without changing the value of ρ. This implies that

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ρ
a π x x

ρ
a

∂
∂

= 1
( , )

∂
∂

,
jk G π x x

π x x
π x x
π x x

jk G= ( , )
( , )

( , )
( , ) = 1

1
1
1

so that, combining with (D.12),

⎛
⎝⎜

⎞
⎠⎟

∑
x

ρ x x
π x x

ρ
a

a
x

∂
∂ ′

( ′, ) = 1
( , )

∂
∂

∂
∂ ′

.
x x j k M R jk G

s jk

s x x

s

s ′= , ∈{ , } = 1
1

1
1

′=
(D.13)

By Lemma 8, the partial derivatives of the ajk at x x′ = are given by

a
x x

π x x
x

π x x

a
x x

π x x

a
x x

π x x

a
x

∂
∂ ′

=
∂

∂ ′
( ′, ) +

∂
∂ ′

( , ′),

∂
∂ ′

=
∂

∂ ′
( ′, ),

∂
∂ ′

=
∂

∂ ′
( , ′),

∂
∂ ′

= 0.

s MM

s x x x x x x

s MR

s x x x x

s RM

s x x x x

s RR

s x x

′=

s

s ′=

s

s ′=

′=

s

s ′=

′=

s

s ′=

′=

We can therefore rewrite (D.13) in the form

⎛

⎝
⎜⎜

⎞
⎠
⎟⎟x

ρ x x κ
π x x x

π x x κ
x

π x x
∂

∂ ′
( ′, ) =

( , )
∂

∂ ′
( ′, ) + ′

∂
∂ ′

( , ′) .
x x x x x x

s

s ′=

s

s ′=

s

s ′= (D.14)

The quantities κ and κ′ are linear combinations of partial derivatives of ρ with respect to the payoff values ajk at a a a a= = = = 1MM MR RM RR . In
particular, κ and κ′ are independent of π , x, and x′.

It now only remains to relate κ and κ′ to Ne and σ . We can establish these relationships by considering particularly simple payoff functions π , and
substituting these payoff functions into (D.14). Since κ , κ′, σ and Ne are all independent of π , any relationship derived using a particular π will hold
generally.

Step 2: Relate κ and Ne
To relate κ and Ne we choose a specific payoff function π to substitute into (D.14). We consider π x y x( , ) = 1 + , describing frequency-independent

selection. Note that ρ x x( ′, ) is differentiable in both arguments for this game. For x = 0 and x s′ = , the game between residents and mutants is
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described by the matrix (D.6), which we used to define the effective population size. Substituting this payoff function and x = 0 in (D.14) yields

x
ρ x κ∂

∂ ′
( ′, 0) = .

x′=0 (D.15)

Identifying x′ with s and comparing with (D.5), we obtain

κ N N
N

= − 1.e 2 (D.16)

Since the values of κ and Ne do not depend on the game being played, (D.16) holds for all games.
We can also use this game to show that κ and Ne must be positive, a fact which we use in relating κ′ to σ . For the mutant type x′ and resident type

x = 0 we have a a x= = 1 + ′MM MR , a a= = 1RM RR . By Assumption C6,

⎛
⎝⎜

⎞
⎠⎟ ⎛

⎝⎜
⎞
⎠⎟

x
ρ x ρ

a
ρ

a
∂

∂ ′
( ′, 0) = ∂

∂
+ ∂

∂
> 0.

x MM MR G′=0 = 1
1

1
1

Subsequently (D.15) implies that κ > 0, and it follows from (D.16) that N > 0e .
Step 3: Relate κ′ and σ
To relate κ′ and σ we first observe that for x x= ′,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟G

π x x π x x
π x x π x x

π x x= ( ′, ′) ( ′, ′)
( ′, ′) ( ′, ′) = ( ′, ′) 1 1

1 1 .

By Assumption C5, the fixation probability ρ x x( ′, ′) does not depend on the value of π x x( ′, ′), and is therefore constant with respect to x′. Taking the
right derivative at x′ = 0, and making use of Lemma 8 we obtain

d
d x

ρ x x
d

d x
ρ x

d
d x

ρ x0 =
′

( ′, ′) =
′

( ′, 0) +
′

(0, ′),
x x x

+

+ ′=0

+

+ ′=0

+

+ ′=0

and therefore

x
ρ x

x
ρ x

∂
∂ ′

( ′, 0) = −
∂

∂ ′
(0, ′).

x x

+

+ ′=0

+

+ ′=0

Since the two above derivatives have opposite signs, there exists an interval δ[0, ) such that if ρ x( ′; 0) is increasing in x δ′ ∈ [0, ), then ρ x(0; ′) is
decreasing on this interval, and vice versa. It follows that for x′ in this interval,

ρ x ρ x
x

ρ x( ′, 0) > (0, ′) ⟺
∂

∂ ′
( ′, 0) > 0.

x

+

+ ′=0 (D.17)

As in Step 2, we now choose a particular payoff function π to substitute into (D.14). We consider the linear Prisoner's Dilemma with
π x y cx by( , ) = − + + 1, b c> > 0, with resident and mutant trait values x = 0 and x′ > 0. The payoff matrix G can then be written as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟G x b c c

b
= 1 1

1 1 + ′ − −
0 .

The mutant trait value x′ can therefore be interpreted as a selection-strength parameter (Nowak et al., 2004; Tarnita et al., 2009). By the defining
condition of the structure coefficient, (D.4), we have that for sufficiently small x′ > 0,

ρ x ρ x σ b c c b( ′, 0) > (0, ′) ⟺ ( − ) − > . (D.18)

On the other hand, (D.14) implies

x
ρ x κ c κ b

∂
∂ ′

( ′, 0) = (− + ′ ).
x

s

s ′=0

Since ρ x x( ′, ) is differentiable in both arguments for this game, we also have

x
ρ x

x
ρ x κ c κ b

∂
∂ ′

( ′, 0) = ∂
∂ ′

( ′, 0) = (− + ′ ).
x x

+

+ ′=0

−

− ′=0

Applying (D.17) and the positivity of κ > 0 (proven in Step 2), we obtain that for sufficiently small x′ > 0:

ρ x ρ x c κ b( ′, 0) > (0, ′) ⟺ − + ′ > 0. (D.19)

Comparing (21) and (22), we see that

κ σ
σ

′ = − 1
+ 1

.
(D.20)

Again, since the values of κ′ and σ do not depend on the game being played, this identity holds for all games.
Substituting (23) and (16) into (D.14) yields the desired result. □
Combining Theorems 16 and 17 yields:
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Corollary 18. For any model satisfying Assumptions C1–C6, G1, and M1–M3, the expected change in trait value  x[Δ ] from a given value x in
the time window t t t[ , + Δ ) satisfies


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

x
t

N N
N

u x
π x x x

π x x σ
σ x

π x x Q x t[Δ ]
Δ

= − 1 ( )
( , )

× ϵ
∂

∂ ′
( ′, ) + − 1

+ 1
∂

∂ ′
( , ′) + ϵ ( , Δ , ϵ),

x x x x
e

2 s

s ′=

s

s ′=

2

where Q x t( , Δ , ϵ) is a function satisfying

Q x t for all xlim lim ( , Δ , ϵ) = 0 ∈ .
tϵ→0Δ →0

D.6. Adaptive dynamics of the r-process

We now apply the general results of Section D.4 to the evolutionary process defined in Section D.1.

D.6.1. Structure coefficient
For the r-process with large population size (N >> 1), we have

σ r
r

= 1 +
1 −

.
(D.21)

This is easily verified by using Theorem 13, and noting that in the game

⎛
⎝⎜

⎞
⎠⎟

C D
C
D

b c c
b
− −

0 ,

cooperation is favoured (in the sense ρ ρ>C D for all sufficiently small δ > 0) if and only if br c> .

D.6.2. Effective population size

We compute the effective population size Ne using the approach of Kimura (1964). We consider neutral drift between types A and B under the
r-process.

Let the random variable X t( ) represent the (relative) frequency of A individuals at time t . (Here, time t refers to time-steps in the r-process,
rather than the continuous-time process considered in Section D.2). To find Ne we must compute the variance of X t( + 1) conditioned on X t p( ) = .

We let the random variable Y t( )j denote the number of A's (0, 1, or 2) among the jth pair, for j N= 1, …, /2 at time t . Thus X t Y t( ) = ∑ ( )
N j

N
j

1
=1
/2 .

Conditioned on X t p( ) = , we have, for each j N= 1, …, /2,

⎧
⎨⎪

⎩⎪
Y t

r p r p
r p p

rp r p
( + 1) =

0 with probability (1 − ) + (1 − )(1 − ) ,
1 with probability (1 − ) (1 − ),
2 with probability + (1 − ) .

j

2

2

Based on the above probabilities, we have

Y t X t p r p pVar[ ( + 1) ( ) = ] = 2(1 + ) (1 − ).j

Now, since the Y t( + 1)j are independent when conditioned on X t p( ) = , we have

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

∑

∑

X t X t p
N

Y t X t p

N
Y t X t p

N
N r p p

r p p
N

Var[ ( + 1) | ( ) = ] = Var 1 ( ) ( ) =

= 1 Var ( ) ( ) =

= 1 (1 + ) (1 − )

= (1 + ) (1 − ).

j

N

j

j

N

j

=1

/2

2
=1

/2

2

The effective population size is defined by equating the above variance to the corresponding variance in a haploid Wright–Fisher model with
population size Ne. That is, we set

r p p
N

p p
N

(1 + ) (1 − ) = (1 − ) .
e

This yields

N N
r

=
1 +

.e (D.22)
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D.6.3. Adaptive dynamics

We turn now to the adaptive dynamics of x under the r-process. We suppose that mutants arrive at a constant rate per unit time: u x u( ) = .
Substituting the values of σ and Ne from Eqs. (24) and (25) into Eq. (D.1), we obtain the following deterministic approximation to the adaptive
dynamics of game strategy in the r-process:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟x N

r
u

π x x x
π x x r

x
π x ẋ = − 1

1 +
ϵ

( , )
∂

∂ ′
( ′, ) +

∂
∂ ′

( , ′) .
x x x x

2
s

s ′=

s

s ′= (D.23)

We now apply this result to the games introduced in the main text.

D.6.4. Game 1
Game 1 has payoff function

π x y ay x( , ) = − .2

The partial derivatives are

x
π x x x

x
π x x a

∂
∂ ′

( ′, ) = −2 ,
∂

∂ ′
( , ′) = .

x x x x

s

s ′=

s

s ′=

So Eq. (D.23) becomes

x N
r

u x ar
ax x

̇ = − 1
1 +

ϵ −2 +
−

.2
2

D.6.5. Game 2
Game 2 has payoff function

π x y ay xy( , ) = − .

The partial derivatives are

x
π x x x

x
π x x a x

∂
∂ ′

( ′, ) = − ,
∂

∂ ′
( , ′) = − .

x x x x

s

s ′=

s

s ′=

So Eq. (D.23) becomes

x N
r

u x r a x
x x

̇ = − 1
1 +

ϵ (− + ( − ))
10 −

.2
2

D.6.6. Game 3
Game 3 has payoff function

π x y a x y x( , ) = min( , ) − .2 (D.24)

The partial derivatives are

x
π x x a x

x
π x x a

∂
∂ ′

( ′, ) = /2 −2 ,
∂

∂ ′
( , ′) = /2.

x x x x

s

s ′=

s

s ′=

So Eq. (D.23) becomes

x N
r

u a x ar
ax x

̇ = − 1
1 +

ϵ /2 − 2 + /2
−

.2
2 (D.25)

D.6.7. Game 4
Game 3 has payoff function

π x y a x y x( , ) = max( , ) − .2 (D.26)

The partial derivatives are

x
π x x a x

x
π x x a

∂
∂ ′

( ′, ) = /2 −2 ,
∂

∂ ′
( , ′) = /2.

x x x x

s

s ′=

s

s ′=

So Eq. (D.23) becomes

x N
r

u a x ar
ax x

̇ = − 1
1 +

ϵ /2 − 2 + /2
−

.2
2 (D.27)
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D.7. Adaptive dynamics in the large population limit

The canonical equation is formulated for a fixed population size, where we look at a limit in which tΔ and ϵ are going to 0, and where we assume
that the mutation rate u is sufficiently small, so that we can treat fixation or extinction of mutants as instantaneous. In the main text we see that this
describes the dynamics in the simulations in some games (Games 1, 2 and 3) better than in others (Games 4 and 5). In the latter two cases, this is
due to mutation rate u not being small enough for the population to be close to monomorphic almost all of the time. In Game 4 they would actually
have to be outrageously small to keep the population monomorphic, and in Game 5 the same would be necessary to prevent bifurcations.

There are however also other limits one could consider. One of the variables we could include in the limit taking is population size N . Such
alternative limits would not always give different results, but in particular for Game 3 there would be a noticeable difference. One example is the
order of limits described by Champagnat et al. (2006). This involves two steps:

1. The limits N → ∞ (large population) and u → 0 (rare mutation) are taken so that the inequalities

e u
N N

C<< << 1
log

for all > 0CN−

are maintained. Simultaneously, time is rescaled by the factor Nu1/( ), so that the expected time until the appearance of a new mutation remains
constant under the above limits.

2. The limit ϵ → 0 (small mutational steps) is taken. Simultaneously, time is rescaled by the factor 1/ϵ2 so that the expected change in trait value
 x[Δ ] remains constant to first order in tΔ .

Under these limits, we expect that in Game 3, the dynamics within the interval ra x a/2 < < /2, where both increases and decreases in trait value are
disadvantageous, would be an order of magnitude slower than outside this interval, where mutations in one direction are actually advantageous. This is
because for most evolutionary models, the fixation probability of a given disadvantageous mutation goes to zero exponentially fast as N → ∞. We expect
this result to hold for the r-process as well; thus we expect no fixation of new mutations in the interval ra x a/2 < < /2 once the limit in Step 1 is taken.
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