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abstract: Biological diversity abounds in potential study topics.
Studies of model systems have their advantages, but reliance on a
few well-understood cases may create false impressions of what biolog-
ical phenomena are the norm. Here I focus on facultative sex, which
is often hailed as offering the best of both worlds, in that rare sex offers
benefits almost equal to obligate sex and avoids payingmost of the de-
mographic costs. Howwell do we understandwhen andwhy this form
of sexual reproduction is expected to prevail? I show several gaps in the
theoretical literature and, by contrasting asynchronous with syn-
chronous sex, highlight the need to link sex theories to the theoretical
underpinnings of bet hedging, on the one hand, and tomate limitation
considerations, on the other. Condition-dependent sex and links be-
tween sex with dispersal or dormancy appear understudied. While
simplifications are justifiable as a simple assumption structure en-
hances analytical tractability, much remains to be done to incorporate
key features of real sex to the main theoretical edifice.

Keywords: facultative sex, cost of sex, synchrony, mate searching,
mathematical modeling, bet hedging.

Introduction

I recently had the fortune of lunching with Georgina Mace
and other panel members of a grant funding body. In the
conversation,Mace reminded us of how lucky we are, work-
ing in a field where most researchers are generous and open
about their ideas. She reflected on whether the general nice-
ness of a field might be a function of the ratio of the number
of things (objects, topics) available to study and the number
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of people wanting to study them. The abundance of or-
ganismswith diverse life histories, genetic architectures, eco-
logical settings, and idiosyncratic quirks of natural history
means that researchers need not be particularly anxious
about losing their territory to others with similar ideas—
and most of us, fortunately, understand this.
This brings about a nice atmosphere (one that may well

differ from that of other fields of scientific enquiry) but
also creates a challenge. The immense diversity of features
of biological systems means we all must find a balance be-
tween admiring the idiosyncratic and seeking generalities
in life’s messages. One approach is to rely disproportion-
ately on model organisms and tacitly assume that they re-
flect life as a whole. This approach has its advantages: hav-
ing in-depth knowledge of Escherichia coli,Caenorhabditis
elegans, Saccharomyces cerevisiae, maize,Arabidopsis thal-
iana, Ciona intestinalis, Chlamydomonas reinhardtii,Dro-
sophila, zebra fish, andMus and Peromyscusmice—the list
discussed in eLife’s recent collection of feature articles on
the natural history of model organisms (Alfred and Bald-
win 2015)—undoubtedly leads to better science than a su-
perficial look at 100,000 species. A highly selective approach
to what we study in the tree of life comes, however, with a
significant danger of bias: not all arthropod life obeys Dro-
sophila rules, for example, with respect to sexual selection
(Zuk et al. 2014). A partial answer may be found in widen-
ing the scope of genomic work to encompassmore species
(Alfred and Baldwin 2015; Russell et al. 2017). This an-
swer is, however, bound to retain a one-sided nature if
not accompanied by equivalently broad efforts to under-
stand the ecology and natural history of each case (Futuyma
1998; Kokko et al. 2017).
There is no top-down control of scientific effort spent

across taxa. While I believe that the benefits of a bottom-
up approach far outweigh its costs (and the scientific
community thus has a duty to defend the freedom of each
researcher to choose what to study), this is not to say
there is no downside. Individual choices collectively lead
0.105.202 on March 11, 2020 03:19:30 AM
and Conditions (http://www.journals.uchicago.edu/t-and-c).



Understanding Facultative Sex 381
to taxonomic chauvinism, the tendency to study species
that in some sense are close to humans (Kokko 2017; Troudet
et al. 2017). Parallel to this, there are very good reasons to
study phenomena (or species) that are common and to
simplify their features in theoretical work to the bare min-
imum, to help focus on the (probable) key causalities. This
is probably a faster route to general messages than focus-
ing on the idiosyncratic and the odd, but a focus on the fa-
miliar and on the common does not take full advantage
of the general messages that can be found when thinking
about rare evolutionary outcomes—or even absent ones.
Darwin’s thinking during his voyage on the Beagle was fo-
cused not only on what he saw but also on what he did not
see: oceanic islands rarely had frogs, even if there was hab-
itat on offer that appeared suitable (Darwin 1859). Such
biogeographic patterns are unexpected if species have been
created on site to match their environment, while a vision
of species descending from ancestral forms, with travel dif-
ficulties that depend on the species’ traits, explains this
with ease. True evolutionary insight can be gained from
a lack of examples belonging to a certain category, and
Darwin made ample use of this type of insight.
The reasons behind rarity and absence are not always

as easy to explain as in the case of oceanic island fauna.
The particular case I will focus on here is that of sexual
reproduction in its facultative mode. It comes with a spe-
cial twist: its perceived rarity might be just that—a per-
ception. Textbooks explaining why sex is problematic of-
ten explain the conundrum with the cost of males paid by
an obligate sexual anisogamous lineage, but once the full
diversity of reproductivemodes is taken into account, fac-
ultative sex proves common (particularly so, but not only
if, vegetative modes are also included as asexuality). Fac-
ultative sex not only offers ample opportunity to reflect
on whether perceived rarity also corresponds to real rar-
ity, it also allows me to reflect on modeling choices that
are made for convenience versus their abundance in real-
ity. I will discuss this contrast in the specific setting of
whether facultative sex occurs in synchrony (such that
many or even most individuals in a subpopulation engage
in sex in a particular generation, while other generations
have much less sex) or asynchronously.
Facultative sex is often described as offering most of the

advantages of sex (rare sex speeds up adaptation and/or
avoids genome decay almost as well as obligate sex; Green
and Noakes 1995; Park and Krug 2013; Hojsgaard and
Hörandl 2015; Burke and Bonduriansky 2017) while pay-
ing very little of the costs (since most generations are asex-
ual and thus demographically efficient). The demographic
cost may even itself help speed up adaptation if relatively
maladapted individuals are more likely to pay the cost,
which can happen under condition-dependent sex (Hadany
and Otto 2009). Facultative sex can occur in contexts
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where separate males and females exist (the term “cycli-
cal parthenogenesis” is often employed in these contexts,
e.g.,Daphnia [Decaestecker et al. 2009], aphids [Simon et al.
2002], or various rotifers [Stelzer 2011]), in hermaphrodites
(e.g., flatworms [Ramm 2017], numerous plants [Mogie
2011]), or—very commonly—in situations involving mat-
ing types rather than anisogamous sexes (the typical situation
across a broad range of microbial and fungal sex, including
model organisms such as Chlamydomonas and yeast; Sager
and Granick 1954; Ropars et al. 2012; Speijer et al. 2015;
Weedall and Hall 2015; Nieuwenhuis et al. 2018).
Facultative Sex: Why Don’t We All Do It?

If facultative sex, at first sight at least, offers the best of both
worlds, then evolutionary biologists have to explain why it
is not self-evidently the only way that sex occurs. Burt
(2000) predicts facultative sex to be susceptible to the inva-
sion of modifiers with ever less frequent sex, unless ecolog-
ical differences between sexual and asexual progeny pro-
vide the necessary stability. Although he does not put the
argument in the context of social evolution, one could do
so via the tragedy of the commons (Hardin 1968; Rankin
et al. 2007). The lineage benefits of sex are not easy to as-
sign to any one individual (Burt 2000). The cost of sex be-
haves differently: it is an immediate cost paid by a specific
individual.
Thus, a cheater could be identified as an individual who

performs less of the costly sex and simply taps occasionally
into the public good of a well-adapted gene pool. Empiri-
cally (or in models), such scenarios could be identified as
individuals tending to be less fit if their ancestry has more
asexual generations (compared with conspecifics) since the
last sex event. Models such as that of Roze (2014), where
positive rates of sex are maintained despite low sex being
exposed tomutations that give rise to asexuals, fit this anal-
ogy to some extent: the lineage benefit builds up over time,
and genes facilitating sex remain for multiple generations
with the gene combinations produced by sex. If one in-
terprets a modifier for a smaller sex rate as a cheater (note
that Roze 2014 did not adopt this language), its success
depends on how well it keeps its statistical association with
beneficial alleles when reproducing asexually much of the
time, with each asexual generation having multiple effects:
weakening this association (interpretable as diminished ac-
cess to the public good), failing to participate in the bene-
ficial buildup (no contribution to public good), and—if sex
is costly—the cheater gaining a demographic advantage
(the reason why cheating may pay off in social models).
These factors are likely to combine nonlinearly, and in
Roze (2014), they balance in a way where low-rate modifiers
can spread in populations with currently high sex rates, but
low sex rates are resistant to modifiers with even lower rates.
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Current theoretical work on the evolution of recombina-
tion and sex often focuses on the fate of modifiers of re-
combination in the presence of epistatic fitness interac-
tions (Barton 1995), including cycling epistasis of abiotic
or biotic origin (Barton 1995; Gandon and Otto 2007),
with subsequent inquiry analyzing the spread of recombi-
nation modifiers in stochastic models, where recombina-
tion reduces selective interference among loci (e.g., bring-
ing together beneficial alleles in an adapting population;
Otto and Barton 1997; Roze and Barton 2006) or in a pop-
ulation subject to recurrent deleterious mutations (Keight-
ley andOtto 2006; Roze andMichod 2010). In haploid pop-
ulations, recombination modifiers are thought to capture
the benefits of breaking apart linkage disequilibria and be-
have similarly to modifiers of sex, although there are im-
portant differences in finite populations (Roze 2014), and
the direct costs exhibited by modifiers of recombination
differ qualitatively from modifiers of sex. Explicit models
of sex have examined the fate ofmodifiers that alter the fre-
quency of sexual versus asexual reproduction, particularly
in the face of within-locus fitness interactions (dominance)
that build associations between alleles in a diploid popula-
tion (e.g., Otto 2003; Roze and Michod 2010; Roze 2014).
For a concise and clear summary of model lessons to date,
see Hartfield (2016).
Although it is difficult to find a statement in print that

the “Why sex?” question is therefore, by and large, resolved,
it is possible to hear this at conferences. However, whenever
amodel focuses on amodifier of recombination, it is geared
toward understanding the advantages (or disadvantages) of
breaking up established associations between two loci on
the same chromosome. Modifiers in this setting do not in-
duce sexual reproduction: outcrossing is assumed to occur
in any case, and since the focus of a model is to estimate
whether modifiers hitchhike to higher or lower frequencies
as a result of becoming linked with alleles under selection,
the typical approach is to focus on cases with no direct se-
lection on the modifier itself. While this is good for clarity
of any analysis of indirect selection and is, in some models,
accompanied by additional results with a direct cost incor-
porated (e.g., Gandon andOtto 2007), the intentional focus
on the no-cost case may have an impact on the perceived
ease with which sex, consequently, evolves.
More recent work has taken to heart a point already

made by Uyenoyama and Bengtsson (1989): sex comprises
a syndrome of diverse processes. In models that explicitly
differentiate between sex and recombination, modifiers of
an actual rate of sex can cause demographic costs and nev-
ertheless maintain a positive sex rate (though, again, the
main analyses sometimes maintain a focus on the cost-free
case; e.g., Roze and Michod 2010). Modifiers that impact
the rate of sex can escape low-fitness genetic backgrounds
(Roze 2014; this is often termed the “abandon-ship” effect;
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e.g., Hadany and Otto 2007; Mostowy and Engelstädter
2012), or they can break apart associationwithin genes built
by dominance (Otto 2003; Roze and Michod 2010) or be-
tween genes built by epistasis (e.g., Roze and Michod 2010).
Such benefits may, however, not always be sufficient to
overcome the costs of engaging in sex, even if sex rates
are low (e.g., fig. 2 in Keightley and Otto 2006). The extent
to which the invasion of ever-lower sex rates, as envisaged
by Burt (2000), occurs is not entirely easy to assess based on
the available literature: some authors contrast a modifier
that imposes a specific rate of sex with amodifier that keeps
the population asexual (Keightley and Otto 2006), which is
a different question from asexuals or very low sex rates be-
ing able to invade an initially (facultatively) sexual popula-
tion; others (Roze and Michod 2010; Roze 2014) employ a
mutational structure where low, but not high, sex rates can
turn (via mutation) to asexuality. Since the results show
that positive rates of sex can nevertheless be maintained
(Roze 2014), one could consider the story to be complete,
in the sense of countering Burt’s idea: low rates of sex can
be stable even in the absence of ecological differences.
But how complete is our understanding of the question?

Here I will not attempt to resolve the question for good; I
will aim to show thatmuch remains to be done.While there
is no reason to complain about models making assump-
tions for reasons of analytical tractability (and spending
more time on results that assume zero costs), there is much
reason to see this as an opportunity to relax assumptions in
further work. Real-life sex presents us with many patterns
that are justifiably ignored in any first—or even tenth or
twentieth—model on a topic, but this should only increase
one’s appetite for investigating the relevant effects in future
models.
The example I will focus on is synchrony. Sex is often trig-

gered by environmental cues, which may be nutrition lim-
itation (e.g., Chlamydomonas; Sager and Granick 1954),
various abiotic or biotic cues of seasonality (e.g., Daphnia;
Roulin et al. 2015; Gerber et al. 2018), or an individual’s
perception of its own condition (Ram and Hadany 2016).
In models, however, synchronous sex is typically absent:
matings are assumed to occur in any case (many models of
recombination, as discussed above); individuals reproduce
sexually with a specific probability (impacted by a modifier
allele) but not in synchrony with each other (Keightley and
Otto 2006; Hadany and Otto 2007); or individuals split
their reproductive effort, in every generation, into an asex-
ually produced and a sexually produced fraction (e.g., Roze
2014).
Model Details

There are many mechanisms available to introduce a po-
tential benefit of sex into a model (Hartfield and Keightley
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Understanding Facultative Sex 383
2012; Roze 2014; Hartfield 2016). I base my individual-
based simulation on the model of Kim and Orr (2005),
who considered the faster rate of evolution in a sexual ver-
sus asexual population when a modest number of sites
can mutate to a beneficial version. In a finite population
with a sufficient mutation rate, lineages with different
beneficial mutations compete in asexuals (clonal interfer-
ence causing evolution to be slow via the Hill-Robertson
effect) and can therefore fix faster in sexuals as each mu-
tation does not have to arise in a genome that already
contains the other (Fisher-Muller effect; Fisher 1930;
Muller 1932). There is recent empirical support for clonal
interference playing a key role in the evolution of sex
(Colegrave 2002; McDonald et al. 2016).
Genotypes

I model a population ofN diploid hermaphrodites that can
be facultative sexuals or asexuals. Obligate sex is not ex-
cluded inmy setup as the rate of sex can evolve to 1, though
such high rates in practice do not evolve in the settings I
investigate below. The reproductive mode of each individ-
ual is determined by one diploid locus that determines the
rate of sex. If both alleles have a positive value, then their
mean determines the probability that the individual repro-
duces sexually. Asexuality is dominant, such that one allelic
value of zero is sufficient to make the individual asexual.
Note that this is a relatively good approximation of what
happens in real transitions to asexuality in systems such
as Daphnia (Eads et al. 2012) or Pennisetum grasses (Con-
ner et al. 2015), though I do not model complications such
as the three-locus system involving transposons, identified
by Eads et al. (2012). I also leave aside transitions to asex-
uality via hybridization and polyploidy (Neiman et al. 2014),
as my aim is simply to see how rare sex withstands frequent
mutations to asexuality, regardless of the way it arose.
My focus is on the contrast between two different

scenarios. In the asynchronous scenario, each individual
has an independent probability of choosing the sexual re-
productive mode (if only one single individual does so in
its generation, it can self automictically). In the synchro-
nous scenario, one uniformly distributed random number
is drawn in each generation, corresponding to an environ-
mental trigger that is perceived by all members of the fac-
ultative sexual population. All individuals whose sex rates
(mean of two alleles) are above this trigger value perform a
sexual cycle. A strong enough trigger—that is, low enough
value of the random number—means that all facultative
sexuals have sex, while a somewhat less strong trigger
means that only those with a higher rate of sex do.
The sex rate locus can experience two types of mutation.

An asexuality mutation occurs at a rate mA per locus (no
back mutation) and changes the allelic value to 0, while a
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rate mutation, occurring at a rate mR per locus, makes an
allelic value xmutate to e (ln x)1ϵ, where ϵ e N(0, 1). New alle-
lic values exceeding 1 are capped to 1. This construction is
used to make the probability of halving (or doubling) the
rate equally likely whether the rate so far was high or low
(up to a point, as higher than 100% rates cannot logically
occur) and to exclude the possibility that a rate mutation
per se leads to asexuality: even if ϵ is a large negative num-
ber, the function e ln x1ϵ remains positive (but can be very
small, e.g., sex every 106 generations).
The n other diploid loci determine fitness components

other than the cost of sex, and they are all initialized with
a wild-type allele 0. They mutate (rate mB) to a beneficial al-
lele, with no back mutation. Each beneficial allele is dom-
inant and brings about a multiplicative fitness benefit of
magnitude s (i.e., no epistasis). Thus, with n p 10 loci (the
value of n used in the examples of all the figures), the max-
imum fitness achievable by any individual is (11 s)10. Sim-
ulation runs are continued until either asexuality (propor-
tion of individuals with at least one sex rate allele with the
value 0) reaches a threshold frequency (50% or fixation, de-
pending on the question) or when the population produces
its first individual with fitness (11 s)10, as the adaptation
process will no longer follow equivalent rules afterward
(a subset of the population is already at a fitness peak).
All loci recombine freely.
I also ran two types of control simulations: in the first set,

the sex locus determines the mode of reproduction as
above, but none of the other loci are expressed (while they
still mutate as above). This helps contrast themain findings
against expectations when sex is costly but brings about no
benefit. The different effects of synchronous and asynchro-
nous sex on effective population size are maintained in this
no-benefit set of simulations: in particular, asynchronous
sex may lead to selfing if sex is rarely expressed, and this
can significantly reduce Ne (Kamran-Disfani and Agrawal
2014). In another control set of simulations termed “sex
neutral,” sex alleles are never expressed, and all reproduc-
tion is asexual while keeping the beneficial alleles expressed;
this is done to find a baseline expectation for the persis-
tence of sex against recurrent mutations to asexuality.

Life Cycle

The population size is kept constant at N, and generations
are discrete. The mothers of each offspring are chosen first,
and the sire is assigned next. Each individual’s propensity
to be chosen as the mother is

pi p
(11 s)ki if currently asexual,

(12 c)(11 s)ki if currently sexual:

�

Here c is the cost of sex (0 ≤ c ≤ 1, though in practice an
upper limit of 0.5 is relevant if one wishes to model costs
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384 The American Naturalist
up to twofoldness, i.e., the halving of demographic out-
put), ki is the number of loci at which individual i has at
least one beneficial allele, and “currently asexual” or “cur-
rently sexual” reflects the phenotypic choice made by the
individual in the current generation regarding its repro-
ductive mode. Note that themodel ignores any permanent
costs of facultative sexuality that would have to be paid in
asexual generations (i.e., costs of phenotypic plasticity;
Auld et al. 2010).
The sires are thereafter chosen for those offspring whose

mothers are currently sexual. All sexual individuals are po-
tential sires, with propensities

qi p (11 s)ki :

Note that the cost of sex is irrelevant for this expression, as
all potential sires are sexual and compete with each other.
The sire is chosen independently for each offspring of a
given mother.
Propensities translate to actual parentage in a probabi-

listic manner; for example, if a population only had three
potential sires, one with propensity 1.0, another with 1.01,
and a third with 1.0201 (the outcomes for 0, 1, or 2 ben-
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eficial alleles if s p 0:01), then the first individual is cho-
sen with probability 1/3.0301, the second with probability
1.01/3.0301, and the third with probability 1.0201/3.0301.
Mutations then occur, and the parental generation dies.
Results

Populations that use a high rate of sex are clearly at risk to
turn asexual when there is recurrentmutation to asexuality
(fig. 1), but whether resistance to asexuality ceases to be ef-
fective above simulations that initiated sex every 1/100
generations, above 1/10, or not at all depends on how rap-
idly the sex rate can evolve (fig. 1A, 1D: not at all; fig. 1B,
1E: relatively fast; fig. 1C, 1F: fast). The persistence of fac-
ultative sex was improved if sex occurred in synchrony.
This effect appears very mild if sex rates were not permit-
ted to evolve (compare fig. 1A with fig. 1D), but a logistic
regression analysis of the entire data in figure 1 indicates
that synchrony and evolution of the sex rate both signifi-
cantly reduce the parameter area where asexuality can fix
(synchrony and evolution both coded dichotomously as
yes/no, x2 p 193:3, df p 2, P ! :001). All facultative sex-
uality cases that persisted did so by shifting from the initial
0
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Figure 1: Outcomes of simulation runs that ended with either a fitness peak being reached (recorded as 0) or asexual fixation (recorded as
1), with each parameter combination replicated five times. Circle size corresponds to the number of replicates yielding the same outcome,
and the red curves, invisible in F, give a fitted probability of fixation based on a logistic regression. Top row, asynchronous sex; bottom row,
synchronous sex; left, no sex rate evolution; middle to right, increasing mutation rate on sex rates. Other parameters are as follows:
N p 10,000, mA p mB p 1025, and c p 0:5 (i.e., twofold cost of sex).
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Understanding Facultative Sex 385
sex rate (shown by the diagonal in fig. 2A) toward a range
of values clearly below 0.01 and centered around 0.001;
based on figure 1, rare sex like this keeps asexual invasions
ineffective.
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Since synchronous and asynchronous sex both evolved
similar sex rates (fig. 2A), it is interesting to ask why syn-
chronous sex outperforms asynchronous sex with respect
to stability against asexual invasions. Currently existing
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Figure 2: A, The sex rate (mean of allelic values of facultatively sexual individuals) at the end of a simulation for all evolutionary runs (darker
symbols: mR p 0:1; lighter symbols: mR p 0:01; red stars: synchronous sex; blue circles: asynchronous sex) that did not lead to asexuals fixing
(same data as in fig. 1). The diagonal indicates the expectation if the initial sex rate had remained unchanged. B, C, The 100-generation change
in the rate of sex, measured as ln(rate at generation 100) – ln(rate in the initial generation), depicted for the range where evolving toward a safer
rate (see fig. 1) is critical. The data across the entire range is nonlinear (shown in fig. S4) and hence is not suited to a linear regression. D, Toy
example of fixation time of a genotype that expresses a maladaptive trait less often (red: synchrony; blue: asynchrony); see main text for details.
E, The probability (12 p)N21 of a sexual individual, when sex is asynchronously facultative (probability p for each individual), failing to find a
mate (another phenotypically sexual individual) in the same generation.
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literature on the genetic consequences of facultative sex is
based on asynchrony. Thismodeling choice tends not to be
explicitly justified (Constable and Kokko 2018; Hartfield
et al. 2018) and is probably done for the relative ease offind-
ing analytical results for a continual low rate of sex. Based
on the meagre differences between figure 1A and figure 1D
(both are nonevolving sex rate cases), approximating syn-
chronous rare events with continual low rate of sexual
reproduction might indeed often work well. For example,
in all the data of figure 1, snapshots every 100 generations
show no systematic difference between synchrony and
asynchronywith respect to howmean linkage disequilibrium
develops over time (fig. S1 shows a comparison for the
first 1,500 generations; figs. S1–S4 are available online).
Synchrony also does not yield better resistance against
asexuality in no-benefit control runs (fig. S2) if sex rates
are not evolving, where instead the main determinant of
time to asexual invasion (measured as the cumulative num-
ber of mutations to asexuality required) is simply the rate of
sex: if this rate is very low, the demographic cost is paid
rarely, and asexuality takes longer to spread since the dy-
namics are mostly governed by drift. If sex rates can evolve,
this helps sex to resist asexual invasions in the no-benefit
scenario but only if sex occurs in synchrony (fig. S2). The
protection offered by synchrony, therefore, still needs to
be explained. There are at least two possibilities, one occur-
ring at high sex rates, the other gaining importance at low
rates.
At high sex rates, the demographic cost of sex is paid fre-

quently, creating selection toward lower rates (fig. 2A), and
here synchrony achieves amore rapid response to selection
(clearest in fig. 2B where rate mutations occur at a lower
rate than in fig. 2C; the difference between the two regres-
sion lines is significant, P ! :001 in both cases, but only in
fig. 2B the slopes differ with P ! :001 for the interaction
between initial sex rate and synchrony). A similar outcome
is found in control runs that strip sex of all its genetic
benefits (fig. S2); rapid evolution toward low sex rates
canmake asexuality an inefficient invader (for a finite time
at least, exceeding 104 accumulatedmutations to asexuality
in fig. S2).
To understand why synchrony can facilitate the disap-

pearance of maladaptively high sex rates and that this
can be purely a consequence of the temporal pattern of
when the costs of sex are paid, it is instructive to consider
insights from bet-hedging theory (Starrfelt andKokko 2012).
Bet-hedging theory shows that there are situations where
arithmetic mean fitness fails as a predictor of long-term
evolution. If fitness varies across generations, then gen-
erations inwhich a strategy does poorly (across all individuals
adopting this strategy) have a disproportionately strong im-
pact on the long-term prospects; at the extreme, should in
a particular generation all individuals fail, the long-term
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prospects are zero even if success in other conditions is ex-
cellent. Populations with synchronous behavior therefore
cannot be analyzed by averaging mean fitness across all
conditions, while this approach remains valid for evaluating
asynchronous cases. In short, the correct fitness measure
(see Starrfelt and Kokko 2012 for caveats) for synchrony
is geometric mean fitness, while arithmetic mean fitness
can be used for asynchronous cases.
This difference also has consequences for how rapidly

populations will adapt. Costs of sex are not constrained
to be twofold but can vary due to a large number of ecolog-
ical causes and within-species idiosyncrasies (Lehtonen
et al. 2012; Meirmans et al. 2012). Should its cost have in-
creased (e.g., if a newly invaded predator makes mate
searching costlier than before or sex comes with an in-
creased risk ofmaladaptive hybridization due to the spread
of a heterospecific population), it appears that costly sex
can respond to selection faster when it is performed syn-
chronously. To understand why, it is useful to simplify
away all other interactions (beneficial alleles) and focus
on a situation where individuals of a population express
a trait either every tenth or every twentieth generation (if
the trait is sex, its maladaptive nature here means that the
individuals pay the cost of sex). Whenever expressed, the
fitness is halved compared to the nonexpression of this trait
(this example thus uses a twofold cost, but it generalizes).
There are two competing genotypes, one expressing the
trait every tenth generation and the other every twentieth
generation.
The evolutionary prediction is clear: the genotype with

the rarer expression of a maladaptive trait will win. How-
ever, the disappearance of the lineage employing a 1/10
rate is faster under the synchrony assumptions that I intro-
duced above than under asynchrony. The geometric fitness
values areW1=20 p 0:9659 andW1=10 p 0:9330, assuming
fitness is scaled to 1 when not expressing the maladaptive
trait. Under asynchrony, arithmetic mean fitness remains
relevant: expected fitness is W1=20 p 0:975 and W1=10 p
0:95 in every generation. Although the differences in the
degree to which the 1/10 genotype is disadvantaged appear
slight between the scenarios (W1/10 is 3.4% lower thanW1/10

for the geometric mean but only 2.6% lower when using
the arithmetic mean), it is sufficient to yield a marked dif-
ference in the number of generations it takes for a finite
population to adopt the lower rate (fig. 2D shows time
to fixation distributions for N p 10,000). Although bet
hedging is typically discussed with respect to a bet hedger’s
chances to spread and fix (Gillespie 1973), in this toy ex-
ample it helps explain why asynchrony, when interpreted
as a form of bet hedging, makes the decline of the 1/10
slower. It uncouples the fates (fitness) of individuals within
a generation (see also Schreiber 2015) and thus diminishes
fitness differences that act against the 1/10 genotype.
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Turning back to our sexual context, this help experienced
by high sex rates under asynchrony means that the popu-
lation is vulnerable to invasion by asexuals for longer, with
asynchrony slowing down the response to selection.
At low sex rates, asynchrony has another, rather obvious

but surprisingly little discussed consequence: an individual
may find it difficult to find a mate (fig. 2E). The conse-
quences of this depend on model assumptions, and typi-
cally, models of facultative sex do not discuss this at all.
In the results presented here, selfing was always possible,
and while this allows segregation to continue (with certain
potential benefits of sex remaining valid; Otto 2003), alter-
native model assumptions could make low asynchronous
sex rates more strongly selected against, if a failure to find
a mate leads to reproductive failure. In a simplistic math-
ematical setting (binomial probabilities underlying fig. 2E),
the mate-finding problem remains significant up to sex
rates approximately equal the inverse of the population
size. Note, however, that population size, in this context,
has to be interpreted in the light of mate-searching abilities
of the species in question. My models (like many others)
use an optimistic assumption that any two simultaneous
sexuals are capable of finding each other. Real-life search
can be very limited; for example, strains of the facultative
sexual pathogen Podosphaera plantaginis must coinfect the
same plant leaf for outcrossing to occur (Laine et al. 2019).
Restricted spatial search is particularly likely to create
mate limitation in species that do not perform mating-type
switching. The spatial spread of a single mating type un-
der several generations of asexual reproduction can then
lead to a spatial structure where neighbors are unable to
mate with each other, and this can have major impacts on
facultative sex (theory: Constable and Kokko 2018; data:
Bell 2005; Nieuwenhuis et al. 2018).
Repeating figure 1 for lower costs c or lower rates of

adaptive evolution mB yields a similar finding (synchronous
sex outperforms asynchronous sex), but comparing the
width of parameter regions where asexuality fixes or not
yields little insight into the relative stability of facultative
sex in any parameter region outside the border of these
two dichotomous cases. I therefore next tested for the abil-
ity of a fixed (positive) sex rate to resist asexuality when the
mutation rate to asexuality continually increases over time,
beginning with mA p 1025 in the first generation and in-
creasing the mutation rate by multiplying with 1.001152
in every generation, this value being chosen to yield mA p1
in generation 10,000. No facultative sex scenario can per-
sist beyond that, but some succumb much earlier than
others, giving a relative stability measure. In sex-neutral
control runs, where facultative sex is de facto expressed
as asexuality (i.e., sex never expressed) but sex rate alleles
can mutate to zero according to the above temporal pat-
tern, individuals with at least one 0 sex allele reach 50%
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within 3,220 . . . 3,230 generations (mean 3,226), regard-
less of mB (fig. S3).
Turning back to populations where sex is expressed,

their relative stability against ever-increasing asexuality
pressure can be compared by the time it takes this 50%
threshold to be reached. Here I also follow a computational
variant of Kreyling et al.’s (2018) argument that potentially
nonlinear responses are more usefully studied using a fine-
scaled mesh of alternative parameter values and repre-
senting each outcome with relatively little (or no) replica-
tion than to focus on few extensively replicated locations
in the potential parameter space. This comparison yields
several clear patterns. High rates of adaptive evolution al-
low the populations to typically reach the end of the sim-
ulation because the fitness peak was reached (by at least
one individual) rather than asexuals taking over (fig. 3A,
3B), with the exception of very high rates of sex combined
with the high cost of sex (right end of fig. 3B; asexuality
wins rapidly here, replicating the no-evolution scenarios
of fig. 1). At lower (and perhaps more realistic) rates of
adaptive evolution (fig. 3C–3F), the first impression is that
asynchronous and synchronous sex offer roughly similar
(and intuitively plausible) lessons: high stability against
asexuality requires low sex rates if costs of sex are high,
while low costs of sex permit facultative sex to be stable
across a larger range of sex rates. However, these insights
need to be checked against the neutral expectations, and
here it is clear that asynchronous sex fails to systematically
persist for longer than the neutral scenario would predict
(fig. 3).
The success of synchronous sex, on the other hand, is

clearly of a stochastic nature: asexuality sometimes out-
competes synchronous sex with ease (i.e., early). This is
not surprising at very small sex rates, as synchronous fac-
ultative sexuals may phenotypically resemble asexuals for a
large number of generations, and sex, when it occurs, can
also lead to unfortunate combinations of alleles. In bet-
hedging terminology, synchrony is a risk-prone strategy,
while asynchrony is risk averse (or risk spreader). As a
whole, however, pairwise comparisons where one synchro-
nous and one asynchronous case is investigated for each
parameter combination reveal that synchrony significantly
prolongs the time until asexuals reach 50% (binomial test
P p :02, 3:4#1027, 9:1#1029, and 1:7#1026 for “red
above blue” for fig. 3C–3F, respectively, in the case in fig. 3C
ignoring the five runs where the simulation ended because
a fitness peak was reached). The key difference is that asyn-
chronous rare sex typically leads to a failure to outcross
(fig. 2E). In the model, lack of mates led to selfing. Even
though this still permits segregation to occur (which can
impact selection for sex; Otto 2003), the lack of outcross-
ing opportunities clearly makes asynchronous sex more
vulnerable to asexual invasion (fig. 3).
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Discussion

To follow the gist of the symposium, I will discuss both the
scientific lessons from the exercise above and end with
some general hopes for the future.
First, my model joins many others in not resolving the

entire issue of why we are not all facultatively sexual, in
the following sense: while rare sex appears relatively easy
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to maintain, obligate sex did not evolve in my model,
and it is generally difficult to find obligateness in models
of sex whenever facultativeness is an option. This points
out that the entire question might be usefully rephrased:
rather than asking what keeps facultative sex rare, an un-
resolved question is why obligate sex can at least some-
times replace it, often taking over entire lineages (so that
large multicellular organisms such as ourselves perceive
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Figure 3: Relative measures of stability of a facultatively sexual population against asexuality when the mutation rate to asexuality mA increases
over time, making it impossible for facultative sex to persist beyond 10,000 generations. Persistence above 3,326 generations (horizontal lines)
indicates stability beyond a neutral expectation. Red stars: synchronous sex; blue circles: asynchronous sex; dark red filled stars and dark blue
squares, respectively, indicate that the run was finished by reaching the predefined fitness peak. Cost of sex and mB are as indicated in the panels.
Other parameters are as follows: N p 10,000, mR p 0 (no evolution of sex rate), and mA increasing over time as indicated in the main text.
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it to be the norm; Kokko 2017). Eukaryotic life in general
utilizes facultative sex much more commonly than a focus
on large, multicellular animals or plants would suggest (Has-
tings 1992; Dacks and Roger 1999). When viewed across a
broad-enough taxonomic lens, sex also does not necessar-
ily associate with the production of males. Sexual conflict,
where males benefit from mating while females might
not, can complicate the maintenance of facultative sex
(Gerber and Kokko 2016; Burke and Bonduriansky 2017),
but this argument only applies to species with males (an-
isogamy). Science has made some progress toward under-
standing why anisogamy associates with being large and
multicellular (Lehtonen and Parker 2019); why this should
also often associate with obligate sex is an obvious follow-
up question.
Second, it may be useful to think of the demographic

and genetic consequences of synchronous facultative sex.
Real sex often occurs in bursts (sexual generations followed
by many largely asexual ones), and this has several conse-
quences. One consequence is that the evolution of sex
could usefully be better linked with bet-hedging theory,
a mathematical framework investigating the success of
competing genotypes that differ in mean fitness as well
as variance. While sex does not get straightforwardly
explained as soon as this is done (examples by Li et al.
2017), bet-hedging considerations apply if sex has an im-
pact on both the mean and the variance of offspring pro-
duction. Synchrony changes the temporal dynamics of a
population such that geometric mean fitness becomes rel-
evant; that is, low demographic performance in any one
generation has a significant detrimental effect on long-
term prospects. In the current model, the effect was, per-
haps counterintuitively, ultimately a stability-enhancing
one for facultative sex, as asexuals invaded risk-prone (syn-
chronous) populations less easily than risk-averse (asyn-
chronous) ones. Because asynchronous sexuals may also
more often have to resort to selfing, if selfing is an option,
the balance of these effects could be usefully studied in fu-
ture studies.
Another consequence of an explicit contrast of synchrony

and asynchrony is to encourage explicit thinking about
mate availability in model assumptions. Many existing
models of sex simply sidestep this issue, in the sense of as-
suming random mating or (in anisogamous models) that
better males will be chosen asmatesmore often (e.g., Agra-
wal 2001; Kleiman andHadany 2015); the consequences of
no mates being found at all are usually not specified. The
model presented in this article dealt with mate shortages
by assuming that selfing was always an option, but diver-
sity in nature offers multiple alternative assumption sets
that could be usefully investigated in the future (e.g., many
apomictic plants still produce pollen and can thus act as
sires even if their female function is asexual).
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It is instructive to reflect why mate availability is rarely
considered. Analytical simplicity is one reason, potentially
wholly justified if the focus is on another question. Another
reason, harder to verify but probably real, is the mental
images employed by anymodeler thinking about what to in-
clude in a model and what to leave aside. One researcher
might be thinking of a large population of eukaryotic mi-
crobes going for sex simultaneously, in which case synchrony
might not be assumed in amodel yet its occurrence in real life
creates an impression that mate availability is not limiting
whenever sex actually happens. Another researcher might
mostly think about large multicellular organisms, and
the corresponding mental image now features a female
(or the female function of a hermaphrodite) that, when
opting for sex, will not typically encounter a shortage of
males. Neither mental image is conducive for remember-
ing that access to partners can easily become lopsided based
on purely stochastic processes, particularly so ifmuch of re-
production is asexual (Bell 2005; Constable and Kokko
2018; Nieuwenhuis et al. 2018). Specific adaptations exist
that may alleviate the problem (e.g., mating-type switching;
Nieuwenhuis and Immler 2016); linking these with the evo-
lution of sex rates would appear worthwhile.
Synchrony, in this light,makes sense as it eases the prob-

lem of mate finding, but real life offers additional compli-
cations related to access to mates. Sex is often not solely
triggered by environmental conditions but can also be con-
dition dependent, often such that organisms in a favorable
state opt for asexual reproduction. Assuming that condi-
tion reflects how well an organism is currently adapted
to its surroundings, then condition-dependent sex pre-
sents an intriguing dilemma: recombination will occur only
among the poorly adapted part of the population; how
much is it then expected to help? Hadany and Otto
(2007, 2009) have shown that the problem is not insur-
mountable, as condition-dependent sex can spread despite
not having access to the very best genotypes. It would
clearly be of interest to combine such work with consid-
erations of synchrony and mate finding (especially since
synchrony itself might evolve if organisms switch to sex
during times when its costs are unusually low, as suggested
for Daphnia, where the cost of sex is effectively lowered
when high population density makes asexual direct repro-
duction relatively unprofitable; Gerber et al. 2018).
Spatial considerations are an obvious problem when

specifying the mate-finding range, and it offers additional
real-life flavors to be included in models. Dispersal (escap-
ing in space) and dormancy (escaping in time) offer alter-
native ways to condition-dependent sex of dealing with
low current fitness prospects, and in many within-species
settings, they covary strongly with sex itself (Gerber and
Kokko 2018). Exactly why organisms so often use sex—
interpretable as an abandon-ship mechanism—together
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with these other ways to escape their current situation is
largely unexplored; if each mechanism brings about costs,
onemight a priori expect employing just one of themwould
suffice. Finally, note that the problem of access to the well-
adapted part of the local gene poolmight disappear in some
formulations of condition-dependent sex: hermaphrodites
can conceivably be facultatively sexual with respect to their
female function but always willing to mate in the male role.
In systems where some potential mates are rejected (for
displaying signals of low condition), condition dependence
takes yet new forms.
The above is a short list of reasons why the question of

facultative sex is far from resolved. It rarely evolves all the
way up to obligate sex (though for the ability of sexual se-
lection to select for high rates, see Kleiman and Hadany
2015), but this is only one of the many problems in the
field. Life aboundswith across-species correlations begging
to be explained: my model, by presenting a few examples
on the possible effects of synchrony, did not even try to
ask why there is more obligate sex in larger, anisogamous
organisms or extend the stability question to the possible
covariation of reproductive mode with survival structures
and/or dispersal (here relevant literature will also need to
include reproductive assurance provided by asexuality;
Tilquin andKokko 2016). In short, natural history (Futuyma
1998) will hopefully continue to inspire and make theore-
ticians exist in a delightful tug-of-war between analytical
tractability and real-life complications.
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