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Abstract

Birth-pulse populations are often characterized with discrete-time models, that use a single function to relate the
post-breeding population size to the post-breeding size of the previous year. Recently, models of seasonal density
dependence have been constructed that emphasize interactions during shorter time periods also. Here, we study two
very simple forms of density-dependent mortality, that lead to Ricker and Beverton-Holt type population dynamics
when viewed over the whole year. We explore the consequences of harvest timing to equilibrium population sizes
under such density dependence. Whether or not individual mortality compensates for the harvested quota, the timing
of harvesting has a strong impact on the sustainability of a harvesting quota. Further, we show that careless
discretization of a continuous mortality scheme may seriously underestimate the reduction in population size caused
by hunting and overestimate the sustainable yield. We also introduce the concept of the demographic value of an
individual, which reflects the expected contribution to population size over time in the presence of density
dependence. Finally, we discuss the possibility of calculating demographic values as means of optimizing harvest
strategies. Here, a Pareto optimal harvest strategy will minimize the loss of demographic value from the population
for a given yield. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Beverton-Holt and Ricker models; Compensatory mortality; Doomed surplus; Hunting season timing;
Maximum sustainable yield; Population harvesting

1. Introduction

Seasonally reproducing species that produce
offspring during a short annual period have birth-

pulse dynamics usually described with discrete
time population models (Caswell, 1989). When
the model includes effects of population density
on demographic parameters, the customary ap-
proach is to use a single function over the year
relating, for instance, population growth to popu-
lation density. However, the effect of population
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density on mortality in seasonally reproducing
animals typically varies during a year, being often
at its highest on newly-born offspring (Ekman,
1984; Clutton-Brock et al., 1985; Skogland, 1985;
Hudson, 1992; Clutton-Brock et al., 1997). Also,
it has been shown that seasonality in density
dependence may have profound consequences for
population dynamics (Kot and Schaffer, 1984;
Rodriguez, 1988; Åström et al., 1996) and, conse-
quently, on optimal harvesting strategies (Allen et
al., 1991).

Here, we show the strong effect that seasonality
has on population persistence, defined as the abil-
ity to tolerate additional mortality. Harvesting
theory takes advantage of this tolerance, exploit-
ing the capacity of populations to give birth to
more individuals than can survive in their envi-
ronment. Here, the important effect of the struc-
ture of density dependence is whether hunting
mortality is simply additive to natural mortality
or partly or fully compensated. In seasonal, ter-
restrial environments, such survival refers mainly
to over-wintering populations with limited re-
sources. The fraction of the population likely to
die during winter even without any hunting was
named the ‘doomed surplus’ by Errington (1934).
By his argument, hunting would not decrease the
subsequent breeding population if the number of
individuals killed does not exceed the size of the
‘doomed surplus’.

Errington’s (1934) view, however, represents
only one extreme of the possible outcomes of
extra mortality. The actual outcome here depends
on the type of critical factor causing density-de-
pendent mortality during the period of kills. If,
for instance, population density affects the effi-
ciency of an individual to gather food reserves for
wintering, it may be that removing individuals by
hunting after a certain period does not improve
the survival probability of the remaining individu-
als. An example of the other extreme of a corre-
sponding scenario is that winter food itself is a
critical factor for surviving over winter. That be-
ing the case, removal of an individual anytime
before spring may immediately help the rest of the
population to survive and thus create the possibil-
ity for a ‘doomed surplus’ to exist. Studies aimed
at determining whether hunting mortality is to-

tally compensated (or even overcompensated), or
partly or wholly additional in natural popula-
tions, have not given an unequivocal result, al-
though totally compensatory mortality is
probably rare (Anderson and Burnham, 1976;
Roseberry, 1979; Conroy and Eberhardt, 1983;
Burnham and Anderson, 1984; Burnham et al.,
1984; Payne, 1984; Robertson and Rosenberg,
1988; Barker et al., 1991; Ellison, 1991; Small et
al., 1991; Dusek et al., 1992; Rexstad, 1992; Smith
and Reynolds, 1992, 1994; Sedinger and Rexstad,
1994; Hellgren et al., 1995).

Sustainable harvesting schemes can be built for
both additive and compensatory hunting mortal-
ity but, if the aim is to take advantage of compen-
satory survival, timing of density-dependent
phenomena must be specified, as well as the effect
of the removal of competing individuals. Existing
harvest strategies surely take this into account:
The usual practice in harvesting terrestrial birth-
pulse populations is to permit harvesting only
after the breeding season in autumn. Common
sense states that the opposite alternative of har-
vesting before reproduction means deducting
from the capital, hence the stable population size
and sustainable yield would be much reduced by
adopting such a strategy. However, very little
theoretical work has been devoted to study the
foundations of this argument (Doubleday, 1975;
Getz, 1980).

The aim of this study is to show the importance
of timing differences. Also, it shows the potential
for serious misinterpretation if a continuous pop-
ulation model is discretisized carelessly and, spe-
cifically, if discrete-time harvesting models are
used in a population where harvest mortality is
continuous (even if constrained to a small time-
span annually).

2. Models of density dependence

Throughout the following models, we consider
a ‘birth-pulse’ population (Caswell, 1989) with
breeding occurring at time steps 0, 1, 2,..., matu-
ration at the age of 1 year, and with density-de-
pendent mortality between the breeding seasons.
The breeding function
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B : x�l(x)x (1)

relates the post-breeding population size to the
pre-breeding population size, with a per capita
multiplication rate of l(x).

Unless otherwise stated, equilibrium population
sizes are measured just after the birth-pulse. We
consider the time interval (0, 1) only, starting with
a post-breeding population size and ending with
the birth-pulse at time step 1. At equilibrium,
these two sizes must be equal, and subsequent
time intervals will only repeat the pattern ob-
served within the time interval (0, 1).

Let the initial post-breeding population size be
x(0). During the time interval (0, 1), individuals
die with death rate m(t),

dx
dt

= −m(t)x(t) (2)

where density dependence can be introduced by
letting m depend on the population size, x. The
mortality function M relates the pre-breeding
population size at time 1 to the post-breeding
population size of time 0:

M : x(0)�x(0)+
&

t=0

1

−m(t)x(t) dt (3)

The mapping f(x) of population size from 1
year to another now becomes

x(1)= f(x(0))=B(M(x(0))) (4)

We start with the case with no density depen-
dence in the breeding season, which is obtained by
setting l(x)=l0 for all x. We consider two sce-
narios for the death rate, m(t): (1) m(t) depends on
the current population size, such that every death
in the population is compensated by higher sur-
vival of the individuals left: m(t)= f(m0, x(t)); (2)
m(t) is constant for a single season and depends
on the state of the environment, determined by
population size, at the start of the season only:
m(t)= f(m0, x(0)) Ö t � (0, 1). Variations in m(t)
irrespective of x are considered later.

Specifically, for (1), choosing m(t)=m0 ·x(t)
and a constant multiplication rate l(x)=l0 gives
the Beverton-Holt equation (Beverton and Holt,
1957),

dx
dt

= −m0 ·x(t)2 (05 tB1),

lim
o¡0

x(1)
x(1−o)

=l0 [x(1)=
l0 x(0)

1+m0x(0)
. (5a)

Likewise, the choices m(t)=m0 ·x(0) and
l(x)=l0 give the Ricker equation (Ricker, 1954):

dx
dt

= −m0 x(0) x(t) (05 tB1),

lim
o¡0

x(1)
x(1−o)

=l0 [x(1)=l0 x(0) e−m0 x(0) (5b)

Without harvesting, the stable equilibrium of
the population size is x*= (l0−1)/m0 for the
Beverton-Holt model, and x*= ln(l0)/m0 for the
Ricker model (Getz and Haight, 1989). These are
sizes measured immediately after the birth-pulse;
the equilibrium sizes before the birth pulse are
obtained by dividing by l0.

3. The effect of harvest timing

The sustainable use of a population basically
relies on its density-dependent response to a de-
creased number of competitors (Getz and Haight,
1989). If one is not interested in the timing of
harvesting, one might write in the Beverton-Holt
model

x(1)=
l0 x(0)

1+m0 x(0)
−H (6a)

or in the Ricker model

x(1)=l0 x(0) e−m0 x(0)−H (6b)

and solve for x(0)=x(1) to get the equilibrium
population size for a harvest quota. In practice,
however, all harvesting cannot be focused to an
infinitesimally short time period, and it is not
immediately clear how much this will affect the
stable population size. We therefore solve for the
following equilibrium:

Let the total harvesting quota equal H, uni-
formly divided within the time interval (T1, T2)
(05T1BT251), with h=H/(T2−T1) individu-
als removed per unit time:
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Fig. 1. Equilibrium population sizes (measured immediately after the birth-pulse) for the harvested Beverton-Holt and Ricker models.
Parameter values are l0=5 in both cases, and m0 is adjusted to give equilibrium population size 10000 in a non-harvested population
in both cases (m0=0.0004 for the Beverton-Holt model and 0.00016 for the Ricker model). Total bag is given on the x-axis, the timing
choice on the y-axis, and the contours give equilibrium population sizes as follows: solid lines from left to right give the contours for
90, 80, 70, 60 and 50% of the population left, and the extinction contour (0%). Dotted lines from left to right give additionally 95, 85
and 75% contours. Point (0, 0) always has population size 10000 (100%). In the region to the right of the extinction contour, harvesting
is always unsustainable. Timing choices: (A-a), all harvesting occurs in a single pulse at a specific time t between 0 and 1. (B-b), harvesting
is divided between t and t+0.2. (C-c), harvesting starts at time 0 and ends at time t. Points marked with MSYA and MSYS give the
maximum sustainable yield if all harvesting occurs immediately after (autumn MSY) or prior (spring MSY) of the birth-pulse.

dx
dt

=Í
Á

Ä

−m(t)x(t),
−m(t)x(t)−h,
−m(t)x(t),

05 tBT1

T15 tBT2

T25 tB1
(7)

The solution of Eq. (7) gives the (fairly compli-
cated) equation that the equilibrium population
size has to satisfy, and it is fully presented in
Appendix A for both Beverton-Holt and Ricker
formulations. The equilibrium will dramatically
depend on harvest timing (Fig. 1). Too late har-
vesting may overexploit a population to extinction
even if the same quota would only slightly reduce

the original population size, if it had been re-
moved early in the season: e.g. in Fig. 1A, a bag
of 1500 individuals harvested immediately after
the birth-pulse will reduce the equilibrium popula-
tion size by a mere 5%, but the reduction is 20%
if one fourth of the season has passed before
harvesting occurs, and the population is driven to
extinction if the removal happens after more than
a third of the season. This is especially remark-
able, given that the bag of 1500 is much below the
maximum sustainable yield (MSYA) of almost
4000 individuals (Fig. 1A). Note also that even in
this deterministic setting, the MSY as an absolute
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maximum to the tolerable bag is sustainable only
if the harvesting season is extremely short. There
is no way of having a sustainable bag approach
the MSY if the hunting season is of considerable
length (Fig. 1B-b). The sensitivity for harvest
timing is similar in short (Fig. 1A-a) and interme-
diately long (Fig. 1B-b) harvest seasons as well as
in a setting where the open season begins at the
end of the breeding-pulse but varies in length
(Fig. 1C-c). Also, the timing matters both in cases
where the survival of the remaining individual
increases such that it compensates for the loss of
others (the Beverton-Holt model, Fig. 1A-C) and
in cases where it does not (the Ricker model, Fig.
1a-c), although the response to timing is less
pronounced in the latter case.

3.1. Finding the extremes: spring 6ersus autumn
mortality

We now show the dangers of careless discretiza-
tion, by imagining that we only wish to compare
harvesting schemes that occur just prior or just
after the birth-pulse, and to seek the respective
maxima of sustainable harvesting. This corre-
sponds to finding only the MSYA and MSYS

points in Fig. 1A-a, which should at least give
some impression of the sensitivity of the systems
to harvest timing. The total harvest quota, H, is
now divided into spring harvest, Hs, and autumn
harvest, Ha. Using Eqs. (1)–(3), the discrete dy-
namics becomes

x(1)=B(M(x(0)−Ha)−Hs) (8)

The relationship between Ha, Hs and the stable
population size x* is derived by solving for the
stable equilibrium population size in Eq. (8): x* is
the solution of x(0)=x(1). There are two solu-
tions, of which the larger one is stable. At the
point where the two solutions coincide, the MSY
is reached (Fig. 2).

For the Beverton-Holt model, we have B(x)=
l0x and M(x)=x/(1+m0x), and the requirement
of the equality of the two solutions leads to the
expression

Ha*+l0 H s*=
l0−2
l0+1

m0

(9)

In the example of Fig. 1A, this means that if
spring harvesting Hs=0, the maximum autumn
harvest is MSYA=3820, whereas this figure has
to be divided by l0 to get the maximum spring
harvest, 764. Indeed, from Eq. (9) it follows that
for every individual removed in spring, the au-
tumn bag has to be removed by l0, to keep the
yield sustainable. This is not surprising, given that
the breeding season brings about a multiplication
of the population by the factor l0.

The Ricker formulation, B(x)=l0x and
M(x)=x e−m0x, gives similar results at first sight.
Solving for the equilibrium population size in Eq.
(8) gives an implicit solution

x*=Ha+
C
m0

(10)

where C fulfils C(l0e−C−1)=m0(Ha+l0Hs).
The value of C cannot be solved analytically, but

Fig. 2. Derivation of the stable equilibria and the MSY,
exemplified for the Beverton-Holt model with autumn hunting
only. Parameters are as in Fig. 1. Solid line: Population
growth without hunting, x(1)=l0/(1+m0x(0)), gives the equi-
librium population size of 10000 individuals (filled dot) and
the trivial unstable equilibrium 0 (open dot). Dashed line:
Population growth with an autumn bag of 2000 individuals,
x(1)=l0/(1+m0(x(0)−2000)), reduces the stable population
size but increases the value of the unstable equilibrium. Dotted
line: The MSYA hunting, giving the map x(1)=l0/(1+
m0(x(0)−3820)), decreases population growth enough to make
the two solutions (the stable and the unstable equilibrium)
converge to a single, unstable equilibrium.



H. Kokko, J. Lindström / Ecological Modelling 110 (1998) 293–304298

it can be shown that the curve C(l0e−C−1) has a
unique and positive maximum where the two
solutions coincide. Denoting its value by V, one
readily sees that the maximum harvest quotas Ha*
and H s* that lead to the same equilibrium popula-
tion size are related by Ha*+l0H s*=V/m0. Again,
for each individual removed in spring, autumn
harvesting Ha has to be decreased by l0 individu-
als if sustainability is to be maintained. Note that
while the post-breeding equilibrium population
size x* depends on Ha as well as on the sum
Ha+l0Hs, the autumn population size after har-
vesting, x*−Ha, depends only on the latter and
equals V/m0.

So far, both the Beverton-Holt and the Ricker
model have been shown to satisfy the idea that
one individual removed in spring corresponds to
l0 individuals removed in autumn, a result not
surprising given the per capita rate of multiplica-
tion, l0, that occurs in the birth pulse. However,
the continuous-time model predicts that only the
Beverton-Holt model has a five-fold MSYA com-
pared to MSYS (Fig. 1A) — the Ricker model
shows only about a two-fold difference (Fig. 1a).

One needs to be certain of the implicit assump-
tions made by using Eq. (8) to form this conclu-
sion. Specifically, Eq. (8) is formulated such that
autumn hunting occurs fast enough to cancel the
effects of high post-breeding population size on
over-winter mortality: it is assumed that popula-
tion size after autumn hunting, x(0)−Ha, and not
the post-breeding population size, x(0), deter-
mines the state of the environment that generates
the density dependence (Eq. (8)). But if conditions
for density dependence are effectively determined
by the breeding population, autumn hunting oc-
curs too late to prevent environmental deteriora-
tion. If this is true, the usage of Eq. (8) to describe
the situation is invalid. In the mortality function
M, density dependence should act according to
the post-breeding density x(0), while the number
of individuals actually entering the non-breeding
season should be x(0)−Ha. Eq. (6b) has to be
replaced by the explicit expression

x(1)=l((x(0)−Ha)e
−m0x(0)−Hs) (11)

This equation gives the equilibrium population
size x*=D/m, D being the solution of D(l0e−D

−1)=m0l0(Hs+e−DHa). This form predicts cor-
rectly the MSY points in Fig. 1. Harvesting in
spring has in this case much less severe conse-
quences since it helps to reduce the post-breeding
population size, which has partly negative effects
on population growth through density
dependence.

3.2. Doomed surplus and the demographic 6alue
of an indi6idual

At first sight, it may seem strange that a popu-
lation tolerates more extra mortality if the harvest
quota is removed as early in the season as possi-
ble, even in the case where the death of culled
individuals does not affect the remaining individu-
als’ death rate in any way. However, the case
becomes clear when one considers the expected
survival probability of an individual alive at time
tB1 up to the beginning of the breeding season
at time 1. With no compensation (constant death
rate m), this probability equals e−m(1− t), where
1− t is the length of the remaining season to
over-winter. Culling that individual reduces its
survival probability to zero, and thus removes an
expectation of e−m(1− t) individuals from the pop-
ulation. The expectation increases as the season
proceeds: survived individuals gain demographic
value during the mortality season. The gain is
strengthened by compensation, but it exists even
without it. Here, we note that although the Ricker
model represents overcompensation when inter-
preted on a yearly basis (Reed, 1980), the within-
season mortality leading to Ricker type dynamics
shows no compensation on the basis of individual
mortality, and the only deviation from additive
mortality results from the above phenomenon of
time-dependent survival expectations.

We illustrate this effect with the concept of
demographic value of an individual. It is well
known that a successful harvesting strategy
should spare individuals with high reproductive
value (MacArthur, 1960; Caughley, 1977; Yodzis
and Kolenosky, 1986; Goodyear, 1996; Kokko et
al., 1997). However, even if individuals do not
differ in any respect, the demographic value (mea-
sured as the reduction in the subsequent popula-
tion size) of removing the first n individuals does
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not equal that of removing the next n. Also, the
timing of removal matters, as shown above.

To formalize the concept of demographic value,
consider a map f from population size at time t1

to size at t2. We define the demographic value 6D
of an individual removed from the population at
time t1 to equal the drop in population size,
resulting from that removal, measured at a future
reference time point t2. If all individuals are equal,
the value of 6D depends on population size x only:

6D(x)= f(x)− f(x−1) (12)

where f defines the mapping f : x(t1)�x(t2). Thus,
the greater the slope of f(x), the higher is the
demographic value of one individual removed
(Fig. 3A). A ‘doomed surplus’ is established, if
there is a region in f where 6D(x)50. The width
of the region gives the number of individuals
belonging to this surplus (Fig. 3B).

A sustainable harvesting strategy, however,
does not need to be confined to using the ‘doomed
surplus’ only. Harvesting mortality does not need
to be completely or even partially compensated to
make harvesting sustainable (Robertson and
Rosenberg, 1988). Here, in terms of the demo-
graphic value, a specific type of surplus is created
by the harvest itself in the following way. If the
map f is a complete description of the dynamics of
the population from one breeding season to an-
other, it can be used to determine equilibrium
population sizes and responses to harvesting (Fig.
3C). Harvesting reduces population size each year

Fig. 3.

Fig. 3. Illustrations of the demographic value concept. (A)
Depending on the slope of the mapping f : x(t1)�x(t2), the
effect of removing one individual from the population is
magnified (at x1) or diminished (at x2) by density dependence.
The demographic value can be even negative, if the removal of
an individual increases the subsequent population size (at x3).
(B) A ‘doomed surplus’ exists, if demographic values equal
zero for a fraction of the population. Here, removing x2−x1

individuals from a population at size x2 does not affect the
subsequent population size at all. (C) Assuming that the
mapping f describes the total dynamics of the population over
all seasons, equilibrium population sizes can be determined:
here, harvesting the population until the size x1 is reached
leads to a drop of the equilibrium population size from x* to
x2. The function f %(x) shows the horizontal region of surplus
individuals in the map that includes the reduction of H=x−
x1 individuals when x exceeds x1.
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from x2 to x1 individuals, with a reduction of
post-breeding population size equilibrium from
x* to x2. All culled individuals have positive
6D(x) values in the original map, but the popula-
tion remains in a stable equilibrium from year to
year. A modified map, which includes the effect of
hunting such that it depicts the removal of any
individuals after population size x1, will give
6D(x)=0 for all individuals for which x]x1 (Fig.
3C, dashed line), so that a surplus with 6D=0 is
established by harvesting itself. However, this
comes naturally along with a decrease in the
stable population size.

The differential effects of culling individuals
within the season in the Ricker and Beverton-Holt
models can be explained by an increase in the
6D(x) value of a survived individual over time in
the mortality season (Fig. 4). The form of 6D(x)
values give important information. First, the im-
portance of harvest timing is stronger than differ-
entiating between additive (Ricker) and
compensatory (Beverton-Holt) mortality. Second,
if breeding success is not density-dependent, the
value of an individual approaches l0 at the start
of the breeding season: removing one individual
just prior to breeding corresponds to removing all
the expected offspring as well. With density de-
pendence acting in both seasons, demographic
values never reach as high values. Also, because
of the complex form of interacting densities, it is
not necessarily true that individuals from a larger
population have smaller 6D(x) values (Fig. 4D).
In every case, however, demographic values in-
crease as the season proceeds, and the demo-
graphic value removed, S6D(x), is minimized if
harvesting occurs as early in the season as
possible.

Likewise, the analysis can be extended to situa-
tions where the mortality rate varies within the
season (Fig. 5). The rise in value is steepest during
the time when mortality rates reach their peak.
Consequently, with such within-season variation,
the exact timing of harvesting before the natural
peak of mortality matters relatively little com-
pared to the effects of extending the harvest sea-
son to include the peak. Both with uniform (Fig.
4) and non-uniform (Fig. 5) mortality, the Bever-
ton-Holt model shows less variation in 6D related

to the initial population size, which is a sign of
compensatory ability. Still, the question of com-
pensation versus addition of mortality seems less
important than the progress of mortality during
the season, especially so when breeding also obeys
some density dependence (small difference be-
tween Beverton-Holt and Ricker models, Fig. 4C-
D).

4. Discussion

Any relationship between individual numbers
and their survival during the progress of a season
(e.g. the over-wintering period) will lead to a
relationship between the initial and final popula-
tion size, such as the examples of deriving the
Beverton-Holt and Ricker models (Eqs. (5a) and
(5b)) demonstrate. However, the mere relation-
ship between these two time points do not suffice
to specify the reaction of the population to added
mortality such as harvesting. The resulting popu-
lation response will depend on the changes of
individual survival prospects to removal of other
individuals within the season. Such an effect can-
not be captured with a single discrete-time
equation.

In this study we have demonstrated the impor-
tance of the interplay of the structure of density-
dependent survival and fecundity and the timing
of density-independent actions such as culling a
specified harvesting quota. The basic principles
are simple. Without the capacity of populations to
recover from downward fluctuations, no sustain-
able harvesting is possible. The successful man-
agement of a renewable resource is based on the
concept of a sustainable yield, i.e. an exploitation
that does not threaten the long-term persistence of
the population.

We show the relationship both between harvest
timing and the maximum sustainable yield MSY
and between harvest timing and population size
decrease at yields smaller than the MSY. Regard-
less of which approach is used, the timing of
harvesting is shown to have enough significance
that it should not be neglected in population
models. The concept of the MSY has been criti-
cized with reason: it represents an unstable equi-
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Fig. 4. Demographic values 6D(x) within the mortality season, with the reference time set to the end of the following breeding
season. (A) and (C), Beverton-Holt density dependence in the mortality season, (B) and (D), Ricker density dependence in the
mortality season; l0 and m0 as in Fig. 1 in both cases. (A) and (B), no density dependence in the breeding season (breeding function
B : x�5x), while in (C) and (D), the per capita reproduction is density-dependent, B : x�5(1–exp(–0.0001x). Values of 6D(x) are
given for x(t) that result from x(0)=0.25x* (dotted line), 0.50x* (dashed line), 1.00x* (solid line), and 1.50x* (dashdot), where x*
is the equilibrium population size with no hunting.

librium, making it practically impossible to har-
vest the population at such a high rate. It should
be more correctly interpreted as an absolute upper
limit which cannot be exceeded without seriously
threatening population persistence (Cook et al.,
1997). Our results show that the timing of har-
vesting has a strong impact both on the MSY and
on population responses at lower harvesting
pressures.

Our results also emphasize the need to reassess
even the more conservatively-derived harvest rec-
ommendations, that already take stochasticity and
erroneous population size assessment into account

(Ludwig and Walters, 1981; Walters, 1986; Mu-
rawski and Idoine, 1989; Thompson, 1992; Lud-
wig et al., 1993; Frederick and Peterman, 1995;
Lande et al., 1995; Sæther et al., 1996), to a lower
level if the timing of harvesting is sub-optimal.
The assumption that hunting occurs in a single
stroke at the end of the breeding season like Ha in
Eq. (8), will overestimate the sustainable yield no
matter what the form of population growth. We
especially note the danger of overestimating the
tolerable number of kills if the harvesting strategy
is based either on too simple (i.e. discrete) popula-
tion models, or on empirically-based estimates of
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population responses on harvest levels, if the timing
of harvesting is subsequently changed.

We propose that a harvesting scheme should
consider the demographic values 6D(x) of individ-
uals. This concept is related to the reproductive
value (Caswell, 1989), as it measures the contribu-
tion of an individual to population growth, but
specifically focuses on the effects of density depen-
dence. Thus, the demographic value will not remain
constant if the individual is one of a population
near the carrying capacity, or if it is among the
remaining ones when half of the population has
already been removed within the hunting season.

The calculation of the demographic value of an
individual does not yet provide a direct measure to

assess the sustainability of the chosen harvest.
However, in a situation with alternatives available
for harvest, there is naturally a trade-off between
the yield and the size of the remaining population.
We argue that management can be optimized by
considering instead the trade-off between the yield
and the sum of demographic values, S6D(x), re-
moved from the population. Not all harvest strate-
gies are Pareto optimal, i.e., fully exploit this
trade-off. Therefore, if the form and timing of
density dependence is known, diminishing S6D(x)
of culled individuals may be possible without
reducing the yield, by seeking Pareto optimal
solutions.

Correct harvest timing is one option available to
optimizing harvest. However, 6D(x) values not only
change with time, but are also likely to vary among
individuals. Individual contributions to population
growth often depend strongly on sex and age as
well, and such knowledge can be used to maximize
yield while leaving population growth largely unaf-
fected (Caughley, 1977). Such differences among
individuals are reflected in their demographic val-
ues as well. Specifically, considering a sufficiently
long reference time span, demographic values will
be proportional to reproductive values in an expo-
nentially growing population where density depen-
dence can be neglected. With density dependence,
more complex relationships are possible. As an
example, young individuals without a territory may
truly represent a ‘doomed surplus’ at high popula-
tion densities in territorial species. In any case,
specifying the relationship between the planned
action of exploitation and the resulting change of
population size forms the basis of an optimal
harvesting policy. The more accurately the selec-
tion of individuals can be determined, and timing
of their removal controlled, the higher the sustain-
able yield that can be maintained in realistic
conditions.
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Fig. 5. Demographic values 6D(x) within the mortality season
for (A) Beverton-Holt and (B) Ricker type density depen-
dence, with an increase in the mortality rate during mid-win-
ter: m0(t)=0.0005 for 0.335 t50.66, and m0(t)=0.0001
elsewhere. Other parameters are as in Fig. 4. The demographic
values are now fairly insensitive to timing before the harshest
season begins. Again, because of compensation, the Beverton-
Holt model shows much less dependence of 6D on the initial
population size than the Ricker model.
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Appendix A

For the Ricker model, Eq. (4) becomes

x(T)=Í
Ã

Ã

Ã

Ã

Á

Ä

x(0)e−m0 x(0) T

x(0)e−m0 x(0) T−
h

m0 x(0)
(1−e−m0 x(0)(T−T1))

x(0)e−m0 x(0) T−
h

m0 x(0)
(e−m0 x(0)(T−T2)−e−m0 x(0)(T−T1))

05TBT1

T15TBT2

T25TB1

where h=H/(T2−T1), as above. The equilibrium condition thus becomes

x(0)=x(1)=l0
�

x(0) e−m0 x(0)−
H

m0 x(0)(T2−T1)
(e−m0 x(0)(1−T2)−e−m0 x(0)(1−T1))

�
The corresponding Beverton-Holt solution (Eq. (3)) is
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' h
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�
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� m0 x(0)
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such that the equilibrium condition becomes

x(0)=x(1)=l0
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: m0 x(0)' H m0

(T2−T1)
(1+m0 x (0) T1)

;
−
' H m0

(T2−T1)
(T2−T1

;;;−1+m0(1−T2)
;−1

References

Allen, L.J.S., Strauss, M.J., Thorvilson, H.G., Lipe, W.N.,
1991. A preliminary mathematical model of the apple twig
borer (Coleoptera: Bostrichidae) and grapes on the Texas
High Plains. Ecol. Model. 58, 369–382.

Anderson, D.R, Burnham, K.P., 1976. Population ecology of
the mallard VI, the effect of exploitation on survival. US
Fish Wildl. Serv. Resour. Publ. 128, 1–66.
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