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abstract: Adaptive explanations for dormancy often invoke bet
hedging, where reduced mean fitness can be adaptive if it associates
with reduced fitness variance. Sex allocation theory typically ignores
variance effects and focuses on mean fitness. For many cyclical par-
thenogens, these themes become linked, as only sexually produced
eggs undergo the dormancy needed to survive harsh conditions. We
ask how sex allocation and the timing of sex evolve when this constraint
exists in the form of a trade-off between asexual reproduction and sexual
production of dormant eggs—the former being crucial for within-season
success and the latter for survival across seasons.We show that male pro-
duction can be temporally separated from or co-occur with sex, de-
pending on whether direct (time) or indirect (population density) cues
of the season’s end are available andwhether population growth is density
dependent. Sex generally occurs late in the season but is induced earlier in
unpredictable environments. When only indirect cues are available, the
temporal spread of sex, and with it the production of dormant stages, is
even larger and, given sufficient mortality, leads to endogenous popula-
tion cycles in which frequent sex coincides with high densities. In all
scenarios, algorithms maximizing geometric mean fitness have reduced
fitness variance compared with a hypothetical non–bet hedger, con-
firming that the timing ofmale production and sex in facultative seasonal
settings can be bet-hedging traits.

Keywords: bet hedging, facultative sex, timing of sex, sex allocation,
population density.

Introduction

Temporal variation in the environment leads to amajor chal-
lenge: Howdo organisms adapt to often unpredictably fluctu-
ating environments? If reliable cues are available, plasticity
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can allow organisms to adjust their phenotype to current en-
vironmental conditions (Via and Lande 1985). However,
organisms often cannot perfectly predict the demographic
consequences of their current phenotypic choices. Finding
the best life-history solutions can become challenging (Mc-
Namara et al. 2016), as simple maximization of mean fitness
must be replaced with a more complicated set of trade-offs
between mean fitness and its variance within and among in-
dividuals, which is summarized as bet-hedging theory (Slatkin
1974; review Starrfelt and Kokko 2012).
Dormancy is a classic example of a trait that has been

suggested to evolve due to bet hedging (Evans and Dennehy
2005; Gourbière and Menu 2009). It has attracted much at-
tention in plants (Ellner 1985; Gremer et al. 2012; Tielbör-
ger et al. 2012; Gremer and Venable 2014) where germina-
tion probabilities are predicted to evolve to remain below 1;
that is, not all seeds will germinate in the same season. Re-
cent work considers analogous cases in animals like rotifers
(García-Roger et al. 2014) and crustaceans (Pinceel et al.
2017), where eggs hatch after a variable delay. The general
idea is that variable dormancy length can be beneficial if
seasons vary in the suitability of conditions for the germi-
nating (hatching) offspring; bet-hedging strategies buffer
the risk of reproductive failure because not all offspring de-
velop to experience the same environment (Cohen 1966).
In many organisms that engage in facultative sex (cyclical

parthenogens), a mirror image of the plant germination case
is encountered: the bet-hedging aspect of dormancy relates to
its onset rather than its termination (though these can also co-
evolve; Spencer et al. 2001). In cyclical parthenogens, some
generations are asexually produced and others sexually pro-
duced, a pattern that has evolved independently in several
taxa, including Daphnia (Decaestecker et al. 2009), various
insects (Simon et al. 2002; Burke et al. 2015), rotifers (Aparici
et al. 1998), and many plants (Bengtsson and Ceplitis 2000).
In such taxa, sexual reproduction is often tightly coupledwith
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dormancy and/or dispersal (Simon et al. 2002; Ebert 2005;
Schröder 2005), such that cost-benefit calculations of sex
are driven overwhelmingly by the demographic effects that
arise from the different fates of dormant and directly develop-
ing offspring (Stelzer and Lehtonen [2016] demonstrate this
for rotifers). A parent has the choice of asexual reproduction,
which contributes to immediate local population growth, or
of adding to the pool of sexually produced dormant eggs that
may also disperse.

Trade-offs betweenmean (arithmetic) fitness and its var-
iance are particularly clear when the environment varies so
much that some periods can only be survived in the dor-
mant stage, and the timing of harsh conditions is difficult
to predict. Asexual reproduction offers the potential for fast
growth and competitiveness within a growing season, but
sexual reproduction, which is the only means by which to
produce dormant eggs, is ultimately necessary, or the entire
lineage fails to survive to the next season, should dormancy
be needed in between. Sex is thus crucial for long-term sur-
vival of a lineage, but when should it be employed?

When sexes are separate, an added complication is that
three types of offspringmay be produced. InDaphniamagna,
on which we base our study, dormant eggs can be produced
only sexually. Amother can produce either daughters or sons
asexually or can mate with males and produce dormant eggs
provided with a protective shell called an ephippium. Envi-
ronmental cues can induce both male production and sexual
reproduction and thus the formation of dormant ephippia.
Day-length variation is an obvious cue of seasonal changes
(Alekseev and Lampert 2001; Gilbert and Schröder 2004);
for example, in northern Europe, shortening days that herald
the approach of winter induce male production and sex
(Roulin et al. 2013). However, hot spells in northern summers
may also dry out populations in shallow water bodies. Addi-
tionally, if a population grows dense (via past asexuality), this
can induce male production and sexual reproduction, for ex-
ample, due to increased competition or reduced demographic
cost of sex if high densities limit asexual growth (Gerber et al.
2018a). An unanswered question is whether such responses
are shaped by bet hedging: Does a winning strategy achieve
its success by modulating its variance in fitness in a beneficial
direction, even if mean (arithmetic) fitness declines (Starrfelt
and Kokko 2012), and does this depend on whether cues of
the timing of the season’s end are imprecise, indirect, or both?
Our aim is thus to link sex allocation theory with the theory of
bet hedging in a potentially complicated setting, where equal
investment in male and female offspring is not the a priori
expectation (because of generational overlap with seasonal
variation [Kahn et al. 2015] combining with female repro-
duction not being constrained bymate availabilitywhen asex-
uality is an option [Booksmythe et al. 2018]).

Consider a strategy that begins reproducing sexually early
in the season, largely forgoing the chance to fill the local en-
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vironment with asexually produced females. Within-season
fitness is reduced, and at any point only a few mothers are
available to produce ephippia (note that asexual Daphnia
generations overlap within a season). However, early sex also
has demographic benefits, as it reduces the variance in fitness;
whether or not the season ends early, some ephippia have
been produced.
Conversely, a strategy that begins sexual reproduction

only late in the season may yield some fitness benefits: a
long period of asexuality means that various demographic
costs of sex (Lehtonen et al. 2012) are avoided for several
generations. Once sex begins, the lineage comprises many
mothers producing ephippia. As a consequence, a late-sex
lineage is very productive if the season lasts sufficiently long.
However, if the season ends sooner than sex was scheduled to
begin, the entire lineagemay still be asexual, with no ephippia
produced to found the next generation. A risk-spreading
strategy would then have been superior, producing at least
some offspring equipped to survive the unfavorable season
(Halkett et al. 2004; Tarazona et al. 2017).
While the above captures the essence of the problem,

added complexity comes from the fact that sex requires
males. In cyclical parthenogens, sex allocation decisions—
that is, offspring of which sex to produce—are not separate
from which reproductive mode to invest in (sexual or asex-
ual); production of males is pointless if no females are sexual
in the near future. Currently, the only theoretical results for
cyclical parthenogen sex allocation consider haplodiploid ro-
tifers (Aparici et al. 1998; Serra et al. 2008). Their life cycles
differ from our case asmale abundance in rotifers directly af-
fects whethermictic (sexual) females produce sons or daugh-
ters (fertilized eggs develop into females). Also, these studies
have not considered stochastic variation in season length, so
they do not comment on the relevance of bet hedging. Our
model considers male production as part of the bet-hedging
framework needed to understand the timing of sex in cyclical
parthenogens.
Methods

The Daphnia System

In most Daphnia species, sexual reproduction is coupled
with the formation of dormant eggs (for an exception, see
Hebert 1981). Female Daphnia are iteroparous, with over-
lapping generations within a season, producing a clutch af-
ter every molt until death. Females can alternate between
asexual and sexual reproduction throughout the season
(fig. 1), producing three kinds of diploid offspring: asexu-
ally produced males and females and sexually produced
dormant eggs that develop after dormancy into females.
Note that in Daphnia sex determination is environmental,
not genetic; thus, parthenogenetically produced offspring
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Bet Hedging, Sex Allocation, and Facultative Sex 000
are clones of their mother, irrespective of their sex (Ebert
2005). Asexual clutch sex ratios are strongly biased toward
one sex (Booksmythe et al. 2018). Therefore, we assume
that a female produces either a clutch of females or a clutch
of males in each asexual cycle.

The cost of sex is complicated to compute for cyclical
parthenogens (Stelzer and Lehtonen 2016) but is clearly sub-
stantial within a season, as sex leads to no directly developing
offspring. Producing males likewise trades off directly with
production of daughters, who could increase the local density
of females (each capable of eventual ephippia production). In
addition, sexual reproduction inDaphnia entails a starkly re-
duced clutch size: females reproducing sexually produce only
two eggs, while an asexual clutch can contain up to about
100 offspring (Ebert 2005; Gerber et al. 2018a). Finally, sex-
ually produced eggs need to be fertilized by amale before be-
ing enclosed in the ephippium, which is released into the en-
vironment upon the female’s next molt; a female committed
to producing an ephippium might fail to get these eggs fer-
tilized if no males were present.
The Model

The model is based on examining whether a mutant that
uses a different schedule of male production and/or sexual
reproduction from a resident strategy can spread in a vari-
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able environment. Thus, we aim to find a strategy that has
reached such a state that alternative strategies cannot in-
vade in the long term, when seasons vary in length. To find
such a strategy, we need a measure for long-term fitness in
an environment with variable season length that is based on
the dynamics within each season. Here, we use a novel ap-
proach and extend the approach of geometric mean fitness
by Starrfelt and Kokko (2012) with within-season calcula-
tions (fig. S1; video B1; figs. S1–S4 and video B1 are avail-
able online).
We first describe the fitness computations for each strat-

egy. Thereafter, we describe how a genetic algorithm uses
the relative fitness values of each strategy to update the best
solution found so far and creates a new set of potential com-
petitor values to be tested. This section will also justify the
use of a genetic algorithm. One round of the genetic algo-
rithm consists of evaluating the performance of several pos-
sible mutants, each of them evaluated with respect to all
possible season lengths, against the currently best possible
resident.
The fitness computations themselves represent a two-

stage process consisting of between- and within-season dy-
namics. First, we consider the between-season dynamics:
What is the long-term fitness of a strategy with a known
yearly sequence (distribution) of total ephippia produced?
We use the approximation of geometricmean fitness (Starrfelt
asexual cycle

(1−s)(1−m)

s

sexual cycle

(1−s)m

Figure 1: Daphnia life cycle. Female Daphnia have three reproductive options in every breeding cycle. A female can produce asexual
daughters with probability (12 s)(12m), can produce asexual sons with probability (12 s)m, or can reproduce sexually and build an
ephippium with probability s. The eggs that will be dormant inside an ephippium have to be fertilized by a male.
.060.105.130 on June 25, 2018 23:12:50 PM
s and Conditions (http://www.journals.uchicago.edu/t-and-c).



1. Code that appears in The American Naturalist is provided as a conve-
nience to the readers. It has not necessarily been tested as part of the peer re-
view.

000 The American Naturalist
and Kokko 2012), justified when nonoverlapping ephippial
generations follow each other in time. Note that this implic-
itly assumes that all ephippia begin contributing to popula-
tions in the season that immediately follows; this is realistic
for Daphnia in shallow rock pools (Ebert 2005), where long-
term deposits cannot accumulate. It is also a good approxi-
mation for other systems, as long as contributions from older
sediments remain negligible. We next compute the within-
season dynamics of accumulated ephippia production for
each strategy: What is the probability of a given strategy hav-
ing produced 0, 1, . . . , ephippia by the time the season ends?
Our modeling tracks the accumulating ephippia production
within a season for any given strategy. The realized accumu-
lated number depends not only on the strategy but also on
season length, modeled as a random variable.

We model fitness as a nonnegative real number; we do
not force it to be an integer. This reflects our choice to fo-
cus on the environment (season length) as the dominant
source of stochasticity in the system. This allows us to ig-
nore demographic stochasticity, that is, the potentially non-
identical outcome of two runs of the same demographic
process under an identical season length (because females
with an identical propensity to produce ephippia or males
might still differ in their realized choices in any one time
step). Given our focus on environmental variation, we in-
stead model the within-season dynamics deterministically
(e.g., if the current probability of ephippia production is
0.3 and there are currently 1,000 females, they are recorded
to yield an expected number of 300 ephippia in the current
time step). The bet-hedging aspect arises irrespective of demo-
graphic stochasticity: fitness is unpredictable at the beginning
of each season because the season length is not yet known.

Daphnia locally adapt to day length (Roulin et al. 2013),
but reproductive decision-making can also be density de-
pendent (Kleiven et al. 1992; Berg et al. 2001; Gerber et al.
2018a). We therefore make two alternative assumptions
about how Daphnia infer time in the season: first, that they
have perfect information about the time already elapsed (di-
rect cue), and second, that this information is imperfect and
the only cue available is current population density (indirect
cue). Additionally, we consider two scenarios where popula-
tion growth does or does not experience density dependence.
The density-independent scenario is simpler (and might be
accurate for a population that cannot saturate in a large
water body), while the inclusion of density dependence is
typically more realistic. We model the former (density-
independent growth) by assuming each asexual clutch leads
to c mature individuals, while in the latter case the number
of maturing individuals declines with population density.
(We denote the number of individuals that mature from
one clutch as c, which captures the effect of clutch size as well
as juvenile survival; see app. A, table A1 for model parameter
definition). This yields a two-by-two table of assumptions
This content downloaded from 130
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such that density is allowed to impact the population as a
cue only, as a factor influencing population growth only, as
both, or as neither (fig. 2).
The definition of bet hedging is satisfied when a strategy

reduces mean (arithmetic) fitness as well as the variance in
fitness. Because reductions cannot be evaluated unless there
is a baseline, we require a hypothetical non–bet hedger for
comparison (Li et al. 2017). This hypothetical non–bet hedger
obeys the same rules as above, but it maximizes arithmetic
rather than geometric mean fitness. We present calculations
based on this hypothetical organism to evaluate whether
the timing of sex can be considered a bet-hedging trait.
The calculations below, wherever not specifically indicated

to differ, are identical for each version of the model. The
Matlab code to reproduce the model is deposited to Dryad
(Gerber et al.2018b; http://dx.doi.org/10.5061/dryad.885r162)
and is available in the supplemental materials as a zip file,
available online.1

Between-Season Dynamics. We base our model on the life
history of Daphnia, confining our view of the benefits of sex
to its strong demographic effect in this system: sex is re-
quired to survive harsh conditions because it is the only
means by which to produce dormant eggs.
The probability that the season ends after T breeding

cycles is denoted pT, and all active individuals die at this
Figure 2: The two-by-two assumption sets.
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Bet Hedging, Sex Allocation, and Facultative Sex 000
point while ephippia produced during the season carry on
their dormancy. The fitness of a strategy is defined by the geo-
metric mean of ephippium production over all possible sea-
son lengths. We assume all ephippia hatch in the season fol-
lowing their production, irrespective of the precise timing of
their production. A strategy’s fitnessW is the geometricmean
of the total number of gene copies,GT, in dormant ephippia at
the end of a season, computed for each possible season length
t and weighted by the probability that each season length
occurs, pT (we assume that the maximum season length is
Tmax). Computationally, it is easier to work with the loga-
rithm of fitness:

lnW p
XTmax

TpTmin

pT lnGT : ð1Þ

Theoretically, the probability distribution pT can take any
shape. We explore the effect of uniformly distributed prob-
abilities, where pT takes the same value for all integers be-
tween Tmin and Tmax (we avoid setting Tmin p 1, as seasons
this short preclude the maturation of asexually produced
young). Varying the difference between Tmin and Tmax allows
us to explore different season predictabilities, from a highly
predictable scenario where the season can end only at
Tmax to highly unpredictable scenarios where the shortest
seasons, of length Tmin, are far shorter than the longest
seasons that last Tmax breeding cycles. We have chosen a uni-
form distribution to achieve a range of scenarios, from no
variance in season length to very high variance. Note that
the method of analysis could be applied to any desired shape
(e.g., bimodal) of season-length distributions; it would in-
volve simply entering a desired set of pT values in equa-
tion (1).
Within-SeasonDynamics.The within-season dynamics spec-
ify what females do (using the options described in fig. 1)
at each of the possible breeding cycles, from t p 1 to t p
T (the end of the season, which can go up to Tmax or end
sooner), and quantify the number of ephippia that accu-
mulate up to the time point when the season ends. Asexual
reproduction results in lineages sharing the same genotype,
which defines the reproductive strategy. Genotypic similarity
does not affect the strength of competition between clones.
Different clones use strategies that differ in the probability
of reproducing sexually at time t (denoted st) and in the con-
ditional probability of producing males if reproduction were
not sexual (denoted mt). Thus, at each time point a female’s
three options are an all-female clutch (probability (12 st)
(12mt)), an all-male clutch (probability (12 st)mt), or an
ephippium (probability st). The difference between the di-
rect cue strategy set and indirect cue strategy set is that st and
mt are determined by time t in the former but are a function
This content downloaded from 130
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of population density at time t in the latter: st p s(Nt) and
mt p m(Nt).
Sexual clutch size is fixed to two eggs. We also need to

account for the possibility that the number of gene copies
present in these eggs, which is produced by a certain tim-
ing strategy, differs: if the male as well as the female are
from the same clone, the genetic representation is doubled
compared with outbreeding. Here we deviate from pure
invasion analysis of a rare mutant, where mutants are as-
sumed so rare that they do not encounter each other. Our ra-
tionale is that should the resident population produce no
males, the ability of a mutant clone to reproduce sexually
depends on its own male production, and we want to include
this effect. Asexual clutch size varies and is typically much
larger than two. Where population growth is density depen-
dent, we assume a sigmoid relationship between c and popu-
lation density. This relationship is approximated from field
data (Gerber et al. 2018a), with c ranging from themean asex-
ual clutch size of the largest 10% of measured clutches at low
densities to ∼0 at very high densities (fig. S2). Where popula-
tion growth is density independent, we keep c constant.
When carrying capacity is reached, individuals can still repro-
duce sexually because sexually produced eggs do not contrib-
ute to current population density, and empirical data show
that high densities do not impede the production of sexual
clutches (Gerber et al. 2018a). We assume equal survival
for male and female clutches.
We follow the dynamics of a rare mutant clone in a popu-

lation otherwise consisting of a resident strategy. Mutants dif-
fer from residents only with respect to timing; thus, our model
operates in the absence of any other differences in competi-
tive ability. Below, we use st and mt to refer to the strategy
set regardless of whether cues are direct (time) or indirect
(population density); the difference in interpretation is that
if population densities are the same at two time points, the
corresponding st andmt valuesmay differ in the direct cue set-
ting but must be the same if cues are indirect. We use the su-
perscript rwhen referring to the resident strategy, contrasting
with themutant strategy (denoted by 0) whose fitness we eval-
uate.
We first calculate the dynamics of the resident popula-

tion strategy that determines the environment in which a
mutant strategy’s fitness is evaluated. Each female follow-
ing the resident strategy reproduces sexually with proba-
bility srt at time t and produces males with probability mr

t

if reproducing asexually. To compute the density of mature
individuals in the resident population at time t, we consider
that asexually produced males and females require two
breeding cycles to reach maturity. The mortality of mature
individuals is assumed to equal df (females) or dm (males)
when measured over one breeding cycle.
The number of mature females at time t (Fr

t ) equals
the newly matured females that were produced at time
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,

0
t

t 2 2, plus the number of surviving previously mature
females (Fr

t21):

Fr
t p Fr

t22c(12 srt22)(12mr
t22)1 Fr

t21(12 df ): ð2aÞ
The equivalent male equation reads

Mr
t p Fr

t22c(12 srt22)mr
t22 1Mr

t21(12 dm): ð2bÞ
The sequence of Fr

t , Mr
t values forms the environment in

which a mutant’s fitness is evaluated. Mutant dynamics
(F 0

t and M0
t) are computed analogously to equations (2a)

and (2b),

F 0
t p F 0

t22c(12 s0t22)(12m0
t22)1 F 0

t21(12 df ),

M0
t p F 0

t22c(12 s0t22)m0
t22 1M0

t21(12 dm):
ð3bÞ

To compute mutant fitness, we assume the population
starts with one mutant among a much larger number of
resident females (999 in our examples, bringing the total
population to 1,000; note that in Daphnia, all individuals
hatching from ephippia are female). In practice, the ratio
of mutants to residents matters little to the outcome.

Sexual reproduction requires that males are present in the
population.WheneverMr

t 1M0
t 1 0, the total number of ep-

hippia produced at time t by the mutant clone equals F 0
ts0t .

Each ephippium contributes, on average, fitness 11M0
t=

(Mr
t 1M0

t) to the clone that produced it (M0
t=(Mr

t 1M0
t) be-

ing the probability that the father belongs to the same clone);
simultaneously, the resident population produces Fr

t srt ep-
hippia, and each of these contributes, on average,M0

t=(Mr
t 1

M0
t) units of fitness to the mutant clone via paternity. Thus,

the fitness accrued by the mutant strategy at time t is

g 0t p

�
F 0

t s0t(11M0
t=(Mr

t 1M0
t))1 Fr

t srtM0
t=(Mr

t 1M0
t) if Mr

t 1M0
t 1 0;

0 otherwise:
ð4Þ

If the season lasts until t p T , total fitness accumula-
tion equals

GT p
XT

tp1

gt: ð5Þ

The value GT is inserted into the between-season dynamics
equation (eq. [1]). A full evaluation of the value of equa-
tion (1) requires as many calculations of equation (5) as
there are possible season lengths, T. The resulting GT for
each possible T is then weighted with the probability pT
that this length occurs in nature (eq. [1]). Note that this ap-
proach does not involve replacing the resident with a mu-
tant as soon as the latter has a superior GT value in any spe-
cific season, which could erroneously lead to assigning high
success to a strategy with no long-term prospects. Instead,
the winner (based on eq. [1]) is determined only once suc-
cess has been computed over the entire distribution of sea-
son lengths that can occur in nature.

ð3aÞ
ð3bÞ

ð4Þ
Genetic Algorithm. In principle, the above steps are suffi-
cient to find an overall winner. Practically, however, finding
the fitness-maximizing values for s andm for every time point
t is challenging, for several reasons. First, while s and m can
have independently evolving values at every breeding cycle
or population density (depending on model version), this
may conflict with the general notion that wemight not expect
perfectly fine-tuned evolutionary responses to minor varia-
tions in the environment (McNamara et al. 1997; McNamara
and Houston 2009). Second, the chosen strategy at time t can
influence future time points (e.g., a diminishing proportion of
males produced at time t are still available in future breeding
cycles). Third, the optimal strategy depends not only on the
mutant clone’s behavior but also on the behavior of the resi-
dent population; for example, male production pays off less
well if there are no outbreeding opportunities because the
resident population produces no ephippia. On the other
hand, sex is possible without producing males if others pro-
duce them but requires ownmale production if not. Finally
we must calculate the geometric mean as a fitness measure
for every possible season end. Based on the complexity of
the situation, we do not seek analytical solutions but use a
genetic algorithm that follows haploid sexual reproduction
Note that we choose a genetic algorithm not to accurately
simulate chromosomes of Daphnia but as a tool to find so-
lutions to a complex life-history problem.
The Algorithm. First, we create a resident strategy srt and mr
t

for every breeding cycle by drawing uniformly distributed
random numbers between 0 and 1 for every t. This is sim-
ple for the direct cue scenario, but it requires that srt obeys
a functional form sr(Nt) in the indirect cue scenario. For
the latter we group the logarithmic population density into
100 categorical bins with logarithmically spaced borders
such that the first bin contains all log densities between 0
and 1, the second bin between 1 and 2, . . . , until 100
(the largest population density our model can handle is
e100, which is sufficiently large to never be reached). The
value s(N) is assumed equal for the range of population den-
sities in one bin. In the next step, nine mutant strategies s
andm0

t (or s0(Nt) andm0(Nt)) are created by adding normally
distributed random numbers to the resident strategy. Values
below 0 are set to 0 and values larger than 1 are set to 1, so
that 1 1 s0bin, m

0
bin, s

0
t , m0

t 1 0.
Using equations (2) and (3), we can calculate the dy-

namics of the resident and mutant strategies and the fit-
ness of each strategy; this is given by equation (1), except
for the case of a hypothetical non–bet hedger, for which
equation (1) is replaced by

W p
1

Tmax

XTmax

Tp1

pTGT : ð6Þ
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We thereafter keep the two strategies that yield the highest
fitness and the resident strategy. These three strategies offer
three options for s andm for each breeding cycle (or density
bin). The algorithm creates nine recombinant strategies by
randomly choosing, for each breeding cycle (or density
bin), a value with a probability of 1/3 from any of the three
options available. Additionally, with probability p (indepen-
dently applied for each cycle or bin of each recombinant
strategy), the recombinant may take its value from a tempo-
rally adjacent breeding cycle (or density bin). This speeds up
the optimization process because well-performing actions at
time T can spread to temporally neighboring points. Strate-
gies at the first and last breeding cycle (or density bin) have
only one adjacent strategy from which to copy.

Finally, the fitness of the original resident and the re-
combinant strategies are calculated as described for the
mutant strategies. The strategy with the highest fitness be-
comes the new resident strategy from which mutants are
created in the next round of the algorithm.

This algorithm optimizes the values for st and mt at every
breeding cycle within a season. Assuming convergence, this
yields the approximately optimal strategy of the timing of sex-
ual reproduction and male production. For each scenario we
ran the algorithm until the optimization criterion (eq. [6])
remained unchanged for 100 iterations. This criterion was
reached after amean of 6,238.8 to amean of 10,358 rounds, de-
pending on scenario. Instead of averaging independent runs,
we present the results of the best-performing strategy of 10 in-
dependent runs, since we are able to compare in absolute terms
the performance of strategies produced by a genetic algorithm
and because finding a better onemakes a previously found, less
well-performing strategy obsolete.
Results

Direct Cue of Time: Density-Independent
Population Growth

Situations in which females have information on how far
the season has progressed, and population growth is den-
sity independent, present the simplest case of all our model
versions. If we additionally assume that the season end is
perfectly predictable (fig. 3, top), females only invest in sex-
ual reproduction very late: it is more efficient to reproduce
asexually unless the season end is imminent. To be precise,
females switch to sexual reproduction two breeding cycles
before the season ends (fig. 3). Because we assume it takes
two breeding cycles for directly developing offspring to ma-
ture, it is optimal to switch to sex when asexually produced
daughters no longer have time to mature and contribute to
reproduction. Similarly, because males also need two breed-
ing cycles to mature, and successful sex requires males, they
are produced two breeding cycles before sex is induced (fig. 3,
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top). Predictable conditions therefore lead to late sex, and the
situation additionally recovers, at least to an approximate de-
gree, the familiar principle of equal investment in sex alloca-
tion (West 2009): during male production (time steps 27 and
28 in fig. 3, top), the sex ratio of newly produced offspring
deviates only slightly from 50%. The deviation is in the direc-
tion ofmoremale production (150%), and it is easy to under-
stand: anymale produced arises during these time steps, while
females may have been produced earlier, and some of these
females may still be alive when sexual reproduction com-
mences.
Increasing uncertainty leads to a far wider spread of sex

and male production (fig. 3,middle and bottom) and to some
inaccuracy of the best algorithm, as a small fraction of males
are produced later than they can possibly mature (fig. 3,mid-
dle and bottom, at times 29 and 30, respectively; note that
very few generations actually experience seasons this long,
which helps to explain the approximate performance of the
algorithm at this end). Any straightforward expectation of
equal investment becomes unjustified, a result known from
sex allocation theory when scenarios involve overlapping
generations and sequential decisions with mortality occur-
ring in between (West 2009; Kahn et al. 2015). As an addi-
tional complication, the facultative nature of sex means that
males can hope to fertilize eggs only when females commit to
sexual egg production; thus, we expect deviations from 1∶1
sex ratios mostly in the downward (fewer males) direction.
The model confirms this expectation and predicts that un-

certain season lengthsmake the production ofmales and sex-
ual eggs overlap, with an increase that is shallower than the
cumulative probability that the season has ended by time t.
The common feature between all cases is that male produc-
tion commences precisely two breeding cycles before the
production of sexual eggs, reflecting our assumption of a
fixed time to maturity. While conceptually clear, this density-
independent model scenario is unrealistic for long seasons,
as populations reach unrealistically high densities (1017–1019

individuals).
Direct Cue of Time: Density-Dependent
Population Growth

Introducing density dependence retains many of the patterns
of the density-independent model while keeping population
densities within a realistic range. Male production precedes
sexual reproduction, and increased unpredictability of the
season length broadens the time over which sex occurs. The
main difference from the density-independent model is that
asexual female production ceases as soon as carrying capacity
is reached (fig. 4). If adult mortality is low this cessation may
be permanent, and adult population size gradually declines
over the remainder of the season (fig. 4, middle and bottom)
or, in the predictable-season-end case, even earlier (fig. 4,
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top). During this time, existing females simply release ephip-
pia; because males die at the same rate as females, they are
mostly still available to fertilize the ephippial eggs.

The above assumes low mortality, such that the adult
population size decays slowly in the absence of new, directly
developing offspring. If adult mortality increases and the
season length is very unpredictable (fig. S3), the solution
changes to an early peak of sexual reproduction (preceded
by male production) during which female production does
not completely cease, followed by a switch back to the pre-
dominant production of directly developing females, which
in turn precedes the final return to sexual reproduction
(again with male production first). In this setting, by the time
at which it is possible but unlikely that the season has ended,
some ephippia will have been produced, while most sex hap-
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pens later, when the cumulative probability of the season
having ended becomes appreciable. The population density
shows, correspondingly, two peaks (fig. S3c).
Indirect Cue (Density Is a Cue for Time):
Density-Independent Growth

There is little relative difference between populations with ac-
cess to direct cues (fig. 3) and those that rely on the indirect
cue of population density (fig. 5). However, the latter case
shows mild signs of the algorithm having produced only an
approximate solution: infigure 5, top, male production begins
three breeding cycles before eggs requiring fertilization ap-
pear. This may reflect computational inaccuracies as we were
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Figure 3: Direct cue, density-independent population growth. The optimal proportions of sexual reproduction, s, and male production
(12 s)m, at every breeding cycle in a season following the assumptions in the lower left-hand corner of figure 2. The remaining white area
therefore indicates female production, (12 s)(12m). Panels illustrate three different predictabilities of the season end (the cumulative prob-
ability of which is indicated with vertical lines); we show the best strategy of 10 independent runs of the genetic algorithm. Panels show that
(top) the season will predictably end at Tmin p Tmax p 30; (middle) there are 11 possible end times between Tmin p 20 and Tmax p 30; and
(bottom) there are 21 possible end times between Tmin p 10 and Tmax p 30. All panels use df p dm p 0:05, c p 10.
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forced to assume identical responses to all within-bin popu-
lation densities that occurred in a population.
Indirect Cue (Density Is a Cue for Time):
Density-Dependent Population Growth

When population growth is density dependent and density
itself acts as a cue to switch between reproductive modes,
we find qualitatively the same pattern as before: density-
dependent population growth greatly broadens the time
over which sex occurs (fig. 6) compared with the density-
independent scenario (fig. 5). If adult mortality is low, the
asexual production of directly developing females is low
over much of the season (fig. 6). Higher adult mortality
creates a stronger need to replenish the population of adult
females should the season continue (fig. S4), and the details
of season length then determine whether population density
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shows cyclic behavior or a slow increase or decline (fig. S4). At
high- and low-season-length predictabilities, male and sex-
ual egg production overlap, and population density stays
relatively constant (figs. 6, top, bottom, S4a, S4c). Interest-
ingly, intermediate-season-length predictability can produce
density cycles, where peaks correspondwith the highest prev-
alence of sex (figs. 6,middle, S4b). Frequent sex leads to a de-
cline in population size (adult mortality combines with little
asexual offspring production), which in turn induces asexual
production of males and females. The sex allocation pattern
during this phase shows fewer males if adult mortality is
higher (contrast fig. S4b with fig. 6, middle).
Evaluation of Bet Hedging

To evaluate whether a strategy selected to optimize geo-
metric mean fitness (measured as total ephippia produc-
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Figure 4: Direct cue, density-dependent population growth. The same notation and parameter values as in figure 3, with assumptions fol-
lowing the top left-hand corner in figure 2, where recruitment c obeys the function exp(41 (2 524)=(11 exp((20:3)(ln(density)2 8))))
(see fig. S2).
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tion over multiple seasons) meets criteria for bet hedging,
we compared the arithmetic mean and variance in ephippia
produced by this strategy with the mean and variance pro-
duced by a hypothetical non–bet hedger selected to opti-
mize arithmetic mean fitness. Although this non–bet hedger
cannot persist in nature if it produces zero offspring in any
given season, it forms the necessary baseline that allows us
to evaluate the fitness moments that helped the evolved strat-
egy express its demographic superiority. Relative to the non–
bet hedger, we expect a decrease in both the arithmetic mean
fitness and variance in fitness of the strategy optimizing geo-
metric mean fitness, if this strategy is a bet hedger.

Absolute fitness means and variances differed greatly
across model assumption sets (fig. 7); however, bet-hedging
criteria were satisfied in all environments (which generally
spanned a larger range of potential season lengths than the
examples shown in figs. 3–6). The difference in variance
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was not always of the same magnitude as the difference
in mean (lines in fig. 7 are not parallel), and the absolute
magnitude of the differences depended strongly on the un-
predictability of the environment. As expected, a shorter
period of uncertainty (a late Tmin) led to a smaller difference
in either fitness moment between the bet hedger and non–
bet hedger.
Discussion

Strategies of sex allocation and reproductive mode in cy-
clical parthenogens are poorly understood, especially when
environments are unpredictable. Our models show that for
facultatively sexual organisms, spreading the use of sexual
reproduction, and with this the production of dormant
eggs, over several breeding cycles can be adaptive in unpre-
dictable environments, and this strategy satisfies criteria for
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Figure 5: Indirect cue, density-independent population growth. The same notation and parameter values as in figure 3, but with assumptions
following the top right-hand corner of figure 2.
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bet hedging. When season length is unpredictable, the in-
duction of sexual reproduction is driven by the temporal
probability distribution of the length of the season, with im-
portant modifications that depend both on the seasonal
cues available and whether recruitment is density depen-
dent.

When the end of the season is predictable, sexual produc-
tion of dormant eggs only occurs shortly before the season
actually ends. In all other environments, sexual production
of dormant eggs is a risk-spreading strategy, with some
ephippia produced as soon as there is some risk that the sea-
son might end and male production beginning strategically
as long beforehand as is needed for the first male generation
to mature. Our finding that sex is spread more widely when
season length is more variable is consistent with models
based on other cyclical parthenogen life histories, such as
those of aphids, where optimal investment in sexual repro-
duction is proportional to the variance in the season end
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(Halkett et al. 2004). A gradual and precocious induction
of sex in uncertain environments was also described in a
general model of cyclical parthenogens, where sexual repro-
duction is linked with dormancy (Spencer et al. 2001).
These earlier studies, however, did not link their findings

with literature on sex allocation. In this context, cyclical
parthenogens present another set of problems (Aparici
et al. 1998; Serra et al. 2008). For example, is there a sense
in which equal allocation to males and females is main-
tained? In some qualified sense the answer may be yes; in
monogonont rotifers, sexual females are a specific subset
of all females, and male production may evolve to match
their number (Serra et al. 2008). However, when a specific
female does not have to commit to sex (e.g., in Daphnia,
females can switch back and forth between reproductive
modes), it is less clear whether one can expect any general
insight regarding total investment. This is due to the dynamic
nature of sex allocation, where males produced in different
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Figure 6: Indirect cue, density-dependent population growth. The same notation and parameter values as figure 3, with assumptions fol-
lowing the lower right-hand corner in figure 2, and thus assumptions regarding recruitment c follow those of figure 4.
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time steps may coexist and compete for females—only some
of which offer fertilization opportunities (Booksmythe et al.
2018). In alignment with other situations in which a sequen-
tial nature of interactions (including mortality) can blur an
expectation based on investments (Kahn et al. 2015), our
results highlight that near-equal sex ratios are produced only
in rather exceptional circumstances, where all females are
about to turn sexual very soon.

Amore general question, then, arises: Shouldmale produc-
tion take place mainly before sexual reproduction begins, or
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should it co-occur with sex to enable replenishment of the
male population? We find the former solution more often if
individuals have direct cues of how late it is in the season, al-
lowing formore precisely orchestrated timing of each category
of individuals. The alternative, where some females produce
male clutcheswhile others produce females and yet others de-
velop eggs requiring fertilization, tends to associate with indi-
rect cues, although not categorically. Indirect cues can also
lead to temporal separation of male production and sex, if
at high density sex becomes so prevalent that the current pop-
Va
ria

nc
e

Va
ria

nc
e

geometric optimization
arithmetic optimization

Tmin = 29

Tmin = 24
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Figure 7: Bet hedging. Comparison of the (arithmetic) mean and variance in ephippia production for strategies selected to optimize either
the arithmetic mean (diamond) or the geometric mean (circle) ephippia production. The four tested scenarios correspond with those listed in
figure 2. All panels use df p dm p 0:05 and Tmax p 30, with recruitment c being either fixed at 10 (top row) or density dependent (bottom
row) as described in figure S2.
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ulation declines. Once it has decreased below a threshold, the
best strategy switches to replenishing the adult population,
and male production once again anticipates future mating
opportunities (Kahn et al. 2013).

How well do our predictions match what is found in na-
ture? In predictable habitats we show that sexual formation
of dormant eggs should be delayed, with a peak toward the
predetermined season end or at high population densities.
Empirical studies find thatDaphnia populations in predict-
able habitats, such as permanent water bodies in seasonal,
temperate environments, produce ephippia only at the
end of the season (Galimov et al. 2011), whereas Daphnia
from shallow ponds at northern latitudes, which freeze over
winter and occasionally dry out in summer, produce ephippia
throughout the season (Altermatt and Ebert 2008; Roulin et al.
2013; Gerber et al. 2018a). While studies that consider the
timing of male presence in a population tend to focus on
the co-occurrence ofmales with sexually reproducing females,
rather than the timing of male production per se, many of
these detect males substantially earlier than the appearance
of ephippial females (e.g., Galimov et al. 2011). Our own em-
pirical results (Gerber et al. 2018a), as well as those of a previ-
ous study (Innes 1997), track clutch sex ratios over time in nat-
ural Daphnia populations and additionally show that male
production continues throughout the season, overlapping
with ephippia production.

Likewise, our results on density appear well supported by
data. When we included density-dependent recruitment in
the model, sex was induced as soon as population density
peaked, in some cases showing multiple peaks. One inter-
pretation is that the direct demographic cost of sex, relative
to asexual reproduction, is reduced at high population densi-
ties because asexuality becomes inefficient. In several cyclical
parthenogens, population density is an important predictor of
the frequency of sex (Daphnia: Carvalho and Hughes 1983;
Kleiven et al. 1992; Gerber et al. 2018a; rotifers: Serra et al.
2008; Stelzer and Snell 2003). In our model, providing the al-
gorithm with information on population density was suffi-
cient to adapt the propensity for sex to the temporal pattern
of season length, in the absence of direct information about
the season’s progression.

For density cues to work in a bet-hedging framework,
this requires a correlation between time (since the begin-
ning of the season) and population density. In seasonal
populations with few founders at the beginning of each sea-
son and a large population later on, such a correlation arises
fairly automatically. Interestingly, with sufficient adult mor-
tality, our model showed the possibility of endogenous pop-
ulation cycles: mortality exceeded recruitment during high
density (and consequent high sex) periods, which were fol-
lowed by periods of lower density, which in turn led back to
asexuality and an increase in short-term population growth.
Determining whether observed cycles in nature result from
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this process requires more fine-scaled analysis than the mere
observation that sex peaks at high density, although this obser-
vation is consistent with the above reasoning. High rates of sex
necessarily lead to lower population growth when sexual off-
spring cannot recruit and mature in the near future (Stelzer
2012), so the demographic features of our model should apply
to many systems. More details would be welcome from nat-
ural systems; for instance, we did not allow individuals us-
ing indirect cues to perceive the density of males and females
separately, even though this may be possible for Daphnia
(Booksmythe et al. 2018).
Regardless of the details of our model variants, we found

the timing of sex in cyclical parthenogens to represent a bet-
hedging strategy, where mean fitness is traded off against a
reduction in fitness variance. Empirical studies have also
shown that the formation of dormant stages can represent
bet hedging when the season is unpredictable or cues are
uncertain (Bradford and Roff 1993; Graham et al. 2014;
Furness et al. 2015). It is interesting to reflect on the classic
examples of bet hedging that consider the optimal duration
of dormancy in plants (Cohen 1966; Ellner 1985) or animals
(Hanski 1988). Incorporating the possibility of additional bet
hedging in ephippial dormancy duration might influence the
optimal strategy for sex induction in our model, because fail-
ing to produce ephippia in one season does not guarantee lin-
eage extinction when ephippia frompast seasons can hatch in
the future. However, our model should provide a good ap-
proximation for systems where long-term accumulation of
dormant stages is impossible or when reaching hatching con-
ditions again becomes highly unlikely, due, for example, to
habitat structure or high predation risk. Earlier theoretical
work investigating the interaction of the timing of sex with
the hatching fraction of eggs (Spencer et al. 2001) shows low
hatching (interpretable as high bet hedging) covaries with
situations that lead to high variability in within-season re-
productive output. Thus, the need to hedge bets within a sea-
son might not readily disappear even if organisms invest in
another bet-hedging strategy (delayed hatching).
When sexual reproduction is linked with an ecological

function (such as dormancy), which is crucial for survival
through some range of the temporal variation in an envi-
ronment, cyclical parthenogenesis is always superior to a
pure asexual strategy. This upholds the best-of-both-worlds
view of the benefits of facultative sex: periods of fast demo-
graphic growth (avoiding costs of sex) alternate with periods
of investment in sex (as a long-term survival strategy). Often,
facultative sex is said to offer the best of both worlds in a dif-
ferent setting: reaping the genetic benefits of sex while (in
most generations) avoiding its costs (D’Souza and Michiels
2010; Burke and Bonduriansky 2017). Our model focuses
on the marked differences in the demographic consequences
of sexual and asexual reproduction, which exist whenever sex
and dormancy are linked, and does not consider the potential
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genetic benefits of sex. Although genetic consequences of sex
are known to scale nonlinearly with the frequency of sex
(Green and Noakes 1995), accounting for this would proba-
bly not change the timing of sex much in our model because
all founding individuals at the season’s beginning are pro-
duced sexually, and offspring produced thereafter are their
clones (leaving little scope for direct competition between
sexual and asexual genotypes, which could be affected by pro-
cesses considered by Green and Noakes [1995]).

Ourmodel rests on the premise that sex and dormancy are
tightly coupled, an assumptionwe base on findings that this is
indeed widespread in organisms as diverse as Cladocerans
(Tessier and Caceres 2004; Wittmann et al. 2011), aphids (Si-
mon et al. 2002), rotifers (Carmona et al. 2009), and oligo-
chaete worms (Schierwater and Hauenschild 1990) as well
as many plants, where resistant seeds are sexually produced.
While our model (and that of Spencer et al. 2001) is silent on
why this link exists, an obvious next question is whether there
is an adaptive reason to expect dormant forms to be sexually
produced, while directly developing offspring result frompar-
thenogenesis—especially because some exceptions exist (for
an obligately asexual Daphnia lineage that can produce dor-
mant stages asexually, see Innes et al. 2000; bdelloid rotifers
behave similarly; see Caprioli and Ricci 2001). We address
this question by relaxing the assumption of a preexisting con-
straint (Gerber and Kokko 2018).

In conclusion, we show that spreading sexual reproduc-
tion over several breeding cycles within a season is expected
to evolve in unpredictable environments such that mean
arithmetic fitness is traded off against variance in offspring
survival (via dormancy) across seasons. This confirms that
bet hedging between dormant versus directly developing
offspring represents an important mechanism shaping the
timing of sex. Additionally, population densities can influ-
ence the evolution of the induction of sex and male produc-
tion in two ways. First, density can act as a cue for time in
the season when no direct cues are available. Second, in
populations with density-dependent growth, the demo-
graphic cost of sex (forgoing direct reproduction) is re-
duced when recruitment of directly developing asexual off-
spring is hampered by high population density. In some
cases, the best responses to uncertain cues lead to endoge-
nously produced population cycles.
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APPENDIX A

Table A1: Model parameter definitions
Model parameter
.060.105.130 on June 2
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Definition
t
 Breeding cycle within the season

T
 Breeding cycle when the season ends

reaching from Tmin to Tmax
pT
 Probability that the season ends after T
breeding cycles
W
 Fitness of a clone

GT
 Gene copies that exist in ephippia at the end

of the season T

Nt
 Population density at time t

C
 Individuals that mature from one clutch

st
 Probability of reproducing sexually at time t

srt
 Probability of resident females reproducing

sexually at time t

s0t
 Probability of mutant females reproducing

sexually at time t

mt
 Conditional probability of producing males

if reproduction was not sexual

mr

t
 Probability of resident females reproducing
sexually at time t
m0
t
 Probability of mutant females reproducing

sexually at time t

df
 Mortality of mature females

dm
 Mortality of mature males

Ft
 Number of mature females at breeding

cycle t

Fr
t
 Number of resident females at breeding

cycle t

F 0
t
 Number of mutant females at breeding

cycle t

Mt
 Number of mature males at breeding cycle t

Mr

t
 Number of resident males at breeding
cycle t
M0
t
 Number of mutant males at breeding cycle t
g 0t
 Fitness gain of the mutant at time t

p
 Probability that recombinant strategies can

copy the neighbor’s strategy
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