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Bet-hedging as an evolutionary game: the
trade-off between egg size and number
In a recent paper, Olofsson et al. (2009) explore the evol- dependence operating on offspring establishment so we
ution of egg mass in a temporally variable environment

using an individual-based simulation model. The model

includes realistic assumptions such as density-dependent

population growth and a fluctuating minimum size for

survival. Their main focus was on the evolution of vari-

ation in egg mass both within and between clutches,

and they explore whether this variation is adaptive, and

if it is, how it should be distributed within and between

clutches. Much of their discussion is couched in terms

of evolutionary bet-hedging, the idea that a reduction in

mean fitness can be selected for provided there is a corre-

sponding decreases in the temporal variance in fitness

(Seger & Brockmann 1987). Olofsson et al. (2009) ident-

ify three possible bet-hedging strategies: (i) conservative

bet-hedging (large eggs with little variation in egg

mass), (ii) diversified bet-hedging (medium egg mass

and large within-clutch egg mass variation), and (iii)

coin flipping (medium egg mass and large between-

clutch variation in mean egg mass but little within-

clutch variation). Olofsson et al. (2009) therefore use

changes in the mean and variance in egg mass to identify

different types of bet-hedging strategies. In this commen-

tary we wish to make three points; (i) in order to be a

useful concept, bet-hedging must be defined in terms of

the mean and variance in fitness, not trait values, and

using trait variation to identify bet-hedging strategies

can be very misleading, (ii) the precise way that variation

is added to a model is critical, and (iii) diversified strat-

egies can only be understood from the point of view of

the genotype (or strategy).
1. CAN TRAIT MEANS AND VARIANCES BE USED
TO IDENTIFY BET-HEDGING?
To illustrate the difficulties in using variation in trait

values to identify bet-hedging we first describe the Olofs-

son et al. (2009) model in a little more detail and then

show that even when the environment is constant there

can be selection for variability in egg mass. Rather than

relying only on simulation, we use ideas from adaptive

dynamics to analyse a constant environment case of

their model. The model assumes that there is a minimum

egg size required for survival, mmin, and each individual

makes a total egg mass M each year; initially we will

assume that mmin is constant. Juvenile survival is deter-

mined by the total number of juveniles produced

independent of their egg size. This is equivalent to density
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can calculate the evolutionarily stable strategy (ESS)

by maximising the number of juveniles (Mylius &

Diekmann 1995). Considering a simple model where

individuals all produce the same egg mass, we find the

ESS egg mass is mm ¼ mmin; producing larger eggs results

in lower fecundity which reduces fitness, whereas

producing smaller eggs increases mortality.

We now explore how adding variation in egg mass

affects the numbers of eggs and juveniles produced,

where variation is added turns out to be critical.
(a) Effects of within-clutch variation in egg mass

To explore how variation in egg mass influences the

number of eggs produced, we first note that from the defi-

nition of the mean we have mm ¼M/n, where n is the total

number of eggs produced. Consequently, if M and mm are

fixed then so is n irrespective of the within-clutch variance

in egg mass, s2
m. For mm � mmin increasing the variance in

egg mass will decrease the number of eggs below mmin and

so reduce survival, therefore the number of juveniles, nJ is

a monotonically decreasing function of s2
m . In this case

increasing the within-clutch variance in egg mass cannot

increase the number of juveniles (i.e. mean fitness), and

so any selection for variation in within-clutch egg mass

can be interpreted as selection for evolutionary bet-hed-

ging, since the associated reduction in mean fitness

must be accompanied by a reduction in fitness variation.
(b) Effects of between-individuals variation in egg

mass (adaptive coin-flipping)

To understand the importance of between-individual

variation we consider a limiting case of the original

model. We will assume each individual produces eggs of

size m (no within-clutch variation), and m varies between

individuals. As m varies between individuals, so the

number of eggs produced now varies between individuals.

For small between-individual variance, s2
b , the expected

number of eggs produced prior to mortality is

E½n� � M

mm

1þ s2
b

m2
m

� �
; ð1:1Þ

from which we conclude that between-individual vari-

ation increases the average number of eggs produced

(this also follows more generally from Jensen’s inequal-

ity), so we may see selection for between-individual

variation in egg mass (adaptive coin flipping) even in a

constant environment.

In order to see how this translates into fitness in a con-

stant environment we need to calculate the number of
This journal is q 2009 The Royal Society
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Figure 1. (a) The number of juveniles produced as a function
of the between-clutch egg mass variability, sb. The arrow
marks the ESS value which is approximately 0.13. (b) The
ESS between-clutch egg mass variability (sb) plotted against

mean egg mass mm. Other parameters, from Olofsson et al.
(2009) are M ¼ 100, mmin ¼ 0.34 and mm ¼ 0.65. (c,d)
Plots of the arithmetic mean and variance in the number of
juveniles produced from the stochastic model with mmin

varying from year to year (mean mmin ¼ 0.34, variance

mmin ¼ 0.02).
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juveniles produced. If a particular female produces eggs

of mass m (where necessarily m , M), then she produces

M/m eggs that all survive if m . mmin, and all die other-

wise. So for any probability distribution of egg sizes w(m),

nJ ¼
ðM

mmin

M

m

� �
wðmÞdm: ð1:2Þ

As an example, we can take w(m) to be a Gaussian

distribution with mean mm and standard deviation sb,

constrained to take values �M; and this is the distri-

bution we use for numerical work. As in the case of

within-clutch variation, in a constant environment the

ESS egg mass is mmin, and when mm ¼ mmin adding any

variability in egg mass reduces fitness, as all eggs smaller

than mmin die, and producing larger eggs reduces fecund-

ity. However, when mm . mmin there is an ESS level of

between-clutch variation in egg mass even when the

environment does not vary from year to year

(figure 1a). As there is no variability in the environment

this cannot be the result of bet-hedging, so why is

between-clutch variability in egg mass selected? To under-

stand this, it must be remembered that fitness is

determined by the number of juveniles produced, as a

result of competition between juveniles being indepen-

dent of their egg masses, and so there is an enormous

advantage to producing small eggs because this increases

number of eggs produced (Jensen’s inequality, equation

(1.1). However, producing variable egg masses always

incurs a cost because a fraction of the clutches will have

eggs that are smaller than the minimum mass required

for survival (mmin). The extent of these costs and benefits

depends on how far the mean eggs mass (mm) is from mmin

and the size of sb. When mm � mmin there is little benefit

in between-clutch variation in egg mass, as variability

results in the production of clutches of large eggs, which

reduces the number of juveniles produced, while the pro-

duction of clutches of small eggs results in increased

mortality (figure 1b). In contrast when mm� mmin

between-clutch variation in egg masses is highly beneficial

as it increases the number of eggs through nonlinear aver-

aging, with little cost in terms of mortality from

producing clutches with eggs smaller than mmin.

To explore how mean egg mass (mm) influences the

arithmetic mean and variance of fitness when the

threshold mmin is temporally variable, we produced a sto-

chastic version of the above model, again excluding

within-clutch variance. Following Olofsson et al. (2009),

the minimum viable egg size varies among years accord-

ing to a lognormal distribution. We iterated this model

over a large number of generations and used equation

(1.2) to calculate both the mean (figure 1c) and variance

(figure 1d) in the number of juveniles (i.e. fitness) as a

function of mm. This clearly shows that increasing mean

egg mass (mm) initially increases mean fitness whereas

the variance in fitness decreases over almost the entire

range of mm. This means that bet-hedging (which requires

both decreasing mean and variance in fitness) can only be

invoked for large egg masses (approx. mm . 0.5). For this

simple model the mean egg mass that maximizes arith-

metic fitness is 0.5, in good agreement with Olofsson

et al. (2009) simulation results (0.57–0.68). We repeated

the same analysis for a second stochastic model with only

within-clutch variation and obtained very similar results,
Proc. R. Soc. B (2010)
although the egg mass that maximizes arithmetic mean

fitness is slightly lower (approx. 0.45) because there is

no effect of nonlinear averaging.
2. HOW YOU ADD VARIABILITY MATTERS
In their model Olofsson et al. (2009) allow the mean egg

mass (mm) to fluctuate from year to year which generates

what they call adaptive coin-flipping. However, it appears

from their description of the model that this variability is

applied ‘independently of other individuals’ which means

that for a particular genotype there is no between year

variability in mean egg mass—the expected value is

always mm. At the genotype level, ignoring the effects of

nonlinear averaging, both Olofsson et al.’s (2009) adap-

tive coin-flipping of mean clutch size from year to year,

and their within-clutch variability in egg mass achieve

the same result. To compute the fitness of a genotype in

a given year, we have to consider the offspring production

per individual averaged over a large number of individuals

having the genotype in question. If therefore doesn’t

matter whether each mother chooses a single random

value of m from a distribution and produces eggs that

are all size m, versus each mother choosing a different

random value of m (from the same distribution) for

each of her eggs. Either way produces exactly the same

distribution of egg sizes for the genotype, and therefore

exactly the same expected fitness for the genotype. As a

consequence of this the ESS variance in egg mass ~s 2
m

can be produced from any combination of within-clutch

variation, s 2
m, or adaptive coin-flipping, s 2

b . As

~s2
m ¼ s2

m þ s 2
b we expect to see a line of equal fitness

with slope approximately 21 in the s 2
m, s 2

b plane; for
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the parameters from Olofsson et al. (2009) we have

0:0169 ¼ s 2
b þ s 2

m and so the line of equal fitness is

s 2
b ¼ 0:0169� s 2

m, which is very close to what Olofsson

et al. (2009) found from their individual-based

simulations (see their fig. 2a).
3. DISCUSSION
We have demonstrated that using trait means and var-

iances to identify bet-hedging strategies can be very

difficult, especially when there are (i) non-linearities in

the model, and (ii) changes in average trait values result

in increasing mean fitness. The presence of non-linearities

means that variability in traits can influence the mean

demographic rates (i.e. fecundity or offspring survival)

and therefore mean fitness. Identifying which aspects of

Olofsson et al.’s (2009) results are the consequence of

bet-hedging rather than shifts in mean demographic

rates or mean fitness, is therefore difficult. However, the

decomposition approach used by Rees et al. (2004)

might be useful in this respect.

If we assume Olofsson et al.’s model is true can we use

trait values to identify bet-hedging? We know that the ESS

egg mass, assuming no variation in egg mass and a con-

stant environment, is mmin so if we observe that the

mean egg mass is greater than mmin can this be inter-

preted as conservative bet-hedging? Increasing mean egg

mass clearly decreases the variance in fitness

(figure 1d), as required for a bet-hedging interpretation.

However, up to an egg mass of approximately 0.5

increases in mean egg mass also increase mean fitness

(figure 1c), and so making difficult to separate the effects

of increases in mean fitness from bet-hedging. We suspect

bet-hedging does play a role in evolution of egg mass in

Olofsson et al.’s (2009) model, but the effects might be

smaller than they claim. For example a strategy maximis-

ing mean fitness would have an egg mass of approximately

0.5, which is not much smaller than that found in

Olofsson et al.’s (2009) simulations (0.57–0.68). The

additional increase in egg mass observed in their results

is probably a consequence of bet-hedging. Likewise if

we assume a mean egg mass of approximately 0.5 then

through nonlinear averaging we would predict a

between-clutch variance of approximately 0.02, which is

close to what Olofsson et al. (2009) find. However, for

within-clutch egg mass variance we predict that increases

in variability always decrease mean fitness, and so the

presence of within-clutch variability at the ESS is almost

certainly a consequence of bet-hedging.

It is generally unwise to assume a particular model is

correct, and in order to do this one needs to carefully

look at the model assumptions. For example, Olofsson

et al. use a minimum size threshold for survival and this

is probably unrealistic, and because this is drawn from a

continuous distribution with no upper bound, in some

years all offspring will die. In order for the population

to persist some adult survival from year to year is there-

fore essential. The model also makes other strong

assumptions, for example that offspring size only affects
Proc. R. Soc. B (2010)
survival, and subsequent competition between juveniles

is independent of their size. Whether this is a reasonable

assumption is difficult to assess. For example, Falster et al.

(2008) assume that small differences in offspring size can

influence competition between established plants many

years after recruitment, although others think this is unli-

kely (Rees & Venable 2007; Venable & Rees 2009).

In summary one cannot realistically hope to identify

bet-hedging using trait values alone, except in simple

cases where variation enters the model linearly and so

cannot change mean demographic rates or arithmetic

mean fitness. Explicit calculation of the mean and var-

iance in fitness is needed to demonstrate that optimal

strategies are determined by bet-hedging, and these cal-

culations must be compared to a sensible baseline case,

for example, the constant environment model considered

here. In many systems we suspect there will be a combi-

nation of factors acting and in these cases the

development of new methods to decompose the contri-

butions of the different factors are required.
We would like to thank Steve Ellner and our referees for
detailed comments that substantially improved the
manuscript.
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