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Abstract Pairwise models are commonly used to describe many-species communities. In these

models, an individual receives additive fitness effects from pairwise interactions with each species

in the community (’additivity assumption’). All pairwise interactions are typically represented by a

single equation where parameters reflect signs and strengths of fitness effects (’universality

assumption’). Here, we show that a single equation fails to qualitatively capture diverse pairwise

microbial interactions. We build mechanistic reference models for two microbial species engaging

in commonly-found chemical-mediated interactions, and attempt to derive pairwise models.

Different equations are appropriate depending on whether a mediator is consumable or reusable,

whether an interaction is mediated by one or more mediators, and sometimes even on quantitative

details of the community (e.g. relative fitness of the two species, initial conditions). Our results,

combined with potential violation of the additivity assumption in many-species communities,

suggest that pairwise modeling will often fail to predict microbial dynamics.

DOI: 10.7554/eLife.25051.001

Introduction
Multispecies microbial communities are ubiquitous. Microbial communities are important for indus-

trial applications such as cheese and wine fermentation (van Hijum et al., 2013) and municipal waste

treatment (Seghezzo et al., 1998). Microbial communities are also important for human health: they

can modulate immune responses and food digestion (Round and Mazmanian, 2009; Kau et al.,

2011) during health and disease. Properties of the entire community (‘community properties’, e.g.

species dynamics, ability to survive internal or external perturbations, and biochemical activities of

the entire community) are influenced by interactions wherein individuals alter the physiology of other

individuals (Widder et al., 2016). To understand and predict community properties, choosing the

appropriate mathematical model to describe species interactions is critical.

A mathematical model ideally focuses only on details that are essential to community properties

of interest. However, it is often unclear a priori what the minimal essential details are. We define

‘mechanistic models’ as models that explicitly consider interaction mediators as state variables. For

example, if species S1 releases a compound C1 which stimulates species S2 growth upon consump-

tion by S2, then a mechanistic model tracks concentrations of S1, C1, and S2 (Figure 1A and B, left

panels). Note that mechanistic models used here still omit molecular details such as how chemical

mediators are received and processed by recipients and how mediators subsequently act on recipi-

ents. In contrast, Lotka-Volterra (‘L-V’) pairwise models only consider the fitness effects of interac-

tions. Specifically, L-V models assume that the fitness of an individual is the sum of its basal fitness

(the net growth rate of an individual in isolation) and fitness influences from pairwise interactions

with individuals of the same species and of every other species in the community (‘additivity’

assumption). Furthermore, regardless of interaction mechanisms or quantitative details of a
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community, all fitness influences are typically expressed using a single equation form wherein param-

eters can vary to reflect the signs and magnitudes of fitness influences (‘universality’ assumption).

Thus in the example above, a pairwise model only describes how S1 increases the fitness of S2
(Figure 1A and B, right panels).

L-V pairwise models are popular. L-V pairwise modeling has successfully explained the oscillatory

dynamics of hare and its predator lynx (Figure 1—figure supplement 1) (Volterra, 1926;

Wangersky, 1978; BiologyEOC, 2016). Pairwise models have also been instrumental in delineating

conditions for multiple carnivores to coexist when competing for herbivores (MacArthur, 1970;

Chesson, 1990). In both cases, mechanistic models and pairwise models happen to be mathemati-

cally equivalent for the following reasons. In the hare-lynx example, both species are also interaction

mediators, and therefore pairwise and mechanistic models are identical. In the second example, if

herbivores (mediators of competitive interactions between carnivores) rapidly reach steady state,

herbivores can be mathematically eliminated from the mechanistic model to yield a pairwise model

of competing carnivores (MacArthur, 1970; Chesson, 1990). Pairwise models are often used to pre-

dict how perturbations to steady-state species composition exacerbate or decline over time

(May, 1972; Thébault and Fontaine, 2010; Mougi and Kondoh, 2012; Allesina and Tang, 2012;

Suweis et al., 2013; Coyte et al., 2015). Although most work are motivated by contact-dependent

prey-predation (e.g. hare-lynx) or mutualisms (e.g. plant-pollinator) where L-V models could be iden-

tical to mechanistic models, these work do not explicitly exclude chemical-mediated interactions

where species are distinct from interaction mediators.

The temptation of using pairwise models is indeed high, including in microbial communities

where many interactions are mediated by chemicals (Mounier et al., 2008; Faust and Raes, 2012;

Stein et al., 2013; Marino et al., 2014; Coyte et al., 2015). Even though pairwise models do not

capture the dynamics of chemical mediators, predicting species dynamics is still highly desirable in,

for example, forecasting species diversity and compositional stability. For chemical-mediated inter-

actions, L-V pairwise models are far easier to construct than mechanistic models for the following

reasons. Mechanistic models would require knowledge of chemical mediators, which are often

eLife digest From the soil to our body, microbes, such as bacteria, are everywhere and affect us

in many ways. Many microbes perform important roles in natural environments and for our health,

but some of them can cause harm and lead to diseases. Often, microbes affect and interact with

each other within large groups or communities. Because of their widespread ramifications, it is

important to understand how microbial communities work.

In addition to experiments, mathematical modeling offers one way to gain insight into the

dynamics of microbial communities. A model commonly used to describe the interactions between

organisms is the so-called ‘pairwise model’. Pairwise models can be useful to predict the dynamics

of a community in which two species physically interact, such as a predator-prey community.

However, it was unknown if this model was suitable to adequately predict the dynamics of microbial

species in communities. Microbes often interact via chemicals that diffuse in the environment. For

example, one microbe might provide food for another microbe or release toxins to kill it. However,

a pairwise model does not consider food or toxins, but only how one microbe stimulates or inhibits

the growth of another.

Momeni et al. simulated different scenarios commonly found in microbial communities to test

whether a pairwise model could capture how, for example, chemicals released by one bacterial

species would either help others to grow or stop them from growing. The results showed that for

many scenarios, pairwise models cannot qualitatively represent the dynamics of a microbial

community.

A next step will be to work on the limitations of current experimental technologies and

mathematical models to improve the understanding of microbial communities. This knowledge

could be used to develop new strategies for ecosystem engineering, such as for example making

soils more fertile to improve crop yields, or tackling antibiotic resistance of bacteria.

DOI: 10.7554/eLife.25051.002
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Figure 1. The abstraction of interaction mechanisms in a pairwise model compared to a mechanistic model. (A)

The mechanistic model (left) considers a bipartite network of species and chemical interaction mediators. A

species can produce or consume chemicals (open arrowheads pointing towards and away from the chemical,

respectively). A chemical mediator can positively or negatively influence the fitness of its target species (filled

arrowhead and bar, respectively). The corresponding L-V pairwise model (right) includes only the fitness effects of

species interactions, which can be positive (filled arrowhead), negative (bar), or zero (line terminus). (B) In the

example here, species S1 releases chemical C1, and C1 is consumed by species S2 and promotes S2’s fitness. In

the mechanistic model, the three equations respectively state that (1) S1 grows exponentially at a rate r10, (2) C1 is

released by S1 at a rate bC1S1
and consumed by S2 with saturable kinetics (maximal consumption rate aC1S2 and

half-saturation constant KC1S2 ), and (3) S2’s growth (basal fitness r20) is influenced by C1 in a saturable fashion. In

the pairwise model here, the first equation is identical to that of the mechanistic model. The second equation is

similar to the last equation of the mechanistic model except that r21 and K21 together reflect how the density of S1
(S1) affects the fitness of S2 in a saturable fashion. For all parameters with double subscripts, the first subscript

denotes the focal species or chemical, and the second subscript denotes the influencer. Note that unlike in

mechanistic models, we have omitted ‘S’ from subscripts in pairwise models (e.g. r21 instead of rS2S1 ) for simplicity.

In this example, both r21 and rS2S1 are positive.

DOI: 10.7554/eLife.25051.003

The following figure supplements are available for figure 1:

Figure 1 continued on next page
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challenging to identify. Since chemical mediators are explicitly modeled, mechanistic models require

more equations and parameters than their cognate pairwise models (Figure 1, Table). Pairwise

model parameters are relatively easy to estimate using community dynamics or dynamics of mono-

cultures and pairwise cocultures (Mounier et al., 2008; Stein et al., 2013; Guo and Boedicker,

2016). Consequently, pairwise modeling has been liberally applied to microbial communities.

L-V pairwise models have been criticized when applied to communities of more than two species

(referred to as ‘multispecies communities’) (Levine, 1976; Tilman, 1987; Wootton, 1993,

2002; Werner and Peacor, 2003; Stanton, 2003; Schmitz et al., 2004). This is because a third spe-

cies can influence interactions between a species pair (‘indirect interactions’), which sometimes viola-

tes the additivity assumption of pairwise models. For example, a carnivore can indirectly increase the

density of a plant by decreasing the density of an herbivore (‘interaction chain’; ‘density-mediated

indirect interactions’). A carnivore can also decrease how often an herbivore forages plants (‘interac-

tion modification’, ‘trait-mediated indirect interactions’, or ‘higher order interactions’) (Vander-

meer, 1969; Wootton, 1994; Billick and Case, 1994; Wootton, 2002). In interaction modification,

foraging per herbivore decreases, whereas in interaction chain, the density of herbivores decreases.

Interaction modification (but not interaction chain) violates the additivity assumption (Methods-Inter-

action modification but not interaction chain violates the additivity assumption) (Tilman, 1987;

Wootton, 1994; Schmitz et al., 2004) and can cause the pairwise model to generate qualitatively

wrong predictions. Indeed, pairwise models largely failed to predict biomass and species coexis-

tence in three-species and seven-species plant communities (Dormann and Roxburgh, 2005),

although reported failures of pairwise models could be due to limitations in data collection and anal-

ysis (Case and Bender, 1981; Billick and Case, 1994).

Here, we examine the universality assumption of pairwise models when applied to microbial com-

munities (or any community that employs diverse chemical-mediated interactions). Microbes often

influence other microbes in a myriad of fashions, via consumable metabolites, reusable signaling

molecules, or a combination of chemicals (Figure 2). Can a single equation form, traditionally

employed in pairwise models, qualitatively describe diverse interactions between two microbial spe-

cies? The answer is unclear. On the one hand, pairwise models have been applied successfully to

diverse microbial communities. For example, an L-V pairwise model and a mechanistic model both

correctly predicted ratio stabilization and spatial intermixing between two strongly-cooperating pop-

ulations exchanging diffusible essential metabolites (Momeni et al., 2013). In other examples, pair-

wise models largely captured competition outcomes and metabolic activities of three-species and

four-species artificial microbial communities (Vandermeer, 1969; Guo and Boedicker, 2016;

Friedman et al., 2017). On the other hand, pairwise models often failed to predict species coexis-

tence in seven-species microbial communities (Friedman et al., 2017), although this could be due to

interaction modification discussed above.

Instead of investigating natural communities where interaction mechanisms can be difficult to iden-

tify, we use in silico communities. In these communities, two species interact via mechanisms com-

monly encountered in microbial communities, including growth-promoting and growth-inhibiting

interactions mediated by reusable and consumable compounds (Figure 2) (Stams, 1994;

Czárán et al., 2002; Duan et al., 2009). We construct mechanistic models for these two-species com-

munities and attempt to derive from them pairwise models. A mechanistic reference model offers sev-

eral advantages: community dynamics is deterministically known; deriving a pairwise model is not

limited by inaccuracy of experimental methods; and the flexibility in creating different reference mod-

els allows us to explore a variety of interaction mechanisms. We demonstrate that a single

pairwise equation form often fails for commonly-encountered diverse pairwise microbial interactions.

We conclude by discussing when pairwise models might or might not be useful, in light of our findings.

Figure 1 continued

Figure supplement 1. An L-V pairwise model successfully predicts oscillations in population dynamics of the hare-

lynx prey-predator community.

DOI: 10.7554/eLife.25051.004

Figure supplement 2. Deriving a pairwise model.

DOI: 10.7554/eLife.25051.005
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Results
Throughout this work, we consider communities grown in a well-mixed environment where all indi-

viduals interact with each other with an equal chance. A well-mixed environment can be found in

industrial fermenters. Moreover, at a sufficiently small spatial scale, a spatially-structured environ-

ment can be approximated as a well-mixed environment, as chemicals are uniformly-distributed

locally. Motile organisms also reduce the degree of spatial structure. A well-mixed environment

allows us to use ordinary differential equations (ODEs), which are more tractable than partial differ-

ential equations demanded by a spatially-structured environment. This in turn allows us to some-

times analytically demonstrate failures of pairwise models.

Mechanistic model versus pairwise model
A mechanistic model describes how species release or consume chemicals and how chemicals stimu-

late or inhibit species growth (Figure 1A left). In contrast, in pairwise models, interation mediators

are not explicitly considered (Figure 1A right). Instead, the growth rate of an individual of species Si
is the sum of its basal fitness (ri0, net growth rate of the individual in the absence of any intra-species

or inter-species interactions) and fitness effects from intra-species and inter-species interactions. The

fitness effect from species Sj to species Si is represented by fij Sj
� �

, where Sj is the density of species

Sj. fij Sj
� �

is a linear or nonlinear function of only Sj and not of another species. When j ¼ i, fii Sið Þ rep-

resents density-dependent fitness effect within Si (e.g. density-dependent growth inhibition or

stimulation).

In a multi-species pairwise model, a single form of fij is used for all pairwise species interactions.

For example, the most popular L-V model is linear L-V:

dSi

dt
¼ ri0þ

j

P

rijSj

� �

Si (1)

Here, ri0 is the basal fitness of an individual of Si, and can be positive, negative, or zero; rij is the

fitness effect per Sj individual on Si. Positive, negative, or zero rij represents growth stimulation,

Figure 2. Chemical-mediated interactions commonly found in microbial communities. Interactions can be intra- or

inter-population. Examples are meant to be illustrative instead of comprehensive.

DOI: 10.7554/eLife.25051.006
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inhibition, or no effect, respectively. An example of linear L-V is the logistic L-V pairwise model tradi-

tionally used for competitive communities:

dSi

dt
¼ ri0 1�

j

P Sj

Lij

� �

Si (2)

Here, nonnegative ri0 is the basal fitness of Si; positive Lij is the carrying capacity imposed by lim-

iting shared resource (e.g. space or carbon source) such that a single Si individual will have a zero

net growth rate when competing with a total of Lij individuals of Sj.

Alternative forms of fitness effect fij (Wangersky, 1978) include L-V with delayed influence, where

the fitness influence of one species on another may lag in time (Gopalsamy, 1992), or saturable L-V

(Thébault and Fontaine, 2010) where

dSi

dt
¼ ri0 þ

j

P

rij
Sj

Kijþ Sj

� �

Si (3)

Here, ri0 is the basal fitness of an individual of Si, rij is the maximal fitness effect species Sj can

exert on Si, and Kij (>0) is the Sj at which half maximal fitness effect on Si is achieved. ri0 and rij can

be positive, negative, or zero. Note that at a low concentration of influencer, the saturable form can

be converted to a linear form.

Our goal is to test whether a single equation form of pairwise model can qualitatively predict

dynamics of species pairs engaging in various types of interactions commonly found in microbial

communities (e.g. Figure 2). To do so, we use a combination of analytical and numerical approaches

(Figure 1—figure supplement 2). Analytically deriving a pairwise model from a mechanistic model

not only reveals assumptions required to generate the pairwise model, but also alleviates any con-

cern that we may have failed to identify the optimal pairwise model parameters. When interactions

become more complex (e.g. involving multiple mediators), we take the numerical approach, which is

typically used to infer pairwise models from experimental results (Pascual and Kareiva, 1996). In the

numerical approach, we mimic experimentalists by first deciding on a pairwise model to be used,

and then employing a nonlinear least squares routine to numerically identify model parameters that

minimize the average difference �D between pairwise and mechanistic model dynamics within a train-

ing time window T (Figure 1—figure supplement 2; Methods-Summary of simulation files). To eval-

uate how well a pairwise model predicts long-term mechanistic model dynamics, we ‘buy time’ by

introducing ’dilutions’ in numerical simulations of both models and quantify their difference �D.

Reusable versus consumable mediators require different pairwise
models
In this section, we analytically derive pairwise models from mechanistic models of two-species com-

munities where one species affects the other species through a single mediator. The mediator is

either reusable such as signaling molecules in quorum sensing (Duan et al., 2009; Jakubovics, 2010)

or consumable such as metabolites (Stams, 1994; Freilich et al., 2011) (Figure 2). We show that a

single pairwise model may not encompass these different interaction mechanisms and that for con-

sumable mediator, the choice of pairwise model also depends on details such as the relative fitness

and initial densities of the two species.

Consider a commensal community where species S1 stimulates the growth of species S2 by pro-

ducing a reusable (Figure 3A) or a consumable (Figure 3B) chemical C1. We consider community

dynamics where species are not limited by any abiotic resources, such as within a dilution cycle of a

turbidostat experiment where all other metabolites are in excess.

When C1 is reusable, the mechanistic model (Figure 3A,i) can be transformed into a saturable L-V

pairwise model (compare Figure 3A,ii with Equation 3), especially after the concentration of the

mediator (which is initially zero) has acclimated to be proportional to the producer population size

(Figure 3A legend; Figure 3—figure supplement 1). This saturable L-V pairwise model is valid

regardless of whether the producer coexists with the consumer, outcompetes the consumer, or is

outcompeted by the consumer.

If C1 is consumable, different scenarios are possible (Figure 3B; Methods).

Case I: When supplier S1 always grows faster than consumer S2 (the basal fitness of S1 is higher

than the maximal fitness of S2), C1 will eventually accumulate proportionally to S1 (Figure 4A left;
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Figure 3. Interactions mediated via a single mediator are best represented by different forms of pairwise models,

depending on whether the mediator is consumable or reusable and on the relative fitness and initial densities of

the two species. S1 stimulates the growth of S2 via a reusable (A) or a consumable (B) chemical C1. In mechanistic

models of the two cases (i), equations for S1 and S2 are identical but equations for C1 are different. In (A), C1 can

be solved to yield C1 ¼ bC1S1
=r10

� �

S10 exp r10tð Þ � bC1S1
=r10

� �

S10 ¼ bC1S1
=r10

� �

S1 � bC1S1
=r10

� �

S10, assuming zero

initial C1. Here, S10 is S1 at time zero. We have approximated C1 by omitting the second term (valid after the initial

transient response has passed so that C1 has become proportional to S1). This approximation allows an exact

match between the mechanistic model and the saturable L-V pairwise model (ii). In (B), depending on the relative

growth rates of the two species, and if additional requirements are satisfied (Methods; Figure 3—figure

supplement 2; Figure 3—figure supplement 3; Figure 3—figure supplement 4; Figure 3—figure supplement

5), either saturable L-V or alternative pairwise model should be used.

DOI: 10.7554/eLife.25051.007

The following source data and figure supplements are available for figure 3:

Source data 1. List of parameters for simulations in Figure 3—figure supplement 1.

DOI: 10.7554/eLife.25051.008

Source data 2. List of parameters for simulations in Figure 3—figure supplement 2 on interactions through a

consumable mediator.

DOI: 10.7554/eLife.25051.009

Source data 3. List of parameters for simulations in Figure 3—figure supplement 3 on conditions required for

convergence of the alternative pairwise model.

DOI: 10.7554/eLife.25051.010

Source data 4. List of parameters for simulations in Figure 3—figure supplement 4 on how dilution might affect

the convergence of a pairwise model.

DOI: 10.7554/eLife.25051.011

Figure supplement 1. For a reusable mediator, parameter estimation after acclimation time leads to a more

accurate saturable L-V pairwise model.

DOI: 10.7554/eLife.25051.012

Figure supplement 2. Community trajectory approaching the -zero-isocline allows us to use the alternative

pairwise model approximation.

DOI: 10.7554/eLife.25051.013

Figure supplement 3. Condition for the alternative pairwise model to converge to the mechanistic model in the

absence of dilutions.

DOI: 10.7554/eLife.25051.014

Figure 3 continued on next page
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Methods-Deriving a pairwise model for interactions mediated by a single consumable mediator

Case I). In this case, C1 may be approximated as a reusable mediator and can be predicted by the

saturable L-V pairwise model (Figure 4A right, compare dotted and solid lines).

Case II: When S1 and S2 can coexist (the basal fitness of S1 is higher than the basal fitness of S2
but less than the maximal fitness of S2), a steady state solution for C1 and species ratio RS ¼ S2=S1
exists (Figure 4B; Methods-Deriving a pairwise model for interactions mediated by a single consum-

able mediator Case II, Equation 11). To arrive at a pairwise model, we will need to eliminate C1

which is mathematically possible (i.e. after community dynamics converges to the ‘f -zero-isocline’ on

the phase plane of mediator C1 and species ratio RS, as depicted by blue lines in Figure 3—figure

supplement 2A–D). However, the derived pairwise model differs from the saturable L-V model:

dS2

dt
¼ r20S2 þ

rS2C1
S1

!S1þ S2
S2 (4)

where constants r20, rS2C1
, and !¼ 1�KS2C1

=KC1S2 can be positive, negative, or zero, and c

= KS2C1
aC1S2ð Þ= KC1S2bC1S1

� �

is positive (see Figure 1 table for parameter definitions and see Equa-

tion 13 in Methods). We will refer to this equation as ‘alternative pairwise model’, although the fit-

ness influence term is a function of both S1 and S2 instead of the influencer S1 alone as defined in the

traditional L-V pairwise model.

Case III: When supplier S1 always grows slower than consumer S2, i.e. when the basal fitness of S1
(r10) is less than the basal fitness of S2 (r20), consumable C1 declines to zero concentration. This is

because C1 is consumed by S2 whose relative abundance over S1 eventually exponentially increases

at a rate of r20 � r10. Similar to Case II, under certain conditions (i.e. after community dynamics con-

verges to the f -zero-isocline as seen in Figure 3—figure supplement 2E–H), the alternative pairwise

model (Equation 4) can be derived (Methods-Deriving a pairwise model for interactions mediated

by a single consumable mediator, Case III).

For both Case II and Case III, we analytically demonstrate that in the absence of dilutions, alterna-

tive pairwise model dynamics can converge to mechanistic model dynamics (see Figure 3—figure

supplements 3 and 5 for initial condition requirement and time scale of convergence). However, if

initial S1 and S2 are such that the time scale of convergence is long compared to the duration of one

dilution cycle (e.g. Figure 3—figure supplement 2C and G), then we will have to perform dilutions

and the saturable L-V model can sometimes be more appropriate than the alternative model (Fig-

ure 3—figure supplement 4). Thus in these cases, whether a saturable L-V or an alternative model

is more appropriate also depends on initial conditions.

The alternative model (Equation 4) can be further simplified to

dS2=dt¼ r20þ �S1=S2ð ÞS2 (5)

if additionally, the half-saturation constant K for C1 consumption (KC1S2 ) is identical to that for C1’s

influence on the growth of consumer (KS2C1
), and if S2 has not gone extinct. This equation form has

precedence in the literature (e.g. [Mougi and Kondoh, 2012]), where the interaction strength r21

reflects the fact that the consumable mediator from S1 is divided among consumer S2. Thus, we can

regard the alternative model (Equation 4) or its simplified version (Equation 5) as a ‘divided influ-

ence’ model.

The saturable L-V model and the alternative model are not interchangeable (Figure 4). When a

consumable mediator accumulates without reaching a steady state within each dilution cycle

(Figure 4A left; inset: C1 eventually becomes proportional to S1), the saturable L-V model is predic-

tive of community dynamics (Figure 4A right, compare dotted and solid lines). In contrast,

Figure 3 continued

Figure supplement 4. Initial conditions that require long convergence time and thus dilutions may prevent the

alternative pairwise model to converge to the mechanistic model.

DOI: 10.7554/eLife.25051.015

Figure supplement 5. Additional requirements for deriving a pairwise model from a mechanistic model, when S1
affects S2 via a single consumable mediator C1 where C1ð0Þ ¼ 0.

DOI: 10.7554/eLife.25051.016
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Figure 4. Saturable L-V and alternative pairwise models are not interchangeable. Consider a commensal

community with a consumable mediator C1. (A) The mediator accumulates without reaching a steady state within

each dilution cycle as the consumer S2 gradually goes extinct (Figure 3B, Case I). After a few tens of

generations, C1 becomes proportional to its producer density S1 (inset in left panel). In this case, a saturable L-V

(dotted) but not the alternative pairwise model (dashed) is suitable. All parameters are listed in Figure 4—source

data 1. (B) The consumable mediator reaches a non-zero steady state within each dilution cycle (Figure 3B, Case

II). From mechanistic dynamics where initial species ratio is 1, we use two training windows to derive saturable L-V

(dotted) and alternative (dashed) pairwise models. We then use these pairwise models to predict dynamics of

communities starting at two different ratios. The alternative model but not the saturable L-V predicts

the mechanistic model dynamics. All parameters are listed in Figure 4—source data 2. Note that in all figures,

population fractions (instead of population densities) are plotted, which fluctuate less during dilutions compared

to mediator concentration.

DOI: 10.7554/eLife.25051.017

The following source data is available for figure 4:

Source data 1. List of parameters for simulations in Figure 4 on an interaction through a reusable mediator.

DOI: 10.7554/eLife.25051.018

Source data 2. List of parameters for simulations in Figure 4 on an interaction through a consumable mediator.

DOI: 10.7554/eLife.25051.019
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predictions from the alternative pairwise model are qualitatively wrong (Figure 4A right, compare

dashed and solid lines). When a consumable mediator eventually reaches a non-zero steady state

within each dilution cycle (Figure 4B, black), could a saturable L-V model still work? The saturable

L-V model derived from training window i (initial 10 generations) fails to predict species coexistence

regardless of initial species ratios (Figure 4B left magenta box, compare solid with dotted). In com-

parison, the saturable L-V model derived from training window ii (at steady-state species ratio) per-

forms better, especially if the starting species ratio is identical to that of the training dynamics

(Figure 4B, top panel in right magenta box). However, at a different starting species ratio, the satu-

rable L-V model fails to predict which species dominates the community (Figure 4B, bottom panel in

right magenta box). In contrast, community dynamics can be described by the alternative pairwise

model derived from either window i or ii (Figure 4B, compare dashed and solid lines in left and right

magenta boxes).

We have shown here that even when one species affects another species via a single mediator,

either a saturable L-V model or an alternative pairwise model may be appropriate. The appropriate

model depends on whether the mediator is reusable or consumable, how fitness of the two species

compare, and initial species densities (Figure 3; Figure 3—figure supplements 2–5). Choosing the

wrong pairwise model generates qualitatively flawed predictions (Figure 4). Considering that reus-

able and consumable mediators are both common in microbial interactions, our results call for revis-

iting the universality assumption of pairwise modeling.

Two-mediator interactions require pairwise models different from
single-mediator interactions
A species often affects another species via multiple mediators (Kato et al., 2008; Yang et al., 2009;

Traxler et al., 2013; Kim et al., 2013). For example, a fraction of a population might die and release

numerous chemicals, and some of these chemicals can simultaneously affect another individual. Here

we examine the case where S1 releases two reusable chemicals C1 and C2, both affecting the growth

of S2 (Figure 5A). Since the effect of each mediator can be described by a saturable L-V pairwise

model (Figure 3A), we ask when the two mediators can be mathematically regarded as one media-

tor and described by a saturable L-V pairwise model (Figure 5B).

We assume that fitness effects from different chemical mediators on a focal species are additive.

Not making this assumption will likely violate the additivity assumption essential to pairwise models.

Additive fitness effects have been observed for certain ‘homologous’ metabolites. For example, in

multi-substrate carbon-limited chemostats of E. coli, the fitness effects from glucose and galactose

were additive (Lendenmann and Egli, 1998). ‘Heterologous’ metabolites such as carbon and nitro-

gen sources likely affect cell fitness in a multiplicative fashion. However, if WC and WN , the fitness

influences of released carbon and nitrogen with respect to those already in the environment, are

both small (i.e. WC, WN< < 1), the additional relative fitness influence will be additive:

ð1þWCÞð1þWNÞ � 1»WC þWN . However, we need to keep in mind that even among homologous

metabolites, fitness effects may not be additive (Hermsen et al., 2015). ‘Sequential’ metabolites

(e.g. diauxic shift) provide another example of non-additivity. Similar to the previous section, we

assume that all abiotic resources are unlimited.

For the two reusable mediators, depending on their relative ‘potency’ (defined in Figure 5A leg-

end), their combined effect generally cannot be modeled as a single mediator except under special

conditions (Methods-Conditions under which a saturable L-V pairwise model can represent one spe-

cies influencing another via two reusable mediators). These special conditions include: (1) mediators

share similar potency (Figure 5—figure supplement 1B), or (2) one mediator dominates the interac-

tion (Figure 5—figure supplement 1C). If these conditions are not satisfied, we can easily find

examples where saturable L-V pairwise models derived from a low-density community and from a

high-density community have qualitatively different parameters (Figure 5—figure supplement 1D).

Consequently, the future dynamics of a low-density community can be predicted by a saturable L-V

model derived from a low-density community but not by a model derived from a high-density com-

munity (Figure 5C). Thus, even though each mediator can be modeled by saturable L-V, their joint

effects may or may not be modeled by saturable L-V depending on the relative potencies of the two

mediators and sometimes even on initial conditions (high or low initial S1).
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Similarly, when both mediators are consumable and do not accumulate (as in Cases II and III of

Figure 3B), the fitness effect term becomes
rS2C1 S1

!C1
S1þ C1

S2
þ

rS2C2 S1

!C2
S1þ C2

S2
. Except under special conditions

(e.g. when !C1
and !C2

are zero, or when !C1
=!C2

¼  C1
= C2

, or when one mediator dominates the

interaction), the two mediators may not be regarded as one. By the same token, when one mediator

is a steady-state consumable and the other is reusable, they generally may not be regarded as a sin-

gle mediator and would require yet a different pairwise model (i.e. with the fitness effect term
rS2C1 S1

!C1
S1þ C1

S2
þ

rS2C2 S1

S1þKS2C2
r10=bC2S1

).

In summary, when S1 influences S2 through multiple mediators, rarely can we approximate them

as a single mediator. Sometimes, a pairwise model derived from one community may not apply to

communities initiated at different densities (Figure 5C; Figure 5—figure supplement 1D). This casts

further doubt on the usefulness of a single pairwise model for all pairwise microbial interactions.

Figure 5. An example of a two-mediator interaction where a saturable L-V pairwise model may succeed or fail depending on initial conditions. (A) One

species can affect another species via two reusable mediators, each with a different potency KCi where KCi is KS2Ci
r10=bCiS1

(Methods-Conditions under

which a saturable L-V pairwise model can represent one species influencing another via two reusable mediators). A low KCi indicates a strong potency

(e.g. high release of Ci by S1 or low Ci required to achieve half-maximal influence on S2). (B) Under what conditions can an interaction via two reusable

mediators with saturable effects on recipients be approximated by a saturable L-V pairwise model? (C) A community where the success or failure of a

saturable L-V pairwise model depends on initial conditions. Here, KC1= 103 cells/ml and KC2= 105 cells/ml. Community dynamics starting at low S1

(solid) can be predicted if the saturable L-V pairwise model is derived from reference dynamics starting at low (dotted). However, if we use a saturable

L-V pairwise model derived from a community with high initial S1, prediction is qualitatively wrong (dash dot line). See Figure 5—figure supplement

1D for an explanation why a saturable L-V pairwise model estimated at one community density may not be applicable to another community density.

Simulation parameters are listed in Figure 5—source data 1 .

DOI: 10.7554/eLife.25051.020

The following source data and figure supplement are available for figure 5:

Source data 1. List of parameters for simulations in Figure 5 on an interaction through two concurrent mediators.

DOI: 10.7554/eLife.25051.021

Source data 2. List of parameters for simulations in Figure 5—figure supplement 1 on an interaction through two concurrent mediators, assessed at

high versus low cell densities.

DOI: 10.7554/eLife.25051.022

Figure supplement 1. Except under special conditions, a pairwise interaction through two mediators may not be represented by a single saturable L-V

model.

DOI: 10.7554/eLife.25051.023
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L-V competition model can fail if two competing species engage in an
additional interaction
So far, by assuming that abiotic resources are always present in excess (e.g. in turbidostats), we have

not considered species competition for abiotic resources. In this section, we consider a competitive

commensal community in a batch environment where S1 and S2 compete for an essential shared

resource C1 supplied by the environment at a constant rate (e.g. constant light), and S1 supplies an

essential consumable metabolite C2 to promote S2 growth (Figure 6A, left). We show that an L-V

pairwise model works for some but not all communities even though these communities qualitatively

share the same interaction mechanism.

In our mechanistic model (Methods-Competitive commensal interaction, Equation 47), the fitness

of S2 is multiplicatively affected by C1 and C2 (Mankad and Bungay, 1988). We choose parameters

such that the effect from C2 to S2 is far from saturation (e.g. linear with respect to C2 and S1) to sim-

plify the problem. In our L-V pairwise model (Figure 6A, right; Methods-Competitive commensal

interaction, Equation 48), intra- and inter-species competition is represented by the traditional logis-

tic L-V model (Equation 2; Gause, 1934; Thébault and Fontaine, 2010; Mougi and Kondoh,

2012). We then introduce a linear term (r21S1) to describe the fitness effect of commensal

interaction.

We tested various sets of mechanistic model parameters where the two species coexist in a

steady fashion (Figure 6B), or one species goes extinct (Figure 6C), or species composition fluctu-

ates (Figure 6D). L-V pairwise models deduced from a fixed period of training time could predict

future dynamics in the first two cases, but failed to do so in the third case. Thus, depending on

dynamic details of communities, a pairwise model sometimes works and sometimes fails.

To summarize our work, even for pairwise microbial interactions, depending on interaction mech-

anisms (reusable versus consumable mediator, single mediator versus multiple mediators), we will

need to use a plethora of pairwise models to avoid qualitative failures in predicting which species

dominates a community or whether species coexist (Figures 3, 4 and 5). Sometimes, even when dif-

ferent communities share identical interaction mechanisms, depending on details such as relative

species fitness, interaction strength, and initial conditions, the best-fitting pairwise model may or

may not predict future dynamics (Figure 3B, Figure 3—figure supplement 4, Figure 4, Figure 5,

Figure 5—figure supplement 1, and Figure 6). This defeats the very purpose of pairwise modeling

– using a single equation form to capture fitness effects of all pairwise species interactions regardless

of interaction mechanisms or quantitative details. In a community of more than two microbial spe-

cies, interaction modification can cause pairwise models to fail (Figure 7). Even if species interact in

an interaction chain and thus interaction modification does not occur, various chain segments may

require different forms of pairwise models. Taken together, a pairwise model is unlikely to be effec-

tive for predicting community dynamics especially if interaction mechanisms are diverse.

Discussions
Multispecies pairwise models are widely used in theoretical ecology due to their simplicity. These

models assume that all pairwise species interactions can be captured by a single pairwise model

regardless of interaction mechanisms or quantitative details of a community (universality assump-

tion). This assumption may be satisfied if, for example, interaction mediators are always species

themselves (e.g. prey-predation in a food web) so that pairwise models are equivalent to mechanistic

models. However, interactions in microbial communities are diverse and often mediated by chemi-

cals (Figure 2). Here, we consider the validity of universality assumption of pairwise models in well-

mixed, two-species microbial communities. We have focused on various types of chemical-mediated

interactions commonly encountered in microbial communities (Figure 2) (Kato et al., 2005;

Gause, 1934; Ghuysen, 1991; Jakubovics et al., 2008; Chen et al., 2004; D’Onofrio et al., 2010;

Johnson et al., 1982; Hamilton and Ng, 1983). For each type of species interaction, we construct a

mechanistic model to generate reference community dynamics (akin to experimental results). We

then attempt to derive the best-matching pairwise model and ask how predictive it is.

We first consider cases where abiotic resources are in excess. When one species affects another

species via a single chemical mediator, either the saturable L-V or the alternative pairwise model is

appropriate, depending on the interaction mechanism (consumable versus reusable mediator), rela-

tive fitness of the two species, and initial conditions (Figure 3; Figure 3—figure supplement 2 to
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Figure 6. An example of a competitive commensal community where an L-V pairwise model may work or fail. (A)

Left: Two species S1 and S2 compete for shared resource C1. Additionally, S1 produces C2 that promotes the

growth of S2 upon consumption. Right: An L-V pairwise model captures the intra- and inter-species competition as

well as the commensal interaction between the two species. (B,C) Examples where L-V pairwise models predict

the mechanistic reference dynamics well. (D) An example where the L-V pairwise model fails to predict the

dynamics qualitatively (note the much longer time range). Here, population fractions fluctuate due to changes in

relative concentration of C1 compared to C2. In all cases, the pairwise model is derived from the population

dynamics in the initial stages of growth (150 hr in all cases). Simulation parameters are listed in Figure 6—source

data 1.

DOI: 10.7554/eLife.25051.024

Figure 6 continued on next page
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Figure 3—figure supplement 5). These two models are not interchangeable (Figure 4). If one spe-

cies influences another species through multiple mediators, then in general, these mediators may

not be regarded as a single mediator nor representable by a single pairwise model. For example, for

two reusable mediators, unless their potencies are similar or one mediator is much more potent than

the other, saturable L-V model parameters can qualitatively differ depending on initial community

density (Figure 5—figure supplement 1D). Consequently, a pairwise model derived from a high-

density community generates false predictions for low-density communities (Figure 5C), limiting the

usefulness of pairwise models. We then consider a community where two species compete for a

shared resource while engaging in commensalism via a single chemical mediator. We find that the

best-fitting L-V pairwise model can predict future dynamics in some but not all communities,

depending on parameters used in the mechanistic model (Figure 6). Thus, although a single equa-

tion form can work in many cases, it generates qualitatively wrong predictions in many other cases.

In communities of more than two microbial species, indirect interactions via a third species can

occur. When indirect interactions take the form of interaction chains, if each chain segment of two

species engages in an independent interaction and can be represented by a pairwise model, then

multispecies pairwise models can work (Figure 7A-B). However, as discussed above, pairwise equa-

tion forms may vary among chain segments depending on interaction mechanisms and quantitative

details of a community. When indirect interactions take the form of interaction modification, even if

each species pair can be accurately represented by a pairwise model, a multispecies pairwise model

may fail (Figure 7C–F, ). Interaction modification includes trait modification (Wootton, 2002;

Werner and Peacor, 2003; Schmitz et al., 2004), or, in our cases, mediator modification. Mediator

modification is very common in microbial communities. For example, antibiotic released by one spe-

cies to inhibit another species may be inactivated by a third species, and this type of indirect interac-

tions can stabilize microbial communities (Kelsic et al., 2015; Bairey et al., 2016). As another

example, interaction mediators are often generated by and shared among multiple species. For

example in oral biofilms, organic acids such as lactic acid are generated from carbohydrate fermen-

tation by many species (Bradshaw et al., 1994; Marsh and Bradshaw, 1997; Kuramitsu et al.,

2007). Such by-products are also consumed by multiple species (Kolenbrander, 2000).

One can argue that an extended pairwise model (e.g. dS2
dt

¼ r20S2 þ
rS2CS1

&þ!S1þ S2
S2) embodying both

the saturable form and the alternative form can serve as a general-purpose model at least for pair-

wise interactions via a single mediator. In fact, even the effects of indirect interactions may be quan-

tified and included in the model by incorporating higher-order interaction terms (Case and Bender,

1981; Worthen and Moore, 1991), although with many challenges (Wootton, 2002). In the end,

although these strategies may lead to a sufficiently accurate phenomenological model especially

within the training window, they may fail to predict future dynamics.

When might a pairwise model be useful? First, pairwise models have been instrumental in under-

standing ecological phenomena such as prey-predator oscillatory dynamics and coexistence of com-

peting predator species (Volterra, 1926; MacArthur, 1970; Case and Casten, 1979;

Chesson, 1990). In these cases, mechanistic models are either identical to pairwise models or can

be transformed into pairwise models under simplifying assumptions. Second, pairwise models of

pairwise species interactions can provide a bird’s-eye view of strong or weak stimulatory or inhibitory

interactions in a community. For example, Vetsigian et al., 2011 found that interactions between

soil-isolated Streptomyces strains are enriched for reciprocity – if A inhibits or promotes B, it is likely

that B also inhibits or promotes A (Vetsigian et al., 2011). Third, pairwise models have been useful

in qualitatively understanding species assembly rules in small communities (Friedman et al., 2017).

That is, qualitative information regarding species survival in competitions among a small number of

species may be used to predict survival in more diverse communities within a similar time window.

Fourth, a pairwise model can serve as a starting point for generating hypotheses on species

Figure 6 continued

The following source data is available for figure 6:

Source data 1. List of parameters for simulations in Figure 6 on an interaction through a consumable mediator,

for species consuming a shared abiotic resource.

DOI: 10.7554/eLife.25051.025
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Figure 7. Interaction chain but not interaction modification may be represented by a multispecies pairwise model.

We examine three-species communities engaging in indirect interactions. Each species pair is representable by a

two-species pairwise model (saturable L-V or alternative pairwise model, purple in the right columns of B, D, and

F). We then use these two-species pairwise models to construct a three-species pairwise model, and test how well

it predicts the dynamics known from the mechanistic model. In B, D, and F, left panels show dynamics from the

mechanistic models (solid lines) and three-species pairwise models (dotted lines). Right panels show the difference

metric �D. (A–B) Interaction chain: S1 affects S2, and S2 affects S3. The two interactions employ independent

mediators C1 and C2, and both interactions can be represented by the saturable L-V pairwise model. The three-

species pairwise model matches the mechanistic model in this case. Simulation parameters are provided in

Figure 7—source data 1. (C–F) Interaction modification. In both cases, the three-species pairwise model fails to

predict reference dynamics even though the dynamics of each species pair can be represented by a pairwise

model. (C–D) S3 consumes C1, a mediator by which S1 stimulates S2. Parameters are listed in Figure 7—source

data 2. Here, S1 changes the nature of interaction between S2 and S3: S2 and S3 do not interact in the absence of

S1, but S3 inhibits S2 in the presence of S1. The three-species pairwise model makes qualitatively wrong prediction

about species coexistence. As expected, if S3 does not remove C1, the three-species pairwise model works

(Figure 7—figure supplement 1A–B). (E–F) S1 and S3 both supply C1 which stimulates S2. Here, no species

changes ‘the nature of interactions’ between any other two species: both S1 and S3 contribute reusable C1 to

stimulate S2. S1 promotes S2 regardless of S3; S3 promotes S2 regardless of S1; S1 and S3 do not interact

regardless of S2. However, a multispecies pairwise model assumes that the fitness effects from the two producers

on S2 will be additive, whereas in reality, the fitness effect on S2 saturates at high . As a result, the three-species

pairwise model qualitatively fails to capture relative species abundance. As expected, if C1 affects S2 in a linear

fashion, the community dynamics is accurately captured in the multispecies pairwise model (Figure 7—figure

supplement 1C–D). Simulation parameters are listed in Figure 7—source data 3.

DOI: 10.7554/eLife.25051.026

The following source data and figure supplement are available for figure 7:

Source data 1. List of parameters for simulations in Figure 7B on interaction between three species in a chain.

DOI: 10.7554/eLife.25051.027

Source data 2. List of parameters for simulations in Figure 7D on interaction modification through consumption

of a shared mediator by a third species.

DOI: 10.7554/eLife.25051.028

Figure 7 continued on next page
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interactions (e.g. Li et al., 2015). Note that when applied to microbial communities (Mounier et al.,

2008; Stein et al., 2013; Marino et al., 2014), a fitting pairwise model means that the training

dynamics of the community under investigation can be approximated by a theoretical community

where species interactions satisfy the additivity and universality assumptions of pairwise models.

Even though the theoretical community is likely different from the real community, hypothesis formu-

lation can still be valuable. Finally, pairwise models can be useful in making predictions of limited

scales. For example, Stein et al. used 2/3 of community dynamics data as a training set to derive a

multispecies pairwise model, and in the best-case scenario, the model generated reasonable predic-

tions on the remaining 1/3 of data (Stein et al., 2013). However, as we have shown, pairwise models

can generate qualitatively wrong predictions (Figures 4–7), especially if interaction mechanisms are

diverse such as in microbial communities. Not surprisingly, predicting qualitative consequences of

species removal or addition using a pairwise model has encountered difficulties, especially in com-

munities of more than three species (Mounier et al., 2008; Friedman et al., 2017).

An alternative to a pairwise model is a mechanistic model. How much information about interac-

tion mechanisms do we need to construct a mechanistic model? That is, what is the proper level of

abstraction which captures the phenomena of interest, yet avoids unnecessary details (Li et al.,

2015; Durrett and Levin, 1994)? For example, Tilman argued that if a small number of mechanisms

(e.g. the ‘axes of trade-offs’ in species traits) could explain much of the observed pattern (e.g. spe-

cies coexistence), then this abstraction would be highly revealing (Tilman, 1987). However, the

choice of abstraction is often not obvious. Consider for example a commensal community where S1
grows exponentially (not explicitly depicted in equations in Figure 8) and the net growth rate of S2,

which is normally zero, is promoted by mediator C from S1 in a linear fashion (Figure 8). If we do not

know how S1 stimulates S2, we can still construct an L-V pairwise model (Figure 8A). If we know the

identity of mediator C and realize that C is consumable, then we can instead construct a mechanistic

model incorporating C (Figure 8B). However, if C is produced from a precursor via an enzyme E

released by S1, then we get a different form of mechanistic model (Figure 8C). If, on the other hand,

E is anchored on the membrane of S1 and each cell expresses a similar amount of E, then equations

in Figure 8D are mathematically equivalent to Figure 8B. This simple example, inspired by extracel-

lular breakdown of cellulose into a consumable sugar C (Bayer and Lamed, 1986; Felix and Ljung-

dahl, 1993; Schwarz, 2001), illustrates how knowledge of mechanisms may eventually help us

determine the right level of abstraction.

In summary, under certain circumstances, we may already know that microbial interaction mecha-

nisms fall within the domain of validity for a particular pairwise model. In these cases, a pairwise

model provides the appropriate level of abstraction, and constructing such a pairwise model is much

easier than a mechanistic model (Figure 1). However, if we do not know whether a pairwise model is

valid, we will need to be cautious since pairwise models can fail to even qualitatively capture pair-

wise microbial interactions. We need to be equally careful when extrapolating and generalizing con-

clusions obtained from pairwise models, especially for communities where species interaction

mechanisms are diverse. Considering recent advances in identifying and quantifying interactions, we

advocate a transition to models that incorporate interaction mechanisms at the appropriate level of

abstraction.

Figure 7 continued

Source data 3. List of parameters for simulations in Figure 7F on interaction modification through production of a

shared mediator by a third species.

DOI: 10.7554/eLife.25051.029

Source data 4. List of parameters for simulations in Figure 7—figure supplement 1B on an interaction between

three species through a shared reusable mediator affecting multiple species.

DOI: 10.7554/eLife.25051.030

Source data 5. List of parameters for simulations in Figure 7—figure supplement 1D on an interaction between

three species through a shared reusable mediator produced by multiple species.

DOI: 10.7554/eLife.25051.031

Figure supplement 1. A multispecies pairwise model can work under special conditions.

DOI: 10.7554/eLife.25051.032
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Figure 8. Different levels of abstraction in a mechanistic model. How one species (S1) may influence another (S2)

can be mechanistically modeled at different levels of abstraction. For simplicity, here we assume that interaction

strength scales in a linear (instead of saturable) fashion with respect to mediator concentration or species density.

The basal fitness of S2 is zero. (A) In the simplest form, S1 stimulates S2 in an L-V pairwise model. (B) In a

mechanistic model, we may realize that S1 stimulates S2 via a mediator C which is consumed by S2. The

corresponding mechanistic model is given. (C) Upon probing more deeply, it may become clear that S1 stimulates

S2 via an enzyme E, where E degrades an abundant precursor (such as cellulose) to generate mediator C (such as

glucose). In the corresponding mechanistic model, we may assume that E is released by S1 at a rate zES1 and that

E liberates C at a rate hCE . (D) If instead E is anchored on the cell surface (e.g. cellulosome), then E is proportional

to S1. If we substitute E into the second equation, then (B) and (D) become equivalent. Thus, when enzyme is

anchored on cell surface but not when enzyme is released, the mechanistic knowledge of enzyme can be

neglected.

DOI: 10.7554/eLife.25051.033
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Materials and methods

Interaction modification but not interaction chain violates the additivity
assumption
In a pairwise model, the fitness of a focal species Si is the sum of its ‘basal fitness’ (ri0, the net growth

rate of a single Si individual in the absence of any intra-species or inter-species interactions) and the

additive fitness effects exerted by pairwise interactions with other members of the community.

Mathematically, an N-species pairwise model is often formulated as

dSi

dt
¼ ri0 þ

X

N

j¼1

fij Sj
� �

 !

Si (6)

Here, fij Sj
� �

describes how Sj, the density of species Sj, positively or negatively affects the fitness

of Si, and is a linear or nonlinear function of only Sj.

Indirect interactions via a third species fall under two categories (Wootton, 1993). The first type

is known as ‘interaction chain’ or ‘density-mediated indirect interactions’. For example, the consump-

tion of plant S1 by herbivore S2 is reduced when the density of herbivore is reduced by carnivore S3.

In this case, the three-species pairwise model

dS1
dt

¼ r10� f12 S2ð Þð ÞS1
dS2
dt

¼ r20þ f21 S1ð Þ� f23 S3ð Þð ÞS2
dS3
dt

¼ r30þ f32 S2ð Þð ÞS3

8

>

<

>

:

(7)

does not violate the additivity assumption (compare with Equation 6 (Case and Bender, 1981;

Wootton, 1994).

The second type of indirect interactions is known as ‘interaction modification’ or ‘trait-mediated

indirect interactions’ or ‘higher order interactions’ (Vandermeer, 1969; Wootton, 1994; Billick and

Case, 1994; Wootton, 2002), where a third species modifies the ‘nature of interaction’ from one spe-

cies to another (Wootton, 2002; Werner and Peacor, 2003; Schmitz et al., 2004). For example,

when carnivore is present, herbivore will spend less time foraging and consequently plant density

increases. In this case, f12 in Equation 7 is a function of both S2 and S3, violating the additivity

assumption.

Summary of simulation files
Simulations are based on Matlab and executed on an ordinary PC. Steps are:

Step 1: Identify monoculture parameters ri0, rii, and Kii (Figure 1—figure supplement 2C, Row 1

and Row 2).

Step 2: Identify interaction parameters rij, rji, Kij, and Kji where i 6¼ j (Figure 1—figure supple-

ment 2C, Row 3).

Step 3: Calculate distance �D between population dynamics of the reference mechanistic model

and the approximate pairwise model over a period of time outside of the training window to assess

if the pairwise model is predictive.

Fitting is performed using nonlinear least squares (lsqnonlin routine) with default optimization

parameters. The following list describes the m-files used for different steps of the analysis:

File name Function

FitCost_BasalFitness
Source code 1

Calculates the cost function for monocultures (i.e. the difference between the target mechanistic
model dynamics and the dynamics obtained from the pairwise model)

FitCost_BFSatLV.m
Source code 2

Calculates the cost function for communities (i.e. the difference between the target mechanistic
model dynamics and the dynamics obtained from the saturable L-V pairwise model)

FitCost_BFSatLV_Dp.m
Source code 3

Calculates the cost function for communities (i.e. the difference between the target mechanistic model
dynamics and the dynamics obtained from the alternative pairwise model)

DynamicsMM_WM_MonocultureDpMM.m
Source code 4

Returns growth dynamics for monocultures, based on the mechanistic model
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DynamicsMMSS_WM_NetworkDpMM.m
Source code 5

Returns growth dynamics for communities of multiple species, based on the mechanistic model

DynamicsWM_NetworkBFSatLV.m
Source code 6

Returns growth dynamics for communities of multiple species, based on the saturable L-V pairwise
model

DynamicsWM_NetworkBFSatLV_Dp.m
Source code 7

Returns growth dynamics for communities of multiple species, based on the alternative pairwise model

DeriveBasalFitnessMM_WM_DpMM.m
Source code 8

Estimates monoculture parameters of pairwise model (Step 1)

DeriveBFSatLVMMSS_WM_DpMM.m
Source code 9

Estimates saturable L-V pairwise model interaction parameters (Step 2)

DeriveBFSatLVMMSS_WM_DpMM_Dp.m
Source code 10

Estimates alternative pairwise model interaction parameters (Step 2)

DeriveBFSatLVMMSS_WM_DpMM_r21.m
Source code 11

Estimates saturable L-V pairwise model interaction parameters (r21 and K21) in cases where we know
that S2 is only affected by S1, to accelerate optimization

DeriveBFSatLVMM_WM_DpMM_Dp_r21.m
Source code 12

Estimates alternative pairwise model interaction parameter (r21) in cases where we know that S2
is only affected by S1 and that KS2C1 ¼ KC1S2 to accelerate optimization

DynamicsWM_NetworkBFLogLV_DI.m
Source code 13

Returns growth dynamics for communities of two species competing for an environmental resource
while engaging in an additional interaction, based on the logistic L-V pairwise model (Figure 6)

C2Sp2_ARCLi_NoSatDp_FitBFLogLV_DI.m
Source code 14

Estimates logistic L-V pairwise model interaction parameters for communities of two species
competing for an environmental resource while engaging in an additional interaction, and
compares community dynamics from pairwise and mechanistic models (Figure 6)

Dynamics_WM_NetworkDpMM_ODE23.m
Source code 15

Defines differential equations when using Matlab’s ODE23 solver to calculate community dynamics

Case_C1Sp2_CmnsDp_ODE23.m
Source code 16

Example of using Matlab ODE23 solver for calculating community dynamics

Deriving a pairwise model for interactions mediated by a single
consumable mediator
To facilitate mathematical analysis, we assume that requirements calculated below are eventually sat-

isfied within each dilution cycle (see Figure 3—figure supplement 4 for an example where dilution

cycles necessitated by long convergence time violate requirements for a pairwise model to converge

to the mechanistic model). We further assume that r10>0 and r20>0 so that species cannot go extinct

in the absence of dilution. See Figure 3—figure supplement 5 for a summary of this section.

When S1 releases a consumable mediator which stimulates the growth of S2, the mechanistic

model as per Figure 3B, is

dS1
dt

¼ r10S1
dS2
dt

¼ r20S2 þ rS2C1

C1

C1þKS2C1

S2

dC1

dt
¼ bC1S1

S1 �aC1S2
C1

C1þKC1S2

S2 ¼ bC1S1
�aC1S2

C1

C1þKC1S2

S2
S1

� �

S1

8

>

>

>

<

>

>

>

:

(8)

Let C1ðt¼ 0Þ ¼C10 ¼ 0; S1ðt¼ 0Þ ¼ S10; and S2ðt¼ 0Þ ¼ S20. Note that the initial condition C10 ¼ 0

can be easily imposed experimentally by pre-washing cells. Under which conditions can we

eliminate C1 so that we can obtain a pairwise model of S1 and S2?

Define RS ¼ S2=S1 as the ratio of the two populations.

dRS

dt
¼

dS2
dt
S1�S2

dS1
dt

S2
1

¼ r20þ rS2C1

C1

C1þKS2C1

� �

S2
S1
� S2

S2
1

r10S1

¼ r20þ rS2C1

C1

C1þKS2C1

� r10

� �

RS

(9)

Case I: r10� r20>rS2C1

Since producer S1 always grows faster than consumer S2, RS ! 0 as t ! ¥. Define ~C1 ¼ C1=S1 (‘~’

indicating scaling against a function).
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d ~C1

dt
¼ d C1=S1ð Þ

dt
¼

dC1
dt
S1�C1

dS1
dt

S2
1

¼
bC1S1

S1�
aC1S2

C1

C1þKC1S2

S2

� �

S1�C1r10S1

S2
1

¼ bC1S1
� r10 ~C1 �

aC1S2
~C1

~C1þKC1S2
exp �r10tð Þ=S10

RS

(10)

Since RS declines exponentially with a rate faster than jr20þ rS2C1
� r10j, we can ignore the third

term of the right hand side of Equation 10 if it is much smaller than the first term. That is,

aC1S2
~C1

~C1 þKC1S2 exp �r10tð Þ=S10
RS<aC1S2RS � aC1S2RS 0ð Þexp �jr20þ rS2C1

� r10jtð Þ� bC1S1
:

Thus for t� ln
aC1S2

RS 0ð Þ

bC1S1

� �.

jr20þ rS2C1
� r10j,

d~C1

dt
»bC1S1

� r10 ~C1. When initial ~C1 is 0, this equation can

be solved to yield: ~C1 »bC1S1
1� exp �r10tð Þð Þ=r10. After time of the order of 1=r10, the second term can

be neglected. Thus, ~C1 »bC1S1
=r10 after time of the order of

max ln
aC1S2

RS 0ð Þ

bC1S1

� �� .

jr20þ rS2C1
� r10j;1=r10

�

. Then C1 can be replaced by bC1S1
=r10

� �

S1 in Equation 8,

and a saturable L-V pairwise model can be derived.

Case II: rS2C1
>r10 � r20>0

For Equation 8, we find that a steady state solution for C1 and RS, denoted respectively as C�
1
and

R�
S, exist. They can be easily found by setting the growth rates of S1 and S2 to be equal, and dC1=dt

to zero.

C�
1
¼ r10�r20

r20þrS2C1�r10
KS2C1

R�
S ¼

bC1S1

aC1S2

1þ
KC1S2

C�
1

� �

8

<

:

(11)

However, if C1 has not yet reached steady state, imposing steady state assumption would falsely

predict RS at steady state and thus remaining at its initial value (Figure 4Bii , dotted lines). Since

dC1=dt in Equation 8 is the difference between two exponentially growing terms, we factor out the

exponential term S1 to obtain

dC1

dt
¼ bC1S1

�aC1S2

C1

C1þKC1S2

S2

S1

� �

S1 ¼ bC1S1
f C1;RSð ÞS1 (12)

where f C1;RSð Þ ¼ 1�
aC1S2

bC1S1

C1

C1þKC1S2

RS. When f »0, we can eliminate C1 and obtain an alternative pair-

wise model

dS2

dt
¼ r20S2þ rS2C1

bC1S1
KC1S2S1

bC1S1
KC1S2 �KS2C1
ð ÞS1þaC1S2KS2C1

S2
S2 (13)

Or

dS2

dt
¼ r20S2 þ

rS2C1
S1

!S1þ S2
S2 (4)

where v and c are constants (Figure 3Bii).

For certain conditions (which will be discussed at the end of this section, Figure 3—figure sup-

plement 5A), this alternative model can make reasonable predictions of community dynamics even

before the community reaches the steady state (Figure 4Bii , compare dashed and solid lines).

Below we discuss the general properties of community dynamics and show that there exists a time

scale tf after which it is reasonable to assume f » 0 and the alternative model can be derived. We

also estimate tf for several scenarios.

We first make C1 and RS dimensionless by defining Ĉ1 ¼ C1=C
�
1
and R̂S ¼ RS=R

�
S (‘^’ indicating scal-

ing against steady state values). Equation 9 can then be rewritten as
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dR̂S

dt
¼ r20þ rS2C1

Ĉ1

Ĉ1 þ K̂S2C1

� r10

 !

R̂S (14)

where K̂S2C1
¼KS2C1

=C�
1
.

From Equations 8 and 11, we obtain

d
C1
C�
1

dt
¼ 1

C�
1

bC1S1
�

aC1S2
C1

C1þKC1S2

RS

R�
S

R�
S

� �

S1 ¼
1

C�
1

bC1S1
�

aC1S2
C1

C1þKC1S2

R̂SR
�
S

� �

S1

¼ 1

C�
1

bC1S1
�

aC1S2
C1=C

�
1

C1=C�
1
þKC1S2

=C�
1

R̂S

bC1S1

aC1S2

1þ
KC1S2

C�
1

� �� �

S1

¼ 1

C�
1

bC1S1
1�

Ĉ1 1þK̂C1S2ð Þ
Ĉ1þK̂C1S2

R̂S

� �

S1

or

dĈ1

dt
¼ b̂C1S1

1�
Ĉ1 1þ K̂C1S2

� �

Ĉ1 þ K̂C1S2

R̂S

" #

S1 (15)

where b̂C1S1
¼ bC1S1

=C�
1
and K̂C1S2 ¼KC1S2=C

�
1
.

Using these scaled variables, f (i.e. the square bracket in Equation 15) can be rewritten as

f Ĉ1; R̂S

� �

¼ 1�
Ĉ1 1þ K̂C1S2

� �

Ĉ1 þ K̂C1S2

R̂S (16)

and

dĈ1

dt
¼ b̂C1S1

f Ĉ1; R̂S

� �

S1 (17)

Equations 14 and 17 allow us to construct a phase portrait where the x axis is Ĉ1 and the y axis is

R̂S (Figure 3—figure supplement 2A–D). Note that at steady state, Ĉ1; R̂S

� �

¼ ð1;1Þ. Setting Equa-

tion 16 to zero:

R̂S ¼ 1þ K̂C1S2=Ĉ1

� �

= 1þ K̂C1S2

� �

or Ĉ1 ¼ K̂C1S2= R̂S 1þ K̂C1S2

� �

� 1
� �

(18)

defines the f -zero-isocline on the Ĉ1 � R̂s phase plane (i.e. values of Ĉ1; R̂S

� �

at which f Ĉ1; R̂S

� �

¼ 0

and thus Ĉ1 can be eliminated to obtain a pairwise model; Figure 3—figure supplement 2A–D blue

lines). As shown in Figure 3—figure supplement 2A, the phase portrait is divided into four regions

by the f -zero-isocline (blue) and the steady state Ĉ1 ¼ 1 (vertical solid line), and grey arrows dictate

the direction of the community dynamics trajectory (Ĉ1, R̂S). Starting from ’initial state’ (Ĉ1ðt¼ 0Þ ¼ 0,

R̂S t¼ 0ð Þ), the trajectory moves downward right (brown circles and orange lines in Figure 3—figure

supplement 2A–D) until it hits Ĉ1 ¼ 1. Then, it moves upward right and eventually hits the f -zero-iso-

cline. Afterward, the trajectory moves toward the steady state (green circles) very closely along (and

not superimposing) the f -zero-isocline during which the alternative pairwise model can be derived

(Figure 3—figure supplement 2A–D).

It is difficult to solve Equations 14 and 15 analytically because the detailed community dynamics

depends on the parameters and the initial species composition in a complicated way. However,

under certain initial conditions, we can estimate tf , the time scale for the community to approach the

f -zero-isocline. Note that tf is not a precise value. Instead it estimates the acclimation time scale

after which a pairwise model can be derived.

One assumption used when estimating all tf is that S10 is sufficiently high (Figure 3—figure sup-

plement 5B) to avoid the long lag phase that is otherwise required for the mediator to accumulate

to a high enough concentration.

From Equation 18, the asymptotic value for the f -zero-isocline is
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R̂S Ĉ1 !¥

� �

¼ 1= 1þ K̂C1S2

� �

(19)

This is plotted as a black dotted line in Figure 3—figure supplement 2A–D.

Below we consider three different initial conditions for R̂S t ¼ 0ð Þ:

Case II-1. R̂S t ¼ 0ð Þ � maxð1; K̂�1

S2C1
Þ

From Equation 11, this becomes RS 0ð Þ=R�
S � maxð1; r10�r20

r20þrS2C1�r10
Þ.

A typical trajectory of the system is shown in Figure 3—figure supplement 2B: at time t ¼ 0,

using Equations 14 and 15, the community dynamics trajectory (orange solid line in Figure 3—fig-

ure supplement 2B inset) has a slope of

dR̂S

dĈ1

�

�

�

�

Ĉ1 0ð Þ¼0

¼
dR̂S=dt

dĈ1=dt

�

�

�

�

t¼0

¼
r20� r10ð ÞR̂S 0ð Þ

b̂C1S1
S1 0ð Þ

(20)

From Equation 18, the slope of the f -zero-isocline (blue line in Figure 3—figure supplement 2B

inset) at R̂S ¼ R̂S 0ð Þ is

dR̂S

dĈ1

�

�

�

R̂S¼R̂S 0ð Þ
¼

d 1þK̂C1S2
=Ĉ1ð Þ= 1þK̂C1S2ð Þ½ �
dĈ1

�

�

�

�

R̂S¼R̂S 0ð Þ

¼ �1

1þK̂C1S2

K̂C1S2

Ĉ2

1

�

�

�

R̂S¼R̂S 0ð Þ
¼

�K̂C1S2

1þK̂C1S2

R̂S 0ð Þ 1þK̂C1S2ð Þ�1

K̂C1S2

� �2

¼
� 1þK̂C1S2ð ÞR̂S 0ð Þ�1½ �

2

1þK̂C1S2ð ÞK̂C1S2

»
� 1þK̂C1S2ð ÞR̂S 0ð Þ2

K̂C1S2

(21)

The approximation in the last step is due to the very definition of Case II-1: R̂S t¼ 0ð Þ� 1. The ini-

tial steepness of the community dynamics trajectory (Equation 20) will be much smaller than that of

the f -zero-isocline (Equation 21) if

S1 0ð Þ�
K̂C1S2 r10� r20ð Þ

b̂C1S1
1þ K̂C1S2

� �

R̂S 0ð Þ
(22)

If we do not scale, together with Equation 11, this becomes:

S1 0ð Þ�
KC1S2

=C�
1ð Þ r10�r20ð Þ

bC1S1
=C�

1
ð Þ 1þKC1S2

=C�
1

ð ÞRS 0ð Þ=R�
S

¼
KC1S2

r10�r20ð Þ

RS 0ð ÞaC1S2

(23)

In this case, the community dynamics trajectory before getting close to the f -zero-isocline can be

approximated as a straight line (the orange dotted line) and the change in R̂S can be approximated

by the green segment in the inset of Figure 3—figure supplement 2B. Since the green segment,

the orange dotted line and the red dashed line form a right angle triangle, the length of green seg-

ment can be calculated once we find the length of the red dashed line DĈ1, which is the horizontal

distance between (Ĉ1 0ð Þ, R̂S 0ð Þ) and the f -zero-isocline and can be calculated from Equation 16:

1�
DĈ1 1þ K̂C1S2

� �

DĈ1þ K̂C1S2

R̂S 0ð Þ ¼ 0

which yields

DĈ1 ¼
K̂C1S2

R̂S 0ð Þ 1þ K̂C1S2

� �

� 1
»

K̂C1S2

R̂S 0ð Þ 1þ K̂C1S2

� � (24)

The green segment DR̂S is then the length of red dashed line (DĈ1, Equation 24 ) multiplied with

dR̂S

dĈ1

�

�

�

Ĉ1 0ð Þ¼0

(Equation 20), or
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DR̂S ¼
r20� r10ð ÞK̂C1S2

b̂C1S1
S1 0ð Þ 1þ K̂C1S2

� � (25)

Note that if Equation 22 is satisfied, jDR̂Sj � R̂S 0ð Þ. What is the time scale tf for the community to

traverse the orange dotted line to be close to the f -zero-isocline? Since from Equation 14

dR̂S

dt
¼ r20þ rS2C1

Ĉ1

Ĉ1þK̂S2C1

� r10

� �

R̂S » r20� r10ð ÞR̂S. In Equation 14, the second term in the parenthese

can be dropped if

rS2C1

r20� r10

Ĉ1

Ĉ1 þ K̂S2C1

�

�

�

�

�

�

�

�

�

�

� 1:

In case II-1, before the system reaches the f -zero-isocline, from Equation 24, Ĉ1 � DĈ1<1=R̂Sð0Þ

thus

rS2C1

r20� r10

Ĉ1

Ĉ1 þ K̂S2C1

�

�

�

�

�

�

�

�

�

�

<
rS2C1

r20� r10

DĈ1

DĈ1 þ K̂S2C1

�

�

�

�

�

�

�

�

�

�

<
rS2C1

r20� r10

1

1þ R̂Sð0ÞK̂S2C1

�

�

�

�

�

�

�

�

:

From the top portion of Equation 11,

rS2C1

r10� r20
¼ K̂S2C1

þ 1

thus

rS2C1

r20� r10

Ĉ1

Ĉ1 þ K̂S2C1

�

�

�

�

�

�

�

�

�

�

< K̂S2C1
þ 1

� � 1

1þ R̂Sð0ÞK̂S2C1

:

According to the condition, R̂Sð0Þ�maxð1; K̂�1

S2C1
Þ. If K̂�1

S2C1
>1, then R̂Sð0Þ� K̂�1

S2C1
, R̂Sð0ÞK̂S2C1

� 1

and K̂S2C1
<1.

rS2C1
r20�r10

Ĉ1

Ĉ1þK̂S2C1

�

�

�

�

�

� < K̂S2C1
þ 1

� �

1

1þR̂Sð0ÞK̂S2C1

< 2

1þR̂Sð0ÞK̂S2C1

� 1

If K̂�1

S2C1
<1, then R̂Sð0Þ� 1

rS2C1
r20�r10

Ĉ1

Ĉ1þK̂S2C1

�

�

�

�

�

� < K̂S2C1
þ 1

� �

1

1þR̂Sð0ÞK̂S2C1

¼ 1þ K̂�1

S2C1

� �

1

K̂�1

S2C1
þR̂Sð0Þ

< 2

R̂Sð0Þ

� 1

Thus, the above approximation of Equation 14 is valid, and we obtain

tf » ln
R̂S 0ð ÞþDR̂S

R̂S 0ð Þ

� �.

r20 � r10ð Þ.

Since here DR̂S � R̂S 0ð Þ and ln 1þ xð Þ ~ x for small x, together with Equation 25, we have

tf »
K̂C1S2

b̂C1S1
S1 0ð Þ 1þ K̂C1S2

� �

R̂S 0ð Þ
(26)

If unscaled, using Equation 11, this becomes

tf »
KC1S2=C

�
1

bC1S1
=C�

1
1þKC1S2=C

�
1

� �

S1 0ð ÞRS 0ð Þ=R�
S

¼
KC1S2

aC1S2S2 0ð Þ
(27)
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Case II-2. R̂S t¼ 0ð Þ is comparable to 1
That is, RS t ¼ 0ð Þ»R�

S. If S10 is low, a typical example is shown in Figure 3—figure supplement 2D.

Here, because it takes a while for C1 to accumulate, during this lagging phase

R̂S tð Þ» R̂S 0ð Þ exp �jr10 � r20jtð Þ and there is a sharp plunge in R̂S before the trajectory levels off and

climbs up. Although the trajectory eventually hits the f -zero-isocline where the alternative pairwise

model can be derived, estimating tf is more complicated. Here we consider a simpler case where S10

is large enough so that the trajectory levels off immediately after t ¼ 0, and R̂S » 1 before the trajec-

tory hits the f -zero-isocline (Figure 3—figure supplement 2A). Since R̂S decreases until Ĉ1 ¼ 1 and

from Equation 20, and similar to the reasoning in Case II-1, if

jDR̂Sj ¼
dR̂S

dĈ1

�

�

�

�

�

�

�

�

Ĉ1 0ð Þ¼0

�1¼
r20� r10ð ÞR̂S 0ð Þ

b̂C1S1
S1 0ð Þ

�

�

�

�

�

�

�

�

�

�

� R̂S 0ð Þ

�

�

�

�

�

or if

S1 0ð Þ�
r10� r20ð Þ

b̂C1S1

(28)

a typical trajectory moves toward the f -zero-isocline almost horizontally (Figure 3—figure supple-

ment 2A). The unscaled form of Equation 28 is

S1 0ð Þ�
r10� r20ð Þ

b̂C1S1

¼
r10� r20ð ÞC�

1

bC1S1

¼
r10� r20ð Þ2KS2C1

bC1S1
r20þ rS2C1

� r10ð Þ
(29)

To calculate the time it takes for the trajectory to reach the f -zero-isocline, let DsĈ1 ¼ Ĉ1� 1 and

DsR̂S ¼ R̂S � 1 at any time point t respectively represent deviation of (Ĉ1 tð Þ, R̂S tð Þ) away from their

steady state values of (1, 1). We can thus linearize Equation 14 and Equation 15 around the steady

state. Note that since at the steady state f= 0, thus Dsf ¼ f .

Rewrite Equation 14 as

dR̂S

dt
¼ r20 þ rS2C1

Ĉ1

Ĉ1þK̂S2C1

� r10

� �

R̂S ¼ h Ĉ1; R̂S

� �

.

We linearize this equation around the steady state Ĉ1 ¼ 1; R̂S ¼ 1

d 1þDsR̂Sð Þ
dt

¼ h 1þ DsĈ1; 1þ DsR̂S

� �

» h 1; 1ð Þ þ DsĈ1
qh

qĈ1

�

�

�j Ĉ1¼1;R̂S¼1ð Þ þ DsR̂S
qh

qR̂S

�

�

�

Ĉ1¼1;R̂S¼1ð Þ
.

At steady state, dR̂S

dt
¼ h 1; 1ð Þ ¼ 0. Thus, r20 þ

rS2C1
1þK̂S2C1

� r10=0.

dDsR̂S

dt
¼ DsĈ1R̂SrS2C1

Ĉ1þK̂S2C1ð Þ�Ĉ1

Ĉ1þK̂S2C1ð Þ
2

�

�

�

�

Ĉ1¼1;R̂S¼1ð Þ
þDsR̂S r20þ

rS2C1 Ĉ1

Ĉ1þK̂S2C1

� r10

� ��

�

�

�

Ĉ1¼1;R̂S¼1ð Þ

¼ DsĈ1

rS2C1 K̂S2C1

1þK̂S2C1ð Þ
2 þDsR̂S r20þ

rS2C1
1þK̂S2C1

� r10

� �

¼ DsĈ1

rS2C1 K̂S2C1

1þK̂S2C1ð Þ
2 :

Thus,

dDsR̂S

dt
¼ DsĈ1

rS2C1
K̂S2C1

1þ K̂S2C1

� �2
(30)

Recall Equations 15 and 17 as

dĈ1

dt
¼ b̂C1S1

1�
Ĉ1 1þK̂C1S2ð Þ
Ĉ1þK̂C1S2

R̂S

� �

S1 ¼ b̂C1S1
f Ĉ1; R̂S

� �

S1.

Linearize around the steady state Ĉ1 ¼ 1; R̂S ¼ 1 (note f (1,1)=0):

Momeni et al. eLife 2017;6:e25051. DOI: 10.7554/eLife.25051 24 of 34

Research article Computational and Systems Biology Ecology

http://dx.doi.org/10.7554/eLife.25051


d 1þDsĈ1ð Þ
dt

¼ b̂C1S1
S1 DsĈ1

qf

qĈ1
Ĉ1¼1;R̂S¼1ð Þ þDsR̂S

qf

qR̂S

�

�

�

�

�

�

Ĉ1¼1;R̂S¼1ð Þ

� �

¼�b̂C1S1
S1 DsĈ1

1þK̂C1S2ð Þ Ĉ1þK̂C1S2ð Þ�Ĉ1 1þK̂C1S2ð Þ
Ĉ1þK̂C1S2ð Þ

2 R̂S

� �� �

�

�

�

Ĉ1¼1;R̂S¼1ð Þ
þDsR̂S

Ĉ1 1þK̂C1S2ð Þ
Ĉ1þK̂C1S2

�

�

�

�

Ĉ1¼1;R̂S¼1ð Þ

!

¼�b̂C1S1
S1 DsĈ1

K̂C1S2

1þK̂C1S2

þDsR̂S

� �

:

Thus,

dDsĈ1

dt
¼�b̂C1S1

DsĈ1

K̂C1S2

1þ K̂C1S2

þDsR̂S

� �

S1 (31)

Similar to the above calculation, we expand f (Equation 16) around steady state 0,

Dsf ¼ f � 0¼ DsĈ1
qf

qĈ1

j
Ĉ1¼1;R̂S¼1ð Þ þDsR̂S

qf

qR̂S
j
Ĉ1¼1;R̂S¼1ð Þ

¼�DsĈ1

K̂C1S2

1þK̂C1S2

�DsR̂S

(32)

Utilizing Equation 30, Equation 31, and Equation 32,

dDsf

dt
¼ df

dt
¼ �d

dt
DsĈ1

K̂C1S2

1þK̂C1S2

þDsR̂S

� �

¼
K̂C1S2

b̂C1S1

1þK̂C1S2

DsĈ1

K̂C1S2

1þK̂C1S2

þDsR̂S

� �

S1 �DsĈ1

rS2C1 K̂S2C1

1þK̂S2C1ð Þ
2

¼�
K̂C1S2

b̂C1S1
S1

1þK̂C1S2

f �DsĈ1

rS2C1 K̂S2C1

1þK̂S2C1ð Þ
2

(33)

Taking the derivative of both sides, and using Equation 31 and Equation 32, we have

d2f

dt2
¼ �

K̂C1S2
b̂C1S1

1þK̂C1S2

d S1fð Þ
dt

þ
rS2C1 K̂S2C1

1þK̂S2C1ð Þ
2 b̂C1S1

DsĈ1

K̂C1S2

1þK̂C1S2

þ DsR̂S

� �

S1

¼ �
K̂C1S2

b̂C1S1

1þK̂C1S2

d S1fð Þ
dt

�
b̂C1S1

rS2C1 K̂S2C1

1þK̂S2C1ð Þ
2 fS1

.

The solution to the above equation is:

f ¼ exp �
b

2r10
er10t �

r10t

2

� �

� D1M
1

2
þ

a

br10
;0;

er10tb

r10

� �

þD2W
1

2
þ

a

br10
;0;

er10tb

r10

� �� �

where a¼ rS2C1
K̂S2C1

b̂C1S1
S10= 1þ K̂S2C1

� �2

and b¼ b̂C1S1
K̂C1S2S10= 1þ K̂C1S2

� �

are two positive con-

stants. D1 and D2 are two constants that can be determined from the initial conditions of R̂S and Ĉ1.

M k;�; zð Þ and W k;�; zð Þ are Whittaker functions with argument z. As z!¥ (http://dlmf.nist.gov/13.

14.E20 and http://dlmf.nist.gov/13.14.E21)

M k; �; zð Þ ~ exp z=2ð Þz�k

W k; �; zð Þ~ exp �z=2ð Þzk
.

Thus when er10tb=r10 � 1,

f ~D1 exp � b
2r10

er10t � r10t
2
þ er10 tb

2r10

h i

er10 tb
r10

� �� 1

2
þ a

br10

� �

þD2 exp � b
2r10

er10t � r10t
2
� er10 tb

2r10

h i

er10 tb
r10

� � 1

2
þ a

br10

� �

¼ b
r10

� �� 1

2
þ a

br10

� �

D1 exp � r10 þ
a
b

� �

t
� �

þ b
r10

� � 1

2
þ a

br10

� �

D2 exp
�b
r10

er10t þ a
b
t

� �

.

The second term approaches zero much faster compared to the first term due to the negative

exponent with an exponential term. Thus,

f / exp � r10þ
a
b

� �

t
� �

¼ exp � r10 þ
rS2C1 K̂S2C1

b̂C1S1
S10= 1þK̂S2C1ð Þ

2

b̂C1S1
K̂C1S2

S10= 1þK̂C1S2ð Þ

� �

t

� �

¼ exp � r10þ
rS2C1 K̂S2C1

1þK̂C1S2ð Þ
K̂C1S2

1þK̂S2C1ð Þ
2

� �

t

� � (34)

Thus, when er10tb=r10 � 1, Dsf =f approaches zero at a rate of r10þ
rS2C1 K̂S2C1

1þK̂C1S2ð Þ
K̂C1S2

1þK̂S2C1ð Þ
2 . Therefore, as a

conservative estimation, for
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t� r�1

10
(35)

the community is sufficiently close to f-zero-isocline.

Case II-3. R̂S t ¼ 0ð Þ � 1= 1þ K̂C1S2

� �

or RS 0ð Þ � bC1S1
=aC1S2

Similar to Case II-2, if Equation 28 is satisfied, a typical trajectory is illustrated in Figure 3—figure

supplement 2C where the trajectory decreases slightly until Ĉ1 ¼ 1. Ĉ1then increases to much

greater than one before the system reaches the f-zero-isocline. tf can then be estimated from tf 1, the

time it takes for Ĉ1 to reach 1 and tf 2 , the time takes for R̂S to increase to 1= 1þ K̂C1S2

� �

. Using Equa-

tion 15, since R̂S decreases very little, and R̂S t ¼ 0ð Þ � 1= 1þ K̂C1S2

� �

,

dĈ1

dt
» b̂C1S1

S1 ¼ b̂C1S1
S10 expðr10tÞ

Therefore, Ĉ1 »
b̂C1S1

S1ð0Þ

r10
ðer10t � 1Þ.

During tf 1, Ĉ1 increases from 0 to 1. Thus, 1»
b̂C1S1

S1ð0Þ

r10
ðer10tf 1 � 1Þ. tf 1 » lnðr10=ðb̂C1S1

S10Þ þ 1Þ=r10.

If

S1ð0Þ�
r10

b̂C1S1

(36)

tf 1 » ðb̂C1S1
S10Þ

�1 � r�1

10
.

Using Equation 14 and since Ĉ1 is very large,

dR̂S

dt
¼ r20 þ rS2C1

Ĉ1

Ĉ1þK̂S2C1

� r10

� �

R̂S » r20 þ rS2C1
� r10ð ÞR̂S.

This yields

tf 2 » ln 1

R̂S 0ð Þ 1þK̂C1S2ð Þ

� �

= r20 þ rS2C1
� r10ð Þ,

and a conservative estimation of tf is

tf »1=r10þ ln
1

R̂S 0ð Þ 1þ K̂C1S2

� �

 !

= r20þ rS2C1
� r10ð Þ (37)

In the unscaled form, this becomes:

tf »
1

r10
þ ln 1þ

KC1S2

C�
1

� �

RS 0ð Þ
R�
S

� �.

r10� r20 � rS2C1
ð Þ

¼ 1

r10
þ ln

1þ
KC1S2
C�
1

� �

RS 0ð Þ

bC1S1
aC1S2

1þ
KC1S2
C�
1

� �

0

@

1

A

,

r10� r20� rS2C1
ð Þ ¼ 1

r10
þ

ln
aC1S2

RS 0ð Þ

bC1S1

� �

r10�r20�rS2C1ð Þ

(38)

Case III: r10<r20
In this case, supplier S1 always grows slower than S2. As t ! ¥, RS ¼ S2=S1 ! ¥ and C1 ! 0. The

phase portrait is separated into two parts by the f-zero-isocline (Figure 3—figure supplement 2E),

where, as in Equation 12,

f C1;RSð Þ ¼ 1�
aC1S2

bC1S1

C1

C1þKC1S2

RS ¼ 0 or RS ¼
bC1S1

aC1S2

1þ
KC1S2

C1

� �

.

Note that the asymptotic value of RS (black dotted line, Figure 3—figure supplement 2E–H) is

RS C1 !¥ð Þ ¼ bC1S1
=aC1S2 (39)

From Equation 9, dRS=dt>0. From Equation 8, below the f -zero-isocline, dC1=dt>0 and above the

f -zero-isocline, dC1=dt<0. Thus if the system starts from 0;RS 0ð Þð Þ, the phase portrait dictates that it

moves with a positive slope until a time of a scale tf when it hits the f -zero-isocline, after which it

moves upward to the left closely along the f -zero-isocline (Figure 3—figure supplement 2E). After
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tf , the alternative pairwise model can be derived. Although tf is difficult to estimate in general, it is

possible for the following cases.

Case III-1. RS 0ð Þ � bC1S1
=aC1S2

Similar to Case II-2, if S10 is small, there is a lagging phase during which the trajectory rises steeply

before leveling off (Figure 3—figure supplement 2H). Although the alternative pairwise model can

be derived once the trajectory hits the f -zero-isocline, tf takes a complicated form. Here we consider

two cases where S10 is large enough so that we can approximate the trajectory as a straight line

going through ð0;Rsðt ¼ 0ÞÞ (Figure 3—figure supplement 2F). Graphically, S10 is large enough so

that the green segment in Figure 3—figure supplement 2F, whose length is DRS, is much smaller

than RS 0ð Þ. In other words,

DRS ¼
dRS

d C1=KC1S2ð Þ

�

�

�

�

C1 0ð Þ¼0

�D C1=KC1S2ð Þ� RS 0ð Þ:

From Equations 8 and 9

dRS

d C1=KC1S2ð Þ

�

�

�

�

C1 0ð Þ¼0

¼ dRS=dt
dC1=dt

�

�

�

t¼0

KC1S2 ¼
r20�r10ð ÞRS 0ð ÞKC1S2

bC1S1
S1 0ð Þ .

D C1=KC1S2ð Þ, the red segment in Figure 3—figure supplement 2F, is the horizontal distance

between 0;RS 0ð Þð Þ and the f -zero-isocline and

DC1

KC1S2

¼
bC1S1

RS 0ð ÞaC1S2 �bC1S1

:

Thus, if

DRS ¼
r20� r10ð ÞRS 0ð ÞKC1S2

bC1S1
S1 0ð Þ

bC1S1

RS 0ð ÞaC1S2 �bC1S1

»

r20� r10ð ÞKC1S2

S1 0ð ÞaC1S2

� RS 0ð Þ;

or

S1 0ð Þ�
r20� r10ð ÞKC1S2

aC1S2RS 0ð Þ
(40)

then from Equation 9 and r20>r10, the upper bound of tf can be calculated as

tf » ln
RS 0ð ÞþDRS

RS 0ð Þ

� �.

r20� r10ð Þ» DRS

RS 0ð Þ r20�r10ð Þ

»
KC1S2

RS 0ð ÞS1 0ð ÞaC1S2

¼
KC1S2

S2 0ð ÞaC1S2

(41)

Case III-2. RS 0ð Þ� bC1S1
=aC1S2

A typical example is displayed in Figure 3—figure supplement 2G. The trajectory moves with a

small positive slope so that the intersection of the community dynamics trajectory with the f-zero-iso-

cline is near the black dotted line bC1S1
=aC1S2 (Equation 39) where C1=KC1S2 is large. The upper

bound of tf can thus be estimated from Equation 9:

dRS

dt
¼ r20þ rS2C1

C1=KS2C1

C1=KS2C1
þ 1

� r10

� �

RS � r20� r10ð ÞRS

which yields a conservative estimate of

tf » ln
bC1S1

aC1S2RS 0ð Þ

� ��

r20� r10ð Þ (42)

Conditions for the alternative pairwise model to approximate the
mechanistic model
Cases II and III showed that population dynamics of the mechanistic model could be described by

the alternative pairwise model. However, since the initial condition for C1 cannot be specified in
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pairwise model, problems could occur. To illustrate, we examine the phase portrait of the pairwise

equation

dS2

dt
¼ r20S2 þ

rS2C1
S1

!S1þ S2
S2 (13)

where !¼ 1�
KS2C1

KC1S2

,  ¼
aC1S2

KS2C1

bC1S1
KC1S2

. From Equations 8 and 13,

dRS

dt
¼
d S2

S1

� �

dt
¼

r20þ
rS2C1 S1

!S1þ S2

� �

S2S1 � S2r10S1

S2
1

¼ r20þ
rS2C1

!þ RS

� r10

� �

RS (43)

Below, we plot Equation 43 under different parameters (Figure 3—figure supplement 3) to

reveal conditions for convergence between mechanistic and pairwise models.

. Case II (rS2C1
>r10 � r20>0): steady state R�

S exists for mechanistic model.

If ! ¼ 1� KS2C1
=KC1S2 � 0 (Figure 3—figure supplement 3A): When RSS

�, dRS=dt is positive. When

RSS
�, dRS=dt is negative. Thus, wherever the initial RS, it will always converge toward the only steady

state R�
S of the mechanistic model.

If !<0 (Figure 3—figure supplement 3B): !þ  RS ¼ 0 or RS ¼ �!= creates singularity. Pairwise

model RS will only converge toward the mechanistic model steady state if

RS 0ð Þ>�!= (44)

. Case III (r10<r20): RS increases exponentially in mechanistic model (Equation 9). Thus, C1 will
decline toward zero as C1 is consumed by S2 whose relative abundance over S1 exponentially
increases. Hence, according to Equation 9, RS eventually increases exponentially at a rate of
r20 � r10.

If ! � 0 (Figure 3—figure supplement 3C): Equation 43 dRS

dt
¼ r20 þ

rS2C1
!þ RS

� r10

� �

RS>0. Thus,

Equation 43, which is based on alternative pairwise model, also predicts that RS will eventually

increase exponentially at a rate of r20 � r10, similar to the mechanistic model.

If !<0 (Figure 3—figure supplement 3D): RS 0ð Þ>� != (Equation 44) is required for unbounded

increase in RS (similar to the mechanistic model). Otherwise, RS converges to an erroneous value

instead.

Conditions under which a saturable L-V pairwise model can represent
one species influencing another via two reusable mediators
Here, we examine a simple case where S1 releases reusable C1 and C2, and C1 and C2 additively

affect the growth of S2 (see example in Figure 5). Similar to Figure 3A, the mechanistic model is:

S1 ¼ S10 exp r10tð Þ

dS2
dt

¼ r20þ
rS2C1 S1

S1þKS2C1
r10=bC1S1

þ
rS2C2 S1

S1þKS2C2
r10=bC2S1

� �

S2

(

(45)

Now the question is whether the saturable L-V pairwise model

S1 ¼ S10 exp r10tð Þ
dS2
dt

¼ r20þ r21
S1

S1þK21

� �

S2

(

can be a good approximation.

For simplicity, let’s define KC1 ¼ KS2C1
r10=bC1S1

and KC2 ¼ KS2C2
r10=bC2S1

. Small KCi means large

potency (e.g. small KC2 can be caused by small KS2C2
which means low C2 required to achieve half

maximal effect on S2, and/or large synthesis rate bC2S1
). Since S1 from pairwise and mechanistic mod-

els are identical, we have
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�D¼ 1

2T

R

T
j log10 S2;pair

� �

� log10 S2;mech
� �

jdt

¼ 1

2T ln 10ð Þ

R

T
j ln S2;pair
� �

� ln S2;mech
� �

jdt

¼ 1

2T ln 10ð Þ

R

T
j
R

t
r20þ r21

S1
S1þK21

� �

dt�
R

t
r20þ

rS2C1 S1

S1þKC1
þ

rS2C2 S1

S1þKC2

� �

dt

�

�

�

�

�

�dt

¼ 1

2T ln 10ð Þ

R

T

R

t
r21

S1
S1þK21

�
rS2C1 S1

S1þKC1
þ

rS2C2 S1

S1þKC2

� �h i

dt

�

�

�

�

�

�dt

(46)

�D can be close to zero when (i) KC1 »KC2 or (ii)
rS2C1 S1

S1þKC1
and

rS2C2 S1

S1þKC2
(effects of C1 and C2 on S2) differ

dramatically in magnitude. For (ii), without loss of generality, suppose that the effect of C2 on S2 can

be neglected. This can be achieved if (iia) rS2C2
is much smaller than rS2C1

, or (iib) KC2
is large com-

pared to S1.

Competitive commensal interaction
For the community in Figure 6A, our mechanistic model is:

dS1
dt

¼ r10þ rS1C1

C1

C1þKS1C1

� �

S1

dS2
dt

¼ r20þ rS2C1;2

C1=KS2C1ð Þ C2=KS2C2ð Þ
C1=KS2C1

þC2=KS2C2

1

C1=KS2C1
þ1

þ 1

C2=KS2C2
þ1

� �

� �

S2

dC1

dt
¼ b0 �aC1S1rS1C1

C1

C1þKS1C1

S1 �aC1S2rS2C1;2

C1
KS2C1

C2
KS2C2

C1
KS2C1

þ
C2

KS2C2

1
C1

KS2C1

þ1
þ 1

C2
KS2C2

þ1

 !

S2

dC2

dt
¼ bC2S1

S1�aC2S2 rS2C1;2

C1=KS2C1ð Þ C2=KS2C2ð Þ
C1=KS2C1

þC2=KS2C2

1

C1=KS2C1
þ1

þ 1

C2=KS2C2
þ1

� �

S2

(47)

Here, S1 and S2 are the densities of the two species; ri0 is the basal net growth rate of Si (negative,

representing death in the absence of the essential shared resource C1); C1 is supplied at a constant

rate b0; bC2
S1is the production rate of C2 by S1; aCi

Sj is the amount of resource Ci consumed to pro-

duce a new Sj cell.

The growth of S2 is controlled by C1 and C2. When C1 is limiting (C1=KS2C1
� C2=KS2C2

), the fitness

influence of the two chemicals on S2 becomes:

rS2C1;2

C1=KS2C1ð Þ C2=KS2C2ð Þ
C1=KS2C1

þC2=KS2C2

1

C1=KS2C1
þ1

þ 1

C2=KS2C2
þ1

� �

»rS2C1;2

C1=KS2C1ð Þ C2=KS2C2ð Þ
C2=KS2C2

1

C1=KS2C1
þ1

� �

¼ rS2C1;2

C1=KS2C1

C1=KS2C1
þ1

¼ rS2C1;2

C1

C1þKS2C1

which is the standard Monod equation. A similar argument holds for limiting C2. We have inten-

tionally chosen very large KS2C2 to ensure that the fitness effect of C2 on S2 is linear with respect to

C2. This way, we minimize the number of pairwise model parameters that need to be estimated.

For our L-V pairwise model, to capture intra-species competition, we use

dSi

dt
¼ bi0 1�

Si

ki

� �

Si � diSi

where non-negative bi0 represents the maximal birth rate of Si at nearly zero population density

(no competition), and non-negative di represents the constant death rate of Si. Positive ki is the ‘car-

rying capacity’ imposed by the limiting resource, and is the Si at which birth rate becomes zero. This

equation can be simplified to:

dSi

dt
¼ bi0 � dið Þ 1�

Si

ki 1� di=bi0ð Þ

� �

Si ¼ ri0 1�
Si

Li

� �

Si:

When Li>0 (i.e. when bi0>di), this resembles standard L-V model traditionally used for competitive

interactions (compare to Equation 2; Gause, 1934; Thébault and Fontaine, 2010; Mougi and Kon-

doh, 2012).

Thus, for the competitive commensal community, we have:
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dS1
dt
¼ b10 1� S1

L11

� S2
L12

� �

S1 � d1S1

dS2
dt
¼ b20þ r21S1ð Þ 1� S1

L21

� S2
L22

� �

S2 � d2S2

(48)

Here, birth rate of each species is reduced by competition from the two species, and Lij is the

carrying capacity such that a single Si individual will have a zero birth rate when encountering a total

of Lij individuals of Sj. For S2, We used b20þ r21S1ð Þ 1� S1
L21

� S2
L22

� �

S2 instead of b20 1� S1
L21

� S2
L22

� �

S2 þ

r21S1S2 so that when the shared resource is exhausted (i.e. 1� S1
L21

� S2
L22

=0), S2 does not keep growing

due to the presence of S1.
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