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Sexual outcrossing is costly relative to selfing and asexuality, yet it is ubiquitous in nature, a paradox that has long puzzled

evolutionary biologists. The Red Queen Hypothesis argues that outcrossing is maintained by antagonistic interactions between

host and parasites. Most tests of this hypothesis focus on the maintenance of outcrossing in hosts. The Red Queen makes an

additional prediction that parasitic taxa are more likely to be outcrossing than their free-living relatives. We test this prediction

in the diverse Nematode phylum using phylogenetic comparative methods to evaluate trait correlations. In support of the Red

Queen, we demonstrate a significant correlation between parasitism and outcrossing in this clade. We find that this correlation

is driven by animal parasites, for which outcrossing is significantly enriched relative to both free-living and plant parasitic taxa.

Finally, we test hypotheses for the evolutionary history underlying the correlation of outcrossing and animal parasitism. Our

results demonstrate that selfing and asexuality are significantly less likely to arise on parasitic lineages than on free-living ones.

The findings of this study are consistent with the Red Queen Hypothesis. Moreover, they suggest that the maintenance of genetic

variation is an important factor in the persistence of parasitic lineages.

KEY WORDS: Asexual reproduction, continuous-time Markov model, host–parasite coevolution, selfing, sexual outcrossing,

stochastic character mapping.

Outcrossing, the fusion of gametes from two different individ-

uals, is the most prominent reproductive strategy in eukaryotes.

Uniparental modes of inheritance, including self-fertilization

and parthenogenesis, are in contrast quite rare (Bell 1982;

Suomalainen et al. 1987; Dacks and Roger 1999; Billiard et al.

2012). Yet, outcrossing carries significant costs. Theory predicts

that these costs accrue as either a significantly depressed per-

capita growth rate of outcrossing lineages relative to uniparental

lineages or as a reduction in relatedness between parent and

offspring (Williams 1975; Maynard Smith 1978; Charlesworth

1980; Lively and Lloyd 1990). A paradox thus emerges: how can

the prominence of outcrossing be reconciled with its costs?

The Red Queen Hypothesis offers a potential solution. It pro-

poses that antagonistic coevolution between interacting species

selects for the maintenance of outcrossing. If coevolving parasites

adapt to specifically infect the most common genotypes in a host

population, then rare host genotypes gain a fitness advantage by

evading parasitism (Haldane 1949; Jaenike 1978). Outcrossing

allows for the production of offspring with rare genotypes,

whereas prolonged periods of uniparental reproduction propagate

genetically uniform lineages (Hamilton 1980; Hamilton et al.

1990). The Red Queen thus predicts that outcrossing should be

maintained in the presence of virulent coevolving parasites. Many

empirical studies have supported this prediction by demonstrating

that host–parasite coevolution explains the observed distribution

of outcrossing in hosts: outcrossing is common in environments

or host taxa in which parasite pressure is high (e.g., the tropics,

long-lived species; Bell 1982; Burt and Bell 1987; Lively 1987;

Verhoeven and Biere 2013; Wilson and Sherman 2013).

Similarly, the Red Queen predicts that outcrossing should be

maintained in the coevolving parasites themselves (Bell 1982).

Just as hosts are under selection to evade parasitism through the
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production of rare genotypes, parasites are under equivalent or

greater selection to infect their ever-changing host population

(Howard and Lively 2002; Galvani et al. 2003; Salathé et al. 2008;

King et al. 2011). Parasites continually degrade their environment

(the host population) by decreasing the frequency of the common

host lineages to which they are adapted. Thus, a common

parasite genotype with high fitness is predicted to deplete its host

lineage and suffer low fitness in later generations. In contrast,

a rare parasite genotype has a greater probability of infecting

alternate host genotypes and thus gains a fitness advantage. Few

empirical and theoretical studies have investigated this prediction

(although see Bell 1982; Howard and Lively 2002; Zhan et al.

2007). A related prediction argues that outcrossing is favored

in vertebrate parasites because of selection pressure exerted by

the rapidly coevolving adaptive immune system. This prediction

has received little support thus far (Gemmil et al. 1997; Lythgoe

2000; West et al. 2001; although see Galvani et al. 2001, 2003).

Bell first formulated the parasite-centric prediction of the

Red Queen in his 1982 book The Masterpiece of Nature. He

argued that under this hypothesis, outcrossing should be more

common in parasitic taxa than in their free-living relatives.

This prediction was indirectly supported by the difficulty of

finding taxa with which to address it: many eukaryotic parasitic

groups are invariably outcrossing (e.g., phylum Acanthocephala,

subclass Pentastomida; Bell 1982), impeding a comparative

approach. Bell (1982) proposed the Nematode phylum as a

uniquely diverse taxon for comparative studies. By comparing

the reproductive mode and ecology of different nematode

families, Bell (1982) offered tentative support for the Red Queen:

he found that outcrossing is common in families that parasitize

animals, but less so in plant parasitic and free-living families.

A rigorous evaluation of Bell’s (1982) prediction that

outcrossing is more common in parasitic taxa than in their

free-living relatives requires a phylogenetic comparison that

accounts for the role of shared ancestry in explaining trait

distributions. The tools necessary for this phylogenetic approach

were not available at the time of publication of The Masterpiece

of Nature. Since then, molecular and phylogenetic resources have

become available for the Nematoda. Using these tools, studies

have identified multiple transitions from free living to parasitism

(Blaxter et al. 1998; Dorris et al. 1999; De Ley 2006; van Megen

et al. 2009) and from outcrossing to uniparental reproduction in

the phylum (Kiontke et al. 2004, 2011; Kiontke and Fitch 2005;

Cutter et al. 2008; Denver et al. 2011).

Here, we take advantage of these resources to further test the

Red Queen’s prediction that outcrossing should be more common

in parasitic species than in their free-living relatives. We use a

recent phylogeny of the Nematode phylum (Meldal et al. 2007)

to make a fine-scale species-level comparison of parasitic and

free-living taxa while accounting for shared ancestry. Adding to

Bell’s preliminary results, we find that the Red Queen Hypothesis

successfully explains the macroevolutionary distribution of

outcrossing. Although outcrossing is maintained in lineages

of parasitic nematodes, notably in animal parasitic lineages,

free-living lineages are susceptible to invasion by uniparental

modes of reproduction.

Methods
PHYLOGENY

Meldal provided the phylogenetic reconstructions from Meldal

et al. (2007), which were based upon small subunit ribosomal

DNA for 212 taxa distributed across the phylum. Bayesian

inference in MrBayes version 3.1.2 (Huelsenbeck and Ronquist

2001) produced 2700 trees.

For comparative analyses, we removed the closely related

marine clades Desmorida, Chromadorida, and Monhysterida

(n = 48 taxa). Marine taxa are poorly studied (Meldal et al. 2007),

and reproductive mode was difficult to ascertain. An additional

two taxa, Calyptronema maxweberi and one identified only as

a marine Tylenchid, were removed due to lack of character data.

Marine nematodes should be the focus of future study: they are

thought to be largely outcrossing (Bell 1982).

Pruning in Mesquite version 2.75 (Maddison and Maddison

2011) produced a phylogeny of 162 species with Turbanella

cornuta as an outgroup. Pruned trees were made ultrametric using

maximum-likelihood optimization with the package phangorn

version 1.99–5 (Schliep 2011) for R version 3.0.2 (R Core

Team 2013). For this purpose, we used the original sequence

alignments and the TIM2+I+G model, which was selected in

jModelTest under the Bayesian information criterion with the

BIONJ setting (Guindon and Gascuel 2003; Darriba et al. 2010).

CHARACTER ASSIGNMENTS

For taxa in their phylogeny, Meldal et al. (2007) reported lifestyle,

which is the term used here to distinguish free-living from para-

sitic taxa. We adopted their lifestyle characterizations, with two

exceptions supported by the literature. Reproductive mode was

determined through literature reviews, personal communication

with experts, and searches of databases (Plant and Insect Par-

asitic Nematodes [http://nematode.unl.edu/]; Nemaplex [Ferris

1999]; Worm Bazaar [Carter and De Ley 2005]; WormBook

[http://www.wormbook.org/chapters/www quicktourdiversity/

quicktourdiversity.html]; Worm Systematic Resource Network

[Fitch 1998]). For taxa identified by genus alone, character states

were assigned based upon the genus’s type or best characterized

species.

For reproductive mode, taxa were classified as having

an outcrossing or uniparental mode. Uniparental encompasses
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both parthenogenesis (strict asexuality) and androdioecy

(hermaphrodites self-fertilize and occasionally outcross with rare

males). For many taxa, male frequency was the primary factor

in determining reproductive mode, with rare or absent males in-

dicating uniparental reproduction (Maupas 1900; Triantaphyllou

and Hirschmann 1964). Because male rarity cannot distinguish

parthenogenesis from androdioecy, these two modes were merged

under uniparental reproduction (see Table S1 for details). Theory

suggests that the benefits of outcrossing may be obtained by

even the rare outcrossing observed for androdioecious nematodes

(Hurst and Peck 1996; Agrawal and Lively 2001; Barrière

and Félix 2005). Thus, the combination of androdioecy and

parthenogenesis is conservative for evaluating our hypothesis.

Ancestral states were estimated with stochastic character

mapping (Nielsen 2002; Huelsenbeck et al. 2003) in SIMMAP

version 1.5 (Bollback 2006) using the posterior distribution of

trees.

CORRELATED EVOLUTION

We used two different phylogenetic comparative methods to test

the hypothesis that outcrossing and parasitism are correlated.

Each method allows for different analyses, and support for a

pattern is greatly strengthened when similar results are obtained

using approaches with distinct theoretical frameworks. Firstly,

we used stochastic character mapping to measure the correlation

between outcrossing and parasitism, a general classification

encompassing both plant and animal parasitism. Because this

approach allows multistate characters, we also tested the more

specific hypothesis that outcrossing and animal parasitism

are correlated. Secondly, we used the Discrete method to

determine if transitions in lifestyle and reproductive mode

are correlated (Pagel 1994). We restricted this analysis to

free-living and animal parasitic taxa, excluding plant parasites.

This approach estimates transition rates between character states,

so we also compared transition rates to test two hypotheses for

the observed evolutionary patterns. Basic deviations in character

distributions were investigated using chi-square tests in R.

Stochastic character mapping
Stochastic character mapping was implemented in SIMMAP.

This method creates stochastic character maps by sampling the

posterior distribution of trees and model parameters. Stochastic

character maps provide a posterior distribution of character

histories with which to quantify character correlation (Nielsen

2002; Huelsenbeck et al. 2003; Bollback 2006). The method

measures the observed frequency of co-occurrence of states i

and j across character maps and their expected co-occurrence

given the frequency of each state. The statistic d is the deviation

of observed from expected. Positive values indicate greater

co-occurrence than expected, whereas negative values indicate

less than expected. Significance is determined by sampling d from

character maps constructed under the assumption that character

states are not associated. The probability of the observed d value

is measured against this null distribution (Huelsenbeck et al.

2003; Bollback 2006).

SIMMAP accounts for uncertainty in modeling character

evolution by assigning priors on the parameters for each trait

(Schultz and Churchill 1999; Bollback 2006). Prior param-

eters were obtained using SIMMAP’s Markov chain Monte

Carlo (MCMC) analysis to generate a posterior distribution

for the overall rate of character evolution (under a gamma

prior) and the bias parameter (under a beta prior for two-state

characters or an empirical prior for three-state characters).

Posterior distributions were analyzed in R using the SIMMAP

script (http://www.simmap.com/pgs/priors.html) to obtain the

best-fitting parameters. Prior parameters were determined

independently for each analysis using the consensus phylogeny.

Analyses of character correlation were performed using the

2700 trees, rooted and with outgroup excluded. A total of 100

samples, prior draws, and predictive samples for significance

measures were taken. Specific analyses are outlined in Table S3.

Discrete method
The Discrete method (Pagel 1994) was implemented in Bayes-

Discrete within BayesTraits version 1.0 (Pagel and Meade 2006).

BayesDiscrete tests if the evolution of two binary traits is best

explained by a model of dependent or independent evolution.

Under dependent evolution, transitions in lifestyle depend upon

the state of reproductive mode, and vice versa. Under independent

evolution, transitions in lifestyle are independent of reproductive

mode, and vice versa (Pagel 1994; Pagel and Meade 2006). The

Bayesian version allows for two comparisons of competing mod-

els (dependent vs. independent). First, we used a Bayes factor of

the marginal likelihood of competing models (Kass and Raftery

1995). The marginal likelihood is approximated by the harmonic

mean of the likelihoods in a very long Markov chain. Second,

we compared the proportion of visits made to independent versus

dependent models under the dependent mode of the reversible-

jump MCMC. Of the 21,146 models possible under this analysis,

51 (0.24%) are consistent with independent evolution. Therefore,

if 0.24% of visits by the reversible-jump MCMC analysis are to

independent models, the odds of dependent versus independent

models of evolution are equivalent (Pagel and Meade 2006).

Plant parasitic lineages were excluded from the dataset so as

to test correlated evolution of animal parasitism and outcrossing.

The 2700 trees were rooted and outgroup excluded. Each analysis

was run for 100,050,000 iterations, with a burn-in of 50,000

iterations, sampling every 300 iterations. A reversible-jump

gamma hyperprior was used, with parameters seeded from

uniform distributions on the interval 0–10. A rate deviation
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parameter of 9 was chosen to obtain an average acceptance rate of

20–40%. Because the harmonic mean of the likelihood may have

very large variance and can thus be unstable, five runs of both the

independent and dependent analyses were performed (Newton

and Raftery 1994; Pagel and Meade 2006; Raftery et al. 2006).

If dependent models of evolution are supported, the under-

lying transition rate parameters of the dependent analysis can be

examined (Pagel and Meade 2006). We tested specific hypotheses

by comparing the posterior distributions of the following transi-

tion rates: q13 with q24, outcrossing to uniparental reproduction

on free-living and animal parasitic backgrounds, respectively; q13

with q12, free living to parasitism on an outcrossing background;

and q12 with q34, free living to parasitism on outcrossing and

uniparental backgrounds, respectively.

Reversals from uniparental reproduction to outcrossing may

be rare, even impossible (Igic et al. 2006; Goldberg and Igic

2008). An additional analysis was therefore conducted with the

transition rate from uniparental reproduction to outcrossing (q31

and q42 in dependent models; beta1 in independent) restricted

to 0. Each analysis was run for 1,000,100,000 iterations, with a

burn-in of 50,010,000 iterations, sampling every 600 iterations.

A gamma hyperprior was used, with parameters seeded from uni-

form distributions on the interval 0–5. A rate deviation parameter

of 5 was chosen. Specific analyses are outlined in Table S4.

Both comparative methods described above rely upon a

Markov process that Maddison and FitzJohn (2014) argue is

flawed. The crux of the problem lies in the assumption of the

Markov process that small branch segments are independent.

They particularly cite as problematic datasets in which transitions

in a character are rare and/or concentrated in a single lineage. In

the supplement, we therefore report the methods and results for

estimation of transition numbers. Maddison and FitzJohn (2014)

also cite nonrandom sampling of characters as a contributing

problem. We address this issue in the supplement by measuring

correlations under simulations of different sampling schemes.

Results
ANCESTRAL STATES FOR REPRODUCTIVE MODE AND

LIFESTYLE

The phylogeny used in comparative analyses was modified

from Meldal et al. (2007) and comprises 162 nematode species

(Fig. 1). Character states are summarized in Table 1 and detailed

in Table S1. Ancestral states were estimated on the posterior

distribution of trees using stochastic character mapping. For

lifestyle, a free-living ancestor is strongly supported (probability:

99.5%). For reproductive mode, outcrossing as the ancestral

state is weakly supported (probability: 64.2%). We find support

for multiple transitions between states for both lifestyle and

reproductive mode (Table S2).

CORRELATION BETWEEN OUTCROSSING AND

PARASITISM

Stochastic character mapping
In our dataset, the proportion of parasitic species that are

outcrossing significantly exceeds that predicted by the joint

probabilities of parasitism and outcrossing in the dataset (χ2

= 7.91, df = 1, P = 0.005). This excess of outcrossing holds

when accounting for phylogeny: outcrossing and parasitism are

significantly positively associated in the evolutionary history of

the Nematoda (d = 0.011, P = 0.02; Table S3).

The excess of outcrossing in parasitic species is driven by

animal parasites: 100% are obligate outcrossers (n = 43) or have

an outcrossing stage in their life cycle (n = 2). In contrast, only

60.5% of plant parasites are outcrossing, which is equivalent to

the proportion observed in free-living taxa (60.8%; χ2 = 0, df = 1,

P = 1). Indeed, a test for correlated evolution contrasting taxa that

are free living, parasitic on animals, or parasitic on plants finds

that outcrossing is significantly negatively correlated with free

living (d = –0.009, P < 0.001), significantly positively correlated

with animal parasitism (d = 0.011, P < 0.001), and not correlated

with plant parasitism (d = –0.002, P = 0.19). The correlation of

outcrossing and animal parasitism is unchanged when 16 species

that facultatively associate with animal hosts are treated as

animal parasites (d = 0.010, P < 0.001). The lack of correlation

between outcrossing and plant parasitism is similarly unchanged

when 14 taxa that are questionably reported as plant parasites are

treated as free living (d = 0.001, P = 0.31). The results are also

insensitive to assignment of Strongyloides ratti and Heterorhab-

ditis bacteriophora as outcrossing or uniparental (Tables 1

and S3).

Discrete method
We then used the Discrete method to determine if evolutionary

transitions in lifestyle and reproductive mode are correlated.

Given the above results, we excluded plant parasites and limited

this analysis to free-living and animal parasitic taxa. This

approach further supports correlated evolution of outcrossing

and animal parasitism. The estimate of the marginal likelihood of

dependent models of evolution, in which evolutionary transitions

in lifestyle may depend upon reproductive mode and vice versa,

consistently and strongly exceeds that of models of independent

evolution (average BF = 14.14; Table S4). The dependent

mode of the reversible-jump MCMC analysis can visit both

dependent and independent models of character evolution. Yet,

this analysis visited independent models less than 0.0001% of

the time, which is lower than the 0.24% of visits to independent

models predicted if independent and dependent models were

equally likely. This further supports dependent, correlated

evolution.
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Figure 1. Majority-rule consensus tree and character distribution of 162 species in the Nematoda. This reconstruction represents the

consensus of 2700 Bayesian-inferred trees (modified from Meldal et al. 2007). Pruning of the original tree is described in the Methods

section. Further modifications were performed in MEGA 5.1 (Tamura et al. 2011). Symbol fill indicates lifestyle: free living (open), animal

parasite (black), and plant parasite (gray). Symbol shape indicates reproductive mode: outcrossing (circle) and uniparental (triangle).

EVOLUTIONARY MECHANISMS UNDERLYING THE

CORRELATION

We now test two hypotheses for the excess of outcrossing in

animal parasites. First, uniparental reproduction may evolve more

readily in free-living relative to animal parasitic lineages. Second,

animal parasitism may evolve more readily in outcrossing relative

to uniparental lineages. Both of these hypotheses are consistent

with ancestral state reconstructions here and in prior studies

suggesting parasitism and uniparental reproduction as derived

states.

Our previous analysis (contrasting free-living and animal

parasitic taxa) demonstrates significant support for dependent

over independent models of evolution. This allows for further

investigation of the dependent models, specifically of the

evolutionary transitions underlying correlated evolution. We

therefore investigated the transition rate matrix of the dependent
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Table 1. Character states for lifestyle and reproduction of 162 nematode species.

Lifestyle

Free living Animal parasite Plant parasite Total

Reproduction Outcrossing 48 452 23 116
Uniparental 31 0 15 464

Total 791 45 383

1Sixteen species, identified as free living in Meldal et al. (2007), are reported to have facultative associations with vertebrate (n = 2) or invertebrate

(n = 14) hosts, including parasitism, phoresy, and commensalism. Given the uncertainty regarding the nature of these associations, these taxa are treated as

free living unless otherwise noted (Table S1).
2Two animal parasites, Heterorhabditis bacteriophora and Strongyloides ratti, have unusual life cycles in which selfing and parthenogenesis, respectively,

typically alternate with biparental outcrossing. These two species are treated as outcrossing unless otherwise noted (Table S1).
3Fourteen taxa reported as plant parasites in Meldal et al. (2007) are unlikely to be obligate plant associates. They are commonly reported as soil-dwelling

nematodes, in some cases isolated in the vicinity of plant roots. These taxa are treated as plant parasites, to adhere to the reported lifestyle, unless otherwise

noted (Table S1).
4Fourteen of these uniparental species are parthenogenic, and four are androdioecious. The remaining 28 species are broadly classified as uniparental (Table

S1).

models to test our two hypotheses for the observed excess of

outcrossing in animal parasites.

Hypothesis 1: Uniparental reproduction evolves more frequently

in free-living relative to animal parasitic lineages.

This hypothesis predicts that the transition rate from out-

crossing to uniparental reproduction is larger on a free-living (q13)

than on an animal parasitic (q24) background (Fig. 2D). Compar-

ison of transition rates under the dependent model of evolution

demonstrates significant support for this hypothesis: q13 exceeds

q24 96.0% of the time, on average, by a large magnitude (average

16.17; Fig. 2A). This result holds when the model is specified

to prevent reversals from uniparental reproduction to outcrossing

(Table S4). Moreover, the evolution of reproductive mode, rather

than of lifestyle, determines the observed evolutionary patterns:

transition rates for reproductive mode (q13: outcrossing to

uniparental) exceed those for lifestyle (q12: free living to animal

parasitism) 96.1% of the time on average (average magnitude

15.57; Fig. 2B). This finding is consistent with Hypothesis 1.

Hypothesis 2: Animal parasitism evolves more frequently in out-

crossing relative to uniparental lineages.

This hypothesis predicts that the transition rate from free

living to animal parasitism is larger on an outcrossing (q12)

than on a uniparental (q34) background. This hypothesis is

not supported. Transition rates to animal parasitism on either

background are low and statistically indistinguishable (q12 > q34

34.7% of the time on average; Fig. 2C).

Discussion
In this study, we test the Red Queen Hypothesis’s prediction that

outcrossing should be more common in parasitic species than in

their free-living relatives. We revisit Bell’s (1982) investigation

of the distribution of outcrossing and parasitism in the Nematode

phylum using phylogenetic comparative tools. The results cor-

roborate Bell’s findings: there is a significant positive correlation

between outcrossing and parasitism. Also consistent with Bell’s

results, we find that the relationship between outcrossing and par-

asitism is limited to animal parasites, with no correlation between

plant parasitism and outcrossing. Accordingly, we tested hy-

potheses for the evolutionary mechanisms generating an excess of

outcrossing in animal parasites. Our findings suggest that animal

parasitic lineages are more resistant to invasion by uniparental

strategies than are free-living lineages. These results strongly

support the Red Queen Hypothesis as an explanation for the

macroevolutionary distribution of outcrossing in the Nematoda.

Our phylogenetic findings corroborate prior studies of the

Red Queen. Of most direct relevance is a theoretical study

by Howard and Lively (2002) in which coevolution with

hosts maintained outcrossing in parasites, although only in

combination with mutation accumulation in clonal parasite

lineages. Indirect support also comes from empirical studies of

microbial experimental evolution. Coevolution of the bacteria

Bacillus thuringiensis with nematode hosts resulted in bacterial

populations with greater genetic diversity and more frequent

horizontal gain of toxin genes, which are likely involved in

host interaction (Schulte et al. 2010, 2013). The Red Queen

Hypothesis has also been extended to rates of evolution, with

the prediction that antagonistic coevolution leads to accelerated

molecular evolution (Van Valen 1974; Hedrick 1994; Fischer and

Schmid-Hempel 2005; Obbard et al. 2006). Paterson et al. (2010)

demonstrated that, relative to phage evolution alone, coevolution

of bacteriophageФ2 with its host, resulted in significantly higher

rates of molecular evolution for the phage, most notably at loci
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Figure 2. Estimated evolutionary transition rates in reproductive mode and lifestyle. (A–C) Posterior probability distribution of the

values of transition rate parameters as estimated in one representative run of five dependent analyses in BayesDiscrete. Comparisons

between two different transition rate distributions are displayed to test specific hypotheses. (A) H1: the transition rate from outcrossing

to uniparental reproduction is greater on a free living (q13) than on an animal parasitic background (q24). (B) H1: transition rates in

reproductive mode (q13) exceed those in lifestyle (q12). (C) H2: the transition rate from free living to animal parasitism is identical on

outcrossing (q12) and uniparental backgrounds (q34). Dotted lines indicate the mean estimated transition rate for the corresponding

parameter. (D) A diagram of investigated evolutionary transitions between the four different character states for reproductive mode and

lifestyle. Larger type indicates character states for which a statistical excess of taxa is found. Line weight corresponds to the magnitude of

the transition rate, estimated as the average value across five runs of the dependent analysis in BayesDiscrete. Black indicates transitions

compared to test Hypothesis 1 and gray indicates Hypothesis 2.

implicated in host interaction. These microevolutionary results

support our macroevolutionary finding that the persistence of

parasitic lineages requires forces that maintain genetic variation.

Interestingly, this finding is driven by animal parasites, with

plant parasites showing no excess of outcrossing relative to free-

living taxa. The occurrence of uniparental reproduction in nema-

tode plant parasites has been previously noted (Triantaphyllou

and Hirschmann 1964; Bell 1982; Castagnone-Sereno 2006;

Castagnone-Sereno and Danchin 2014). We here propose hy-

potheses to explain this pattern. First, outcrossing in parasites

could be maintained not by coevolution with hosts per se, but

rather by coevolution with the adaptive immune systems of ver-

tebrate hosts. Prior studies have not supported this hypothesis

(Gemmil et al. 1997; Lythgoe 2000; West et al. 2001), excepting

Galvani et al.’s (2003) theoretical demonstration that sexual popu-

lations of helminths can resist invasion by asexual mutants. In their

study, the advantage of sexual populations stems from their ability

to evade host immunity by maintaining strain diversity, which is

stochastically lost in asexual parasite populations. Our results are

also consistent with this hypothesis: the association of outcross-

ing and parasitism is present in animal parasites, the vast majority

of which parasitize vertebrates, and absent in taxa parasitizing
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plants. The animal parasites in our dataset that parasitize inverte-

brates are outcrossing but are too rare (n = 4) to provide a valid

contrast with vertebrate parasites. Additional sampling of taxa

parasitizing invertebrates would allow for a test of the coevolving

vertebrate immune system as a force maintaining outcrossing

Second, polyphagous, agricultural pests are overrepresented

among nematode plant parasites. Research in scale insects has

demonstrated that asexual reproduction is more common in

species that are polyphagous and/or pests (Ross et al. 2013).

A broad host range may be linked with weak, nonspecific

coevolutionary interactions between hosts and parasites that

fail to maintain outcrossing (Thompson 1999; Lajeunesse and

Forbes 2002). This hypothesis predicts a larger host range for

uniparental relative to outcrossing parasites. Alternately, Ross

et al. (2013) attribute the relationship between polyphagy, pest

status, and uniparental reproduction to population size. Large

effective population sizes (Ne) of pest and/or polyphagous

species may facilitate the persistence of uniparental lineages by

reducing their probability of extinction by various forces (e.g.,

mutation accumulation, Hill–Robertson effects). Further research

is required to properly contrast Ne of uniparental and outcrossing

parasitic nematodes (Nadler 1995; Criscione and Blouin 2005).

Hypotheses based upon Ne present alternatives to the Red

Queen Hypothesis (Muller 1964; Lynch et al. 1993; Otto and

Barton 2001; Keightley and Otto 2006; Otto 2009; Hartfield et al.

2010, 2012), although these are not mutually exclusive (Howard

and Lively 1994; Lively and Morran 2014). Indeed, prior theory

on the maintenance of outcrossing in parasites argues for a

combined role of host–parasite coevolution and forces that char-

acterize finite populations (e.g., mutation accumulation [Howard

and Lively 2002], stochastic extinction [Galvani et al. 2003]).

Other forces may also influence the distribution of outcrossing

in the Nematoda. Although the Red Queen offers an explanation

for the short-term maintenance of outcrossing, limited adaptive

potential and thus reduced diversification of uniparental lineages

may contribute to outrossing’s long-term persistence (Fisher

1930; Muller 1932; Maynard Smith 1978; Nunney 1989;

Goldberg et al. 2010; de Vienne et al. 2013). Selection for

reproductive assurance has also been hypothesized to explain uni-

parental reproduction in taxa that inhabit unstable environments

or disperse widely (e.g., androdioecy in free-living rhabditid

nematodes; Baker 1955; Pannell 2002; Weeks et al. 2006).

Our results are consistent with the prediction of the Red

Queen, and thus we cannot falsify this major hypothesis for the

maintenance of outcrossing. We do acknowledge three future

improvements that would test the robustness of our results. First,

current tests of correlated evolution cannot account for speciation

and extinction rates, which may differ between reproductive

modes (Fisher 1930; Muller 1932; Maynard Smith 1978; Nunney

1989; Goldberg et al. 2010). Ignoring this biological reality

can result in overestimation of reversals from uniparental

reproduction to outcrossing (Maddison 2006; Goldberg and Igic

2008, 2012; Goldberg et al. 2010). We rudimentarily addressed

this issue by preventing this reversal in the Discrete analysis,

and our results were qualitatively unchanged. Nonetheless,

state-dependent diversification should be incorporated when

improved phylogenies and comparative tools become available.

Second, Maddison and FitzJohn (2014) have recently

argued that comparative methods for measuring correlations of

discrete traits are flawed. When transitions in a trait are rare

or concentrated in single lineages, a fundamental assumption

of these methods is violated. As a result, coincidence may be

mistakenly interpreted as correlation. We find support for many

dispersed transitions in both reproductive mode and lifestyle,

suggesting that our dataset is relatively robust to Maddison and

FitzJohn’s (2014) methodological concerns. We cannot, however,

reject the possibility that the observed associations are detected

for reasons other than correlated evolution.

Third, most nematode species remain undescribed (van

Megen et al. 2009; Kiontke et al. 2011). Prior studies of continuous

traits suggest that under-sampling itself does not inflate estimates

of phylogenetic correlation (Freckleton et al. 2002), but that bi-

ased sampling can (Ackerly 2000). Meldal et al. (2007) aimed to

sample under-represented taxa for their phylogeny, but the sample

of terrestrial taxa likely remains biased: first toward parasites, due

to their relevance in public health and agriculture (Meldal et al.

2007; van Megen et al. 2009); second toward uniparental taxa,

due to their tractability in the laboratory and overrepresentation

in temperate regions where sampling has been concentrated (Bell

1982; Igic and Kohn 2006; van Megen et al. 2009). Oversampling

of uniparental and/or parasitic taxa produces an underrepresenta-

tion of outcrossing, free-living taxa and thus potentially overesti-

mates the correlation of outcrossing and parasitism. We address

this issue in the supplement via simulations to compare true mea-

sures of correlation to those obtained from biased subsampling.

The simulation results argue that the evolutionary correlations

reported here are unlikely to be an artifact of biased sampling

of the Nematoda. Biased sampling can weakly inflate correlation

estimates under stochastic character mapping but not under the

Discrete method. Yet, we find here that several unique tests sup-

port significant correlated evolution of outcrossing and parasitism

(d and m in stochastic character mapping; marginal likelihood and

model visitation in and model visitation in BayesDiscrete).

The findings we present argue that the Nematoda is

one of the most promising phyla in which to investigate the

evolutionary and ecological forces underlying the maintenance

of outcrossing. Moreover, the diversity of this group allows for

an investigation of the mechanisms promoting genetic variation

in parasite populations, a subject of the utmost importance (Grant

1994; Castagnone-Sereno 2002; Galvani et al. 2003; De Meeûs
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et al. 2009; Castagnone-Sereno and Danchin 2014). Until more

complete phylogenies become available, such investigations

should focus upon well-studied subgroups within the Nematoda.

The genus of root-knot nematodes Meloidogyne presents an

excellent opportunity to examine variation in reproductive mode

within an obligately parasitic group (Castagnone-Sereno and

Danchin 2014), whereas clades within the suborders Tylenchina

and Rhabditina may be valuable for investigating transitions in

lifestyle and reproductive mode at a finer scale (De Ley 2006).
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SUPPLEMENTAL MATERIAL 

Table S1: Species-level detail for character assignments. Assigned character states for lifestyle and reproductive mode are 
provided, as well as strain identifiers and alternate nomenclature for the focal species, explanatory details, and the sources used in 
character assignment. 
 

Species Alt. IDs Lifestyle 
a 

Details 
b 

Reproduction 
c 

Details 
d 

Sources 

Acanthocheilonema viteae  

Parasite, 

animal  Outcrossing  [1, 2] 

Acrobeles ciliatus 

WCUG2; A. 

subcomplexus Free-living  Outcrossing  [3-7] 

Acrobeloides nanus  Free-living  Uniparental Parthenogenic [8, 9] 

Adoncholaimus fuscus  Free-living  Outcrossing  [10, 11] 

Aduncospiculum halicti  Free-living 

Facultative 

association Outcrossing  [12] 

Alaimus sp. PDL-2005 

Parasite, 

plant  Outcrossing 

Based upon 

type species, A. 

primitivus [3, 7, 12, 13] 

Allodorylaimus sp. PDL-2005 

Parasite, 

plant Free-living  Outcrossing 

Based upon 

type species, A. 

uniformis [7, 14] 

Anaplectus sp. PDL-2005 Free-living  Outcrossing 

Based upon 

type species, A. 

granulosus 

[3, 11, 15]; pers. comm. O 

Holovachov 

Anatonchus sp.  A. tridentatus Free-living  Outcrossing 

Based upon 

type species, A. 

tridentatus [3, 16, 17] 

Anisakis sp. U81575 

Parasite, 

animal  Outcrossing 

Based upon 

species A. 

simplex [18, 19]; pers. comm. S D’Amelio 

Anoplostoma sp BHMM-2005 Free-living  Outcrossing 

Based upon 

species A. 

viviparum [20, 21] 

Aphelenchoides fragariae  

Parasite, 

plant Exception  Outcrossing  [3, 22-24] 

Aphelenchus avenae  Free-living  Uniparental 

Parthenogenic 

(meiotic) [25-29] 
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Species Alt. IDs Lifestyle 
a 

Details 
b 

Reproduction 
c 

Details 
d 

Sources 

Aporcelaimellus obtusicaudatus  

Parasite, 

plant Free-living Uniparental Males rare 

[30, 31]; pers. comm. MT 

Vinciguerra 

 

Ascaris suum  

Parasite, 

animal  

 

Outcrossing  

 

[2, 32] 

Ascarophis arctica  

Parasite, 

animal
  

Outcrossing
  

[33-35] ; pers. comm. G Munoz, R 

Appy 

Ascolaimus elongates  Free-living  Outcrossing  [11, 36, 37] 

Axonolaimus hegolandicus  Free-living  Outcrossing  [11, 36-39] 

Bathylaimus assimilis  Free-living  Outcrossing 

Based upon B. 

longicorpus and 

B. anatolii [40, 41] 

Bathylaimus sp B. assimilis Free-living  Outcrossing 

Based upon B. 

longicorpus and 

B. anatolii [40, 41] 

Baylisascaris procyonis  

Parasite, 

animal  Outcrossing  

[42, 43];  Pers. comm. R 

Overstreet, HP Fagerholm 

Belondira apitica  

Parasite, 

plant 

Free-living, 

plant 

associate Outcrossing  [7, 44, 45] 

Boleodorus thylactus  

Parasite, 

plant 

Free-living, 

plant 

associate Uniparental Males rare [3, 46, 47] 

Brevibucca sp.  SB261 Free-living  Outcrossing  [3, 48] 

Brugia malayi  

Parasite, 

animal  Outcrossing  [49-51] 

Brumptaemilius imbricatus 

Original IDed 

as B. justini 

Parasite, 

animal 

Invertebrate 

host Outcrossing  [52] pers. comm. D. Hunt 

Bunonema franzi  Free-living  Uniparental Males absent [53, 54] 

Bursaphelenchus sp.  Free-living 

Possible 

facultative 

association Outcrossing 

Based upon 

type species, B. 

piniperdae [3, 55, 56] 

Caenorhabditis elegans  Free-living  Uniparental Androdioecious [57, 58] 

Campydora demonstrans  

Parasite, 

plant 

Free-living 

plant 

associate Uniparental Males rare [3, 7, 59, 60] 
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Species Alt. IDs Lifestyle 
a 

Details 
b 

Reproduction 
c 

Details 
d 

Sources 

Cephaloboides sp. SB227 Free-living  Outcrossing  [61] 

Cephalobus oryzae  Free-living   Uniparental Parthenogenic [62, 63] 

Cervidellus alutus  Free-living  Uniparental Parthenogenic [64] 

Chiloplectus sp. 

 

PDL-2005 

 

Free-living
  

 

Uniparental
 

Males rare; 

Based upon 

type species C. 

andrassyi
 

 

[11, 64, 65] 

Choriorhabditis dudichi  Free-living  Outcrossing  [61, 66] 

Clarkus sp.  Free-living  Uniparental 

Males rare, 

based upon 

type species C. 

papillatus 

[11, 51, 67] [68]; pers. comm. J. 

Kotcon 

Contracaecum multipapillatum  

Parasite, 

animal  Outcrossing  [2, 69]; Pers. comm. S. D’Amelio 

Criconema sp. PDL2005 

Parasite, 

plant  Uniparental 

Males rare; 

based upon 

type species C. 

giardia [3, 70, 71] 

Crustorhabditis scanica  Free-living 

Facultative 

association Outcrossing  [72-74] 

Cruzia americana  

Parasite, 

animal  Outcrossing  [2, 75, 76] 

Cruznema tripartitum  Free-living 

Facultative 

association Outcrossing  [61, 66, 77, 78] 

Cuticularia sp. 

PS2083; 

Poikilolaimus
e
  Free-living  Outcrossing 

Based upon 

type species, C. 

oxycerca (P. 

oxycerca)
d
 [3, 24, 79, 80] 

Cylindrolaimus 202149 Free-living  Uniparental 

Males rare; 

based upon 

type species C. 

communis
 

[3, 81] 

Deladenus sp. PDL2005 

Parasite, 

plant Free-living Outcrossing  [3, 82] 

Dentostomella sp.  

Parasite, 

animal  Outcrossing  [83, 84]; pers. comm. J. Wilkerson 
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Species Alt. IDs Lifestyle 
a 

Details 
b 

Reproduction 
c 

Details 
d 

Sources 

Desmolaimus zeelandicus  Free-living  Outcrossing  [3] 

 

Diploscapter sp. 

 

ps1897 Free-living
 

Possible 

facultative 

association
 

Uniparental
 

Parthenogenic 

(mitotic); based 

upon type 

species D. 

coronatus
 

[8, 29, 78, 85] 

Dirofilaria immitis  

Parasite, 

animal  Outcrossing  [86, 87] 

Distolabrellus veechi  Free-living  Outcrossing  [22, 88, 89] 

Ditylenchus angustus  

Parasite, 

plant  Outcrossing  [90] 

Enoploides brunettii  Free-living  Outcrossing  [11, 91] 

Enoplus communis  Free-living  Outcrossing  [92, 93] 

Eudorylaimus carteri  

Parasite, 

plant Free-living Outcrossing  [7, 11] 

Geocenamus quadrifer  

Parasite, 

plant  Outcrossing  [94] 

Globodera pallida  

Parasite, 

plant  Outcrossing  [95] 

Gnathostoma turgidum  

Parasite, 

animal  Outcrossing  [96-98] 

Goezia pelagia  

Parasite, 

animal  Outcrossing  

[99-101] ; pers. comm. S. 

D’Amelio 

Haemonchus contortus  

Parasite, 

animal  Outcrossing  [51, 102] 

Halicephalobus gingivalis  Free-living 

Facultative 

association 

(vertebrates) Uniparental Males absent [103-107] 

Helicotylenchus dihystera  

Parasite, 

plant  Uniparental 

Parthenogenic 

(mitotic) [108, 109] 

Hemicycliophora conida  

Parasite, 

plant  Uniparental Males absent [3, 110-112] 

Heterakis sp. 14690 

Parasite, 

animal  Outcrossing  [113-115] 

Heterocheilus tunicatus  

Parasite, 

animal  Outcrossing  [116, 117] 
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Species Alt. IDs Lifestyle 
a 

Details 
b 

Reproduction 
c 

Details 
d 

Sources 

Heterorhabditis bacteriophora  

Parasite, 

animal
 

Invertebrate 

host
 

Outcrossing*
 

Heterogony: 

coexistence of 

males, females, 

and self-fertile 

hermaphrodites
 

[118-121] 

Hysterothylacium fortalezae  

Parasite, 

animal  Outcrossing  [2, 122, 123] 

Iheringascaris inquies  

Parasite, 

animal  Outcrossing  [122, 123] 

Ironus dentifurcatus  Free-living  Uniparental Males rare [124-127] 

Isolaimium ARK-10 B 

Parasite, 

plant 

Free-living 

plant 

association Outcrossing  [3, 7, 128, 129] 

Leptonchus microdens  

Parasite, 

plant 

Free-living 

plant 

associate Uniparental 

Males rare; 

based upon 

type species L. 

granulosus [130, 131] 

Litomosoides sigmodontis  

Parasite, 

animal  Outcrossing  [132-134] 

Loa loa  

Parasite, 

animal  Outcrossing  [135-137] 

Longidorus elongatus  

Parasite, 

plant  Uniparental 

Parthenogenic 

(meiotic) [138, 139] 

Meloidogyne incognita  

Parasite, 

plant  Uniparental 

Parthenogenic 

(mitotic) [138, 140] 

Mermis nigrescens  

Parasite, 

animal 

Invertebrate 

host Outcrossing  Pers. comm. J. Burr 

Mesodorylaimus japonicus  

Parasite, 

plant 

Free-living 

plant 

associate Outcrossing 

Based on type 

species M. 

mesonyctius 

[141-145] ; pers. comm. R. Peña-

Santiago 

Mesorhabditis anisomorpha  Free-living  Outcrossing  [61, 118] 

Microdorylaimus sp PDL-2005 

Parasite, 

plant 

Free-living 

plant 

associate Uniparental Males absent [7, 146, 147] 

Mononchus truncatus  Free-living  Uniparental Males rare [3, 7, 148-150] 
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Species Alt. IDs Lifestyle 
a 

Details 
b 

Reproduction 
c 

Details 
d 

Sources 

Mylonchulus arenicolus  Free-living
  

Uniparental
 

Males absent; 

basedon types 

species M. 

minor
 

[3, 151, 152] 

Myolaimus sp. 

WCUG9, M. 

heterurus Free-living  Outcrossing 

Based upon 

type M. 

heterurus [64, 153, 154] 

Nacobbus aberrans  

Parasite, 

plant  Outcrossing  [155] 

Nematodirus battus  

Parasite, 

animal  Outcrossing  

[156, 157] ; pers. comm. J. Van 

Dijk 

Nippostrongylus brasiliensis  

Parasite, 

animal  Outcrossing  [2, 158-160] 

Odontophora rectangula  Free-living  Outcrossing  [161-163] 

Onchocerca cervicalis  

Parasite, 

animal  Outcrossing 

Based on O. 

volvulus [2, 137, 164-170] 

Oncholaimus sp. BHMM-2005 Free-living  Outcrossing 

Based on O. 

oxyuris [11, 171] 

Oscheius dolichuroides  Free-living  Outcrossing  [61, 66, 139] 

Oscheius insectivora  Free-living 

Facultative 

association Outcrossing  [66, 139, 172] 

Oscheius tipulae  Free-living 

Facultative 

association Uniparental Androdioecious [51, 66, 139, 171-175] 

Ostertagia ostertagi  

Parasite, 

animal  Outcrossing  

[176, 177] ; pers. comm. P. 

Geldhof 

Otostrongylus sp. U81589 

Parasite, 

animal  Outcrossing 

Based on O. 

circumlitus [178]; pers. comm. K. Lehnert 

Panagrellus redivivus  Free-living  Outcrossing  [179, 180] 

Panagrobelus stammeri  Free-living 

Facultative 

association Outcrossing  [64, 181] 

Panagrolaimus sp. PS1159 Free-living  Uniparental 

Parthenogenic, 

strain PS1159 [51, 182] 

Paractinolaimus macrolaimus  

Parasite, 

plant 

Freshwater 

plant 

associate Outcrossing  

[3, 183, 184]; pers. comm. MT 

Vinciguerra 
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Species Alt. IDs Lifestyle 
a 

Details 
b 

Reproduction 
c 

Details 
d 

Sources 

Parafilaroides sp. U81590 

Parasite, 

animal
  

Outcrossing
  

[185-188]; pers. comm. PD Dailey 

Parascaris equorum  

Parasite, 

animal  Outcrossing  [189, 190]; pers. comm. S. Nadler 

Parasitorhabditis sp. SB281 Free-living 

Facultative 

association Outcrossing  [191-196] 

Paraspidodera sp.  21303 

Parasite, 

animal  Outcrossing 

Based on P. 

uncinata [197]; pers. comm. A. Rossin 

Paratrichodorus pachydermus  

Parasite, 

plant  Outcrossing  

[198, 199]; pers. comm. W 

Decraemer 

Paratylenchus dianthus  

Parasite, 

plant  Outcrossing  [200-203] 

Pellioditis marina  Free-living  Outcrossing  [204, 205] 

Pelodera teres  Free-living  Outcrossing  [61, 206, 207] 

Philonema sp. U81574 

Parasite, 

animal  Outcrossing  [208-211] 

Plectonchus sp. PDL0025 Free-living 

Facultative 

association Outcrossing  [3, 64] 

Plectus acuminatus  Free-living  Uniparental Males absent 

[212-215]; pers. comm. O 

Holovachov 

Poikilolaimus regenfussi  Free-living  Uniparental Males absent [216] 

Pontonema vulgare  Free-living  Outcrossing  [217, 218] 

Porrocaecum depressum  

Parasite, 

animal  Outcrossing  

[219, 220]; pers. comm. R 

Overstreet, HP Fagerholm 

Pratylenchoides ritteri  

Parasite, 

plant  Outcrossing  [221-223] 

Pratylenchus goodeyi  

Parasite, 

plant  Outcrossing  [224-226] 

Pratylenchus thornei  

Parasite, 

plant  Uniparental Males rare [224, 225] 

Prionchulus muscorum  Free-living  Uniparental Males rare [11, 227] 

Prismatolaimus intermedius  Free-living  Uniparental Males rare [11]; pers. comm. A. Zullini 

Pristionchus lheritieri  Free-living 

Facultative 

association Outcrossing  [228-230] 
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Species Alt. IDs Lifestyle 
a 

Details 
b 

Reproduction 
c 

Details 
d 

Sources 

Pristionchus pacificus  Free-living
 

Facultative 

association
 

Uniparental
 

Androdioecious
 

[51, 229-231] 

Protorhabditis sp. DF5055 Free-living  Outcrossing  [66] 

Pseudacrobeles variabilis  Free-living  Uniparental Parthenogenic [3, 64] 

Pseudoterranova decipiens  

Parasite, 

animal  Outcrossing  [232, 233] 

Pungentus sp. PDL-2005 

Parasite, 

plant 

Free-living 

plant 

associate Uniparental 

Males absent; 

based on P. 

thornei [3, 234] 

Radopholus similis  

Parasite, 

plant  Outcrossing  [235] 

Rhabditella axei  Free-living  Outcrossing  [66, 236] 

Rhabditis blumi 

Metarhabditis 

blumi
e
 Free-living 

Facultative 

association 

(vertebrate) Outcrossing  [66, 236-239] 

Rhabditis myriophila 

Oscheius 

myriophilus
e 

Free-living 

Facultative 

association Uniparental Androdioecy [236, 240]; pers. comm. K Kiontke 

Rhabditoides inermiformis 

SB158, 

Haematozoon 

subulatum
e 

Free-living  Outcrossing  [66] 

Rhabditoides inermis 
 

Free-living  Outcrossing  [66] 

Rhabditophanes sp. KR3021 Free-living Exception Uniparental Parthenogenic [139, 241, 242] 

Rotylenchus robustus  

Parasite, 

plant  Outcrossing  [24, 243, 244] 

Scutellonema bradys  

Parasite, 

plant  Outcrossing  [24, 245] 

Seleborca complexa  Free-living  Outcrossing  [61, 246, 247] 

Setaria digitata  

Parasite, 

animal  Outcrossing  

[248, 249]; pers. comm. S 

McNulty 

Soboliphyme baturini  

Parasite, 

animal  Outcrossing  

[250-253]; pers. comm. A. 

Koehler, E Hoberg, M Kinsella 

Steinernema carpocapsae  

Parasite, 

animal 

Invertebrate 

host Outcrossing  [51, 254] 
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b 

Reproduction 
c 

Details 
d 
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Strongyloides ratti  

Parasite, 

animal
  

Outcrossing*
 

Heterogamy: 

alternation of 

parthenogenic 

and outcrossing 

generations
 

[255, 256] 

Strongylus equinus  

Parasite, 

animal  Outcrossing  

[257-259]; pers. comm. CR 

Reinemeyer 

Subanguina radicicola  

Parasite, 

plant  Outcrossing  [155, 260, 261] 

Syngamus trachea  

Parasite, 

animal  Outcrossing  [2, 262-264] 

Syringolaimus striatocaudatus  Free-living  Outcrossing  [265-267] 

Teratocephalus lirellus  Free-living  Uniparental Males rare 

[268, 269]; pers. comm. S 

Bostrom 

Teratorhabditis synpapillata  Free-living 

Facultative 

association Outcrossing  [61, 270, 271] 

Terranova caballeroi  

Parasite, 

animal  Outcrossing  [272]; pers. comm. S D’Amelio 

Tobrilus gracilis  Free-living  Outcrossing  [273-275] 

Toxascaris leonina  

Parasite, 

animal  Outcrossing  [276, 277] 

Toxocara canis  

Parasite, 

animal  Outcrossing  [137]; pers. comm. JW Lewis 

Trichinella spiralis  

Parasite, 

animal  Outcrossing  [2, 51, 278] 

Trichodorus primitivus  

Parasite, 

plant  Outcrossing  

[11, 70, 95, 279]; pers. comm. W 

Decraemer 

Trichuris muris  

Parasite, 

animal  Outcrossing  [51, 280] 

Triligulla aluta  Free-living  Uniparental Parthenogenic [281, 282] 

Tripyloides sp. BHMM-2005 Free-living  Outcrossing  [11, 283, 284] 

Trischistoma monohystera  Free-living  Uniparental Males rare [11, 24, 285] 

Turbatrix aceti  Free-living  Outcrossing  [3, 286] 
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Details 
b 
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d 
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Tylencholaimus sp. PDL-2005 

Parasite, 

plant
 

Free-living
 

Uniparental
 

Males absent; 

based upon 

well-studied T. 

parvus 
 

[287-289]; pers. comm. H. Okada 

Tylenchorhynchus maximus  

Parasite, 

plant  Uniparental Males rare [7, 290-292] 

Tylenchulus semipenetrans  

Parasite, 

plant  Outcrossing  [95, 293] 

Tylocephalus auriculatus PDL0030 Free-living  Uniparental Males rare 

[212, 215, 294]; pers. comm. O 

Holovachov 

Tylolaimophorus minor  Free-living  Uniparental Males absent [295] 

Viscosia viscosa  Free-living  Outcrossing  [296, 297] 

Wilsonema schuurmansstekhoveni  Free-living  Uniparental Males absent 

[215, 298]; pers. comm. O. 

Holovachov 

Wuchereria bancrofti  

Parasite, 

animal  Outcrossing  

[299-301]; pers. comm. G Dreyer, 

W Stolk 

Xiphinema rivesi  

Parasite, 

plant  Uniparental 

Parthenogenic 

(meiotic) [95, 302] 

Zeldia punctate  Free-living  Uniparental Parthenogenic [3, 8, 64, 303] 

Zygotylenchus guevarai  

Parasite, 

plant  Outcrossing  [304, 305] 

       
 

a
 Lifestyle character states are adopted from  [306]. Character states were additionally verified through literature searches, and two changes were made to the 

lifestyle reported in [306] based upon compelling evidence from the literature. 
b
 The two changes to the [306] lifestyle are noted in this column as “Exception.” References supporting these exceptions are provided under “Sources.” Moreover, 

the 16 taxa with reports of facultative associations with vertebrate or invertebrate hosts are distinguished by the note “Facultative association.” Finally, the 14 taxa 
whose classification as plant parasites is uncertain are marked with their alternate ecology, either “Free-living”, “Free-living plant associate” or “Freshwater plant 
associate.” 
c 
Reproductive character states were determined through literature searches. The sources providing evidence for each species’ character state are provided under 

the column “Sources.” 
d 

The 46 uniparental species are specifically identified as parthenogenic, androdioecious, or having few to no males. Detailed laboratory examination is ultimately 
required to distinguish parthenogenesis from androdioecy. Many nematode taxa, however, are understudied and undeveloped as laboratory systems. For these 
taxa, male frequencies aid in distinguishing outcrossing from uniparental reproduction: taxa in which males are rare are unlikely to reproduce exclusively by 
outcrossing. However, male frequencies cannot separate parthenogenesis from androdioecy. The extreme rarity of males in species known to be androdioecious 
means that insufficient study effort cannot be excluded as an explanation for the reported absence of males. Additionally, for those species with rare males 
reported, parthenogenesis may still be possible. We therefore chose to combine androdioecious and parthenogenic species into the category of uniparental 
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reproduction. Because theory suggests that the benefits of outcrossing may be obtained by even the low frequency of outcrossing observed in androdioecious 
nematode species [307-309], the combination of androdioecious species and strictly asexual species is a very conservative approach for evaluating our 
hypothesis.   
e 

Sudhaus [118]: 113-178 - suggested changes to classification 

* These two species have unique reproductive systems and are analyzed both as outcrossing and uniparental to control for uncertainty.   
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Multiple transitions in reproductive mode and lifestyle 

 Maddison and FitzJohn [310] recently argued that character histories in which origins of a trait are rare and/or concentrated in 

nearby lineages pose particular problems for the phylogenetic comparative methods used in this study. The underlying Markov 

process assumes that small branch segments are independent. Maddison and FitzJohn suggest that this assumption is inappropriate 

for such character histories and can lead to mistaken attribution of phylogenetic associations to correlated evolution when 

coincidence is truly at play. Character histories in which changes are numerous and dispersed should be less susceptible to the 

issue raised by Maddison and FitzJohn. We therefore estimated the number of changes in each character.  

 Estimations were performed using parsimony analysis in Mesquite on a consensus tree and in SIMMAP using the posterior 

distribution of trees. We find support for numerous transitions between states for both traits (Table S2). Moreover, these transitions 

are dispersed throughout the phylogeny rather than concentrated in single clades (Fig. 1, additional data not shown). These findings 

are supported by prior work demonstrating multiple independent transitions in lifestyle [311-314] and reproductive mode [315-319].  

Given these attributes of our dataset, it is unlikely that the significant associations we observe arise from coincidence and 

problematic assumptions of the comparative methods used. However, Maddison and FitzJohn [310] emphasize that we do not yet 

know the extent to which comparative analyses of seemingly robust datasets are compromised by the assumptions of the underlying 

Markov process. We thus cannot rule out the possibility that the observed associations may be detected for reasons other than 

correlated evolution.  

Table S2: Number of character changes estimated under parsimony and stochastic character mapping. 

 Reproductive Mode Lifestyle 

Method O → U U → O F → AP F → PP AP→F AP→PP PP→F PP→AP 

Parsimony 27 7 6 5 0 1 0 0 

Stochastic Character Mapping 308.5 323.4 11.3 11.3 5.4 2.3 6.2 1.2 
 

 
For the transitions outlined above, “O” indicates outcrossing, “U” uniparental”, “F” free-living, “AP” animal parasite, and “PP” plant parasite. 
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Table S3: Summary of results of stochastic character mapping. The comparison performed, character states used, and 
character correlations, as measured in SIMMAP, are provided. 
 
Comparison Lifestyle a Reproductive Mode a SIMMAP Correlation b 

     

Free-living vs. all parasitic taxa Table S1, standard Table S1, standard 
F – O d= -0.011; p= 0.02 

P – O d= 0.011 ; p= 0.02 

Free-living vs. plant parasitic 

vs. animal parasitic taxa 
Table S1, standard Table S1, standard 

F – O d= -0.009; p<0.001 

AP – O d= 0.011 ; p<0.001 

PP – O d= -0.002; p= 0.19 

Animal parasitic taxa vs. other 

(free-living, plant parasitic) 
Table S1, standard Table S1, standard 

F – O d= -0.016; p<0.001  

AP – O d= 0.016; p<0.001 

Plant parasitic taxa vs. other 

(free-living, animal parasitic) 
Table S1, standard Table S1, standard 

F – O d= 0.003 ; p= 0.16  

PP – O d= -0.003 ; p= 0.16 

Free-living vs. plant parasitic 

vs. animal parasitic taxa 

Include 16 facultative 

taxa as animal 

parasitic 

Table S1, standard 

F – O d= -0.008; p= 0.01 

AP – O d= 0.010; p<0.001 

PP – O d= -0.002; p= 0.24 

Free-living vs. plant parasitic 

vs. animal parasitic taxa 

Treat 14 plant 

parasitic taxa as free-

living 

Table S1, standard 

F – O d= -0.009; p<0.001  

AP – O d= 0.008; p<0.001 

PP – O d= 0.001; p= 0.31 

Free-living vs. all parasitic taxa Table S1, standard 
S. ratti and H. bacteriophora 

treated as uniparental 

F – O d= -0.009; p= 0.03  

P – O d= 0.009; p= 0.03 

Free-living vs. plant parasitic 

vs. animal parasitic taxa 
Table S1, standard 

S. ratti and H. bacteriophora 

treated as uniparental 

F – O d= -0.008; p<0.001  

AP – O d= 0.010; p<0.001 

PP – O d= -0.001; p= 0.21 

Free-living vs. plant parasitic 

vs. animal parasitic taxa 
Table S1, standard 

Outcrossing and confirmed 

parthenogenic taxa only
c
  

F – O d= 0.003; p=0.49  

AP – O d= 0.003; p=0.54 

PP – O d= -0.004; p= 0.37 
 

a 
Indication of “standard” under Lifestyle and Reproductive Mode signifies that the character assignments reported in Table S1 in the corresponding columns were 

used without exception. 
b 

For the correlation statistics obtained through SIMMAP, “F” indicates free-living, “P” parasite, “AP” animal parasite, “PP” plant parasite, and  “O” outcrossing. 
c The correlation of outcrossing and animal parasitism is insignificant when the analysis is restricted to only outcrossing and known parthenogenic taxa, excluding 
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other uniparental taxa. This is likely due to the rarity of parthenogenesis in the dataset (8.6%).
 

 

The statistic m is an alternate correlation statistic generated by the stochastic character mapping implemented in SIMMAP. It is 
similar to d, but specifically reports the correlation between character histories. Bollback et al. [320] reports the form of this statistic 
as:  

𝑚𝑖𝑗 = 𝑓𝑖𝑗log2
𝑓𝑖𝑗

𝑓𝑖𝑓𝑗
 

 
where fi and fj indicate the proportion of time that a character history spends in state i or j, respectively, while fij indicates the fraction 
of time that state i is associated with state j in that character history. Values of the m statistic, and measures of its significance, give 
identical results to the d statistics reported above and are thus not reported here.  
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Table S4: Summary of results of the Discrete model for correlated evolution of outcrossing and animal parasitism. The 
character states analyzed and any restrictions on transition rate parameters. Five replications of both independent and dependent 
runs were performed. Independent and dependent runs were compared through a Bayes factor (BF) test and, when in reversible 
jump MCMC, through the proportion of visits made to independent vs. dependent models. Finally, hypotheses for the evolutionary 
transitions underlying the observed patterns are tested using the posterior probability that one transition rate parameter exceeds 
another.  
 
Lifestyle Reproductive 

Mode 
Uniparental -> 
Outcrossing 

BF  % Dependent a Posterior Probability (value of difference) 

     H1: q13>q24
 H2: q12>q34 q13>q12 

b 

        

Free-living 

vs. animal 

parasite 

Table S1, 

standard 
Allowed 14.14 >99.99% 

96.0% 

(16.17) 

34.7%  

(-4.10) 

96.1% 

(15.57) 

Free-living 

vs. animal 

parasite 

S. ratti and H. 

bacteriophora 

treated as 

uniparental 

Allowed 18.23 >99.99%  
93.4%  

(8.22) 

<0.01% 

 (-7.4) 

99.9% 

(8.64) 

Free-living 

vs. animal 

parasite 

Table S1, 

standard 

Restricted to 

zeroc 3.83 NA 
98.1%  

(2.82) 

40.1%  

(-0.01) 

97.7% 

(2.08) 
 

 

a 
With the dependent analysis under reversible-jump MCMC, the Markov chain visits a variety of models, 0.24% of which correspond to models of independent 

trait evolution. If the dependent analysis visits independent models less than 0.24% of the total, dependent trait evolution is supported.  
b 

Transition rate parameters correspond to the following transitions: q13 – outcrossing to uniparental reproduction, on a free-living background; q24 – outcrossing 
to uniparental reproduction, on an animal parasitic background; q12 – free-living to animal parasitism on an outcrossing background; q34 – free-living to animal 
parasitism on a uniparental background.   
c 
Reversals from uniparental reproduction to outcrossing may be rare, even impossible. While this hypothesis has not been explicitly tested in nematodes, it is 

supported by our general knowledge of the diversification rates of uniparental lineages (see Discussion) and by the irreversibility of transitions from self-
incompatible to compatible mating systems in angiosperms [321, 322]. To incorporate this biological knowledge in our analyses of correlated evolution, the 
analyses were conducted again with the probability of reversal from uniparental reproduction to outcrossing (q31 and q42 in dependent analyses; beta1 in 
independent analyses) restricted to 0. The reversible-jump MCMC as implemented in BayesDiscrete, which allows comparison of the proportion of visits to 
dependent and independent models in the dependent analysis, cannot be used with such restrictions, so independent and dependent analyses were only 
compared with Bayes factor tests. Acceptance rates were extremely low under these restrictions regardless of prior and rate deviation parameters, so the 
number of iterations was increased to ensure full sampling of the parameter space.  
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Taxon sampling does not generate positive correlations 

  

The vast majority of taxa in the Nematoda remain undescribed. This fact could complicate the interpretation of our 

findings of correlated evolution in the main manuscript. In this supplemental section, we therefore test if the observed 

evolutionary correlation of outcrossing and parasitism could arise merely from the process of under-sampling. In other 

words, if character states are distributed independently on a “true” phylogeny, can subsampling a small proportion of taxa 

from the phylogeny generate false positives (type I errors) in tests of evolutionary correlation?  

 To our knowledge, there are no published tests of the impact of low taxon sampling on contemporary methods for 

estimating evolutionary correlations of discrete traits. Studies that address this issue for continuous traits suggest that low 

taxon sampling is unlikely to generate a significant evolutionary correlation that is absent from the true tree. Freckleton et 

al. [323] find that a measure of phylogenetic correlation, λ, is largely robust to limited phylogenetic information. Moreover, 

when only a small number of taxa are represented on a phylogeny, the problem that arises is a lack of power to detect 

correlations that are present, rather than an increase in false positives. Ackerley [324] reports similar findings but 

additionally emphasizes that nonrandom sampling of taxa can increase the rate of false positives. His finding is intuitive: if 

subsampling is biased towards selection of taxa in which the character states of interest are both present, then significant 

correlations between these character states will be found in spite of their absence in the true sample.  

 There is clearly low taxon sampling of the Nematoda: the true number of taxa is unknown and coarsely estimated 

to lie between 100 thousand to 100 million [306]. The sub-sampling of these taxa is very likely to have been biased as 

well. Marine taxa are specifically excluded from this study. Within terrestrial taxa, parasitic taxa are certainly over-

represented due to their relevance to human, animal, and crop health [306, 314]. Uniparental taxa are also likely over-

represented: they have been historically popular for laboratory use and model system development (e.g. Caenorhabditis 

elegans, Pristionchus pacificus). Moreover, most nematode taxa have been sampled from temperate regions [314], where 

the rates of uniparental reproduction are high relative to the tropics [325, 326]. In reconstructing their phylogeny, Meldal et 

al. [306] aimed to sample under-represented nematode species from across the phylum, but bias towards uniparental taxa 

and parasitic taxa undoubtedly remains a significant issue. 

 Here, we simulate 1000-taxa phylogenies with evolutionary histories in which parasitism and outcrossing are 

uncorrelated, positively correlated and negatively correlated. We then subsample 100-taxa phylogenies from these true 

phylogenies under random or biased sampling. Finally, we compare estimates of phylogenetic correlation on the true and 

subsampled phylogenies. As in our main study, stochastic character mapping and the Discrete method are used to 
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estimate correlation. These methods are implemented in R rather than SIMMAP and BayesDiscrete, respectively, to 

facilitate replication. From these simulation studies, we conclude that the observation of correlated evolution in our main 

study is unlikely to have arisen as an artifact of the under-sampling of the Nematoda.  

 

Methods 

 All simulations were performed in R v3.0.1 [327]. 1000-taxa “true” trees and evolutionary histories were generated 

in the package phytools v0.4-31 [328]. Two binary traits were investigated in order to represent lifestyle (free-living or 

parasitic) and reproductive mode (outcrossing or uniparental). We assigned character states to the tips of the true tree by 

simulating evolutionary histories. To assign tip states under an evolutionary history in which parasitism and outcrossing 

were not correlated, evolutionary histories of lifestyle and reproductive mode were simulated with independent Q-

matrixes. To assign tip states under an evolutionary history in which parasitism and outcrossing were correlated, we 

simulated two continuous traits with a defined positive or negative correlation. We then applied the function threshState in 

phytools to convert the tip assignments from continuous to discrete values. This approach consistently generated a non-

phylogenetic correlation of outcrossing and parasitism at the tips that was reflective of that specified (data not shown). For 

each combination of evolutionary history (n=3, no, positive, or negative correlation) and sub-sampling procedure (n=5, see 

below), five true trees were generated with different Q-matrixes (no correlation) or degrees of correlation (0.7 to 0.9 for 

positive correlations, -0.7 to -0.9 for negative). 

 200 100-taxa sub-trees were sub-sampled from each 1000-taxa true tree under five different sampling schemes: 

random, over-sampling of uniparental taxa, over-sampling of parasitic taxa, over-sampling of outcrossing parasitic taxa, 

and over-sampling of uniparental and/or parasitic taxa. The first three are self-explanatory. The fourth sampling scheme 

biased subsampling towards taxa that were both outcrossing and parasitic. This scheme is unlikely to reflect the true bias 

in sampling of the Nematode phylum: while parasitic taxa are certainly over-represented, there is no evidence that 

parasitic taxa were additionally sampled according to reproductive mode. We have nonetheless included it to test the 

hypothesis that specifically sub-sampling taxa in which the traits of interest are present can generate false positive 

measures of correlation. The fifth sampling scheme is potentially the most representative of the true bias in sampling of 

the Nematode phylum: taxa were preferentially selected if they were uniparental, parasitic, or both. In other words, taxa 

that were free-living and outcrossing were specifically under-sampled. In all four biased sampling schemes, favored taxa 

were twice as likely to be sampled as disfavored taxa.  
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 Due to the extent of replication required, the analyses of simulated phylogenies and associated tip states were not 

implemented in SIMMAP and BayesDiscrete. We developed our simulations using R packages that implement the same 

theoretical frameworks, and the general patterns observed should be widely applicable. The correlation of outcrossing and 

parasitism was tested for five true trees under each combination of evolutionary history and sampling scheme (3 

evolutionary histories x 5 sampling schemes = 15 combinations). 

To measure the correlation between the character states of outcrossing and parasitism, we used stochastic 

character mapping [329, 330] implemented in phytools [328]. To analyze a given tree and its associated tip states, we 

generated one stochastic character map for each trait (reproductive mode and lifestyle). We then determined the 

expected co-occurrence of outcrossing and parasitism based upon the frequency with which each was independently 

observed at the nodes of the stochastic character map and the tips of the tree. We also determined the observed co-

occurrence based upon the frequency with which outcrossing and parasitism were observed at the same nodes of the 

stochastic character map and tips of the tree. We define our estimate of correlation as r: the observed minus expected 

frequencies. This value is conceptually similar to the d statistic obtained in SIMMAP. We estimated r 100 times for each 

true tree and once on each of 200 subsampled trees. The deviation in r was defined as the difference in the mean r 

obtained for the subsampled population minus the mean r obtained for the true tree. We averaged these deviations across 

the five true trees analyzed for each combination of evolutionary history and sampling scheme to assess the overall 

pattern.  

 To determine if transitions in lifestyle and reproductive mode were correlated, we used the Discrete method [331] 

implemented in corHMM v.1.15 [332]. To analyze a given tree and its associated tip states, we estimated the likelihood of 

a dependent model and an independent model of evolution. We then performed a likelihood ratio test to determine if the 

dependent model, consistent with correlated evolution, had a significantly higher likelihood than the independent model. 

We then compared the mean likelihood ratio and mean associated p-value for 100 analyses of each true tree and 200 

analyses of the subsampled trees (one analysis per subsampled tree). Finally we averaged these values across the five 

true trees analyzed for each combination of evolutionary history and sampling scheme to assess the overall pattern.    

Results and Discussion 

 These simulations were performed primarily to address the following question: if character states are distributed 

independently on a “true” phylogeny, is subsampling a small proportion of taxa from the phylogeny likely to generate false 
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positives in tests of evolutionary correlation? The results of our simulations strongly suggest that the answer to this 

question is no.  

We will first summarize the results when traits are simulated under an evolutionary history of no correlation, 

beginning with our implementation of stochastic character mapping. Figure S1a demonstrates that the deviation in the 

estimates of correlation (r) of outcrossing and parasitism in subsampled vs. true trees are negligible when subsampling of 

taxa is random, biased toward uniparental taxa alone, or biased towards parasitic taxa alone. Average estimates of r on 

subsampled trees are slightly higher than those for true trees when subsampling of taxa is biased toward outcrossing 

parasites or towards taxa that are uniparental and/or parasitic (Fig. S1a,d). The increase in r obtained when outcrossing 

parasites are over-represented in subsamples is intuitive and consistent with prior work [324]. The increase in the 

estimated correlation of outcrossing and parasitism obtained when uniparental and/or parasitic taxa are over-represented 

in subsamples is less obvious. It is likely an indirect result of the under-representation of outcrossing, free-living taxa in 

the subsamples. Given that biased subsampling of uniparental and/or parasitic taxa is likely for the Nematoda, we 

emphasize the results of this scheme relative to random subsampling. 

 The variance in estimates of r is much higher for the subsampled trees than for the true tree (Fig. S1d, Table S5). 

This first demonstrates that subsampling does not generate any systematic bias in r. We would predict relatively small 

variances if this were the case. Relatively large variances are consistent with the reduction in phylogenetic information in 

the subsampled trees relative to the true tree, but not with systematic bias. These large variances nonetheless raise the 

concern that a tree with a value of r consistent with positive phylogenetic correlation could be subsampled from a true tree 

with no evolutionary history of correlation. If we establish values of r greater than or equal to 0.05 as consistent with 

positive correlation (Fig. S1e), the average percentage of false positives in subsampled trees is quite low, 6.4% under 

random subsampling and 5.5% under sampling biased towards uniparental and/or parasitic species (Fig. S1d, Table S5).  

The results of our implementation of the Discrete method further support the conclusion that subsampling is 

unlikely to produce false positives in tests for evolutionary correlation. When traits are simulated under an evolutionary 

history of no correlation, the likelihood ratio tests find no support for the dependent model of evolution on the true trees or 

subsampled trees under any subsampling scheme (Table S6).  

We also mapped traits under the assumptions of positive and negative evolutionary correlations. Subsampling from 

true trees with evolutionarily correlated traits uniformly diminished our power to detect that correlation. Under both positive 

and negative correlation, r values of subsampled trees were on average closer to zero than those of the true trees (Fig. 

S1b,c,e,f). Under positive correlations, the deviation was in fact reduced slightly under subsampling biased towards 
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outcrossing parasites or uniparental and/or parasitic taxa (S1b,e). This is consistent with the earlier finding that these 

sampling schemes can increase the estimated correlation of outcrossing and parasitism. Under negative correlations, the 

deviation was even closer to zero under these sampling schemes, though the r values remained negative (Fig. S1e,f). 

Similarly, the likelihood ratio tests consistently found less support for dependent evolution in the subsampled trees relative 

to the true trees. Indeed, in three of ten cases, dependent evolution was falsely rejected in the subsampled trees (Table 

S6). These results are consistent with prior findings [323] that subsampling can lead to false negatives in tests of 

evolutionary correlation due to a loss of power.  

 

Conclusions 

 The goal of this simulation study was to determine if the evolutionary correlation observed between outcrossing 

and parasitism in the main study could have arisen merely due to under-sampling of the Nematode phylum. Our tests of 

both stochastic character mapping and the Discrete method indicate that under-sampling is a very unlikely explanation for 

the observed positive correlations.  

While we are convinced that the general patterns observed in these simulations are applicable to the main study, 

we acknowledge several differences between the implementations used. Correlation analyses are more rigorous in 

SIMMAP and BayesDiscrete than in our simulations. The Bayesian approach of SIMMAP and BayesDiscrete allows for 

weighting of multiple topologies and evolutionary histories. Moreover, in SIMMAP, the correlation statistic d is measured 

across whole topologies, while our r statistic is restricted to nodes and tips for logistical reasons. Because d accordingly 

differs from r in value, we cannot know if the values of d obtained in our main study fall into the region in which false 

positives might be a concern. However, the values of d estimated for the correlation of outcrossing and parasitism are of 

the same order of magnitude as those obtained in other published tests of correlated evolution implemented in SIMMAP 

[333-336]. Significance testing is also a powerful component of the SIMMAP and BayesDiscrete implementations that we 

were unable to replicate in our simulations. In SIMMAP, d values obtained for tree and character data are compared to the 

distribution of d values obtained when character states are re-distributed in a random fashion. Under this approach, the r 

values deemed to be false positives in our tests of correlated evolution might well be found to be statistically 

indistinguishable from those obtained from random trait distributions.  

 The results of our simulation approach demonstrate that it is very unlikely that the observed correlations of 

outcrossing and parasitism are an artifact of under-sampling alone. In our main study, we found highly significant support 

for this correlation in both the stochastic character mapping and Discrete approaches. In our simulations, we never 
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observed simultaneous false positives in these approaches, even under biased subsampling. Moreover, incorporation of 

the most realistic subsampling scheme for the Nematoda only slightly inflated correlation estimates and did not increase 

the average rate of false positives. Finally, we find that subsampling can strongly decrease one’s power to detect 

evolutionary correlations present on the true phylogeny and can thus serve as conservative tests of correlation. We 

therefore conclude that the observed correlation of outcrossing and parasitism in our phylogeny is likely reflective of 

evolutionary processes in the larger Nematoda.  
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Figure S1: Estimates of correlation in subsampled relative to true phylogenies under different sampling schemes.  
Trees with 100 taxa were subsampled from true trees with 1000 taxa in which traits were simulated under an evolutionary 

history with (A,D) no correlation, (B,E) a positive correlation, and (C,F) a negative correlation of outcrossing and 

parasitism. (A-C) Mean deviations in the correlation estimate r from the true phylogeny across different sampling 

schemes. Deviations were calculated as the difference in the average value of r in 200 subsampled trees and the average 

value of r in 100 analyses of the true tree. These deviations were then averaged across five sets of true trees with 200 
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subsampled trees each. Trees were subsampled from the true tree randomly or under four biased schemes: over-

sampling of uniparental taxa (U), of parasitic taxa (P), of outcrossing, parasitic taxa (O and P), or of uniparental and/or 

parasitic taxa (U and/or P). (D-F) Distribution of r values from 100 analyses of a true tree and one analysis of each of its 

200 subsampled trees. Representative runs are shown for random sampling and biased sampling favoring uniparental 

and/or parasitic taxa.  
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Table S5: Mean and variance of correlation estimates from true and subsampled phylogenies under random and 

biased sampling. The distributions of outcrossing and parasitism on the true trees were simulated independently (no 

evolutionary correlation). For each true tree of 1000 taxa, the mean correlation estimate r was obtained from 100 

analyses. 200 trees of 100 taxa were then subsampled from the true tree. The mean correlation estimate of the 

subsample was obtained from one analysis per subsample. Subsampled trees were obtained through random sampling of 

the true tree or biased sampling in favor of uniparental and/or parasitic taxa. The final column indicates the proportion of 

subsampled trees that might lead to a false positive in a test for correlated evolution of outcrossing and parasitism: r 

exceeded 0.05 though traits were simulated independently.  

 

  True Subsample 

Sampling Run r SD r SD proportion r>0.05 

Random 1 -0.016 0.006 -0.009 0.024 0.005 

 2 0.008 0.004 0.004 0.017 0 

 3 0.040 0.003 0.037 0.023 0.28 

 4 -0.004 0.006 0.001 0.024 0.01 

 5 0.024 0.004 0.017 0.020 0.025 

 Average 0.010 0.005 0.010 0.022 0.064 

U and/or P 1 -0.011 0.003 0.015 0.017 0.025 

 2 0.013 0.003 0.019 0.014 0.02 

 3 0.016 0.002 0.028 0.017 0.115 

 4 -0.012 0.005 0.020 0.023 0.105 

 5 -0.010 0.004 0.014 0.016 0.01 

 Average -0.001 0.003 0.019 0.017 0.055 
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Table S6: Likelihood ratios and the significance of dependent evolution in true and subsampled phylogenies. The 

likelihood ratio of dependent vs. independent evolution, and the significance of dependent evolution, was determined 100 

times on true trees and once for each of 200 subsampled trees. For each combination of evolutionary history and 

sampling scheme, the mean likelihood ratio and p-value were estimated for five sets of true and subsampled trees and 

averaged across the five sets. Traits were simulated according to various correlations of parasitism and outcrossing. For 

the subsampled trees, taxa were sampled randomly from the true tree or under one of four biased schemes.  

 

   Significance 

Correlation Sampling LR Deviation Subsampled Main 

None Random 0.007814 Not sig. Not sig. 

 U -1.00152 Not sig. Not sig. 

 P -0.89961 Not sig. Not sig. 

 O and P 2.144374 Not sig. Not sig. 

 U and/or P 1.058165 Not sig. Not sig. 

Positive Random -118.158 Sig. Highly sig. 

 U -43.5775 Sig. Highly sig. 

 P -124.02 Sig. Highly sig. 

 O and P -110.239 Sig. Highly sig. 

 U and/or P -128.114 Sig. Highly sig. 

Negative Random -117.725 Sig. Highly sig. 

 U -59.4051 Sig. Highly sig. 

 P -64.6697 Marginal Highly sig. 

 O and P -86.1672 Not sig. Highly sig. 

 U and/or P -96.3853 Marginal Highly sig. 
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