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Abstract
Whether or not evolution by natural selection is predictable depends on the existence of general patterns shaping the way
mutations interact with the genetic background. This interaction, also known as epistasis, has been observed during
adaptation (macroscopic epistasis) and in individual mutations (microscopic epistasis). Interestingly, a consistent negative
correlation between the fitness effect of beneficial mutations and background fitness (known as diminishing returns epistasis)
has been observed across different species and conditions. We tested whether the adaptation pattern of an additional species,
Schizosaccharomyces pombe, followed the same trend. We used strains that differed by the presence of large karyotype
differences and observed the same pattern of fitness convergence. Using these data along with published datasets, we
measured the ability of different models to describe adaptation rates. We found that a phenotype-fitness landscape shaped
like a power law is able to correctly predict adaptation dynamics in a variety of species and conditions. Furthermore we show
that this model can provide a link between the observed macroscopic and microscopic epistasis. It may be very useful in the
development of algorithms able to predict the adaptation of microorganisms from measures of the current phenotypes.
Overall, our results suggest that even though adaptation quickly slows down, populations adapting to lab conditions may be
quite far from a fitness peak.

Introduction

Evolutionary adaptation is an interplay between stochastic
events, such as the appearance of mutations, and quasi-
deterministic natural selection. This dual nature leads to an
important question: Is adaptation predictable? In theory, a
complete understanding of the evolutionary process and all
its components would allow us to predict the outcome even
of the stochastic components.

Recently, several experiments tested whether or not
adaptation is reproducible in a way that allows for a pre-
dictive model to be designed (e.g., Long et al. 2015; Wiser
et al. 2013; Jerison et al. 2017; Perfeito et al. 2014;
Kryazhimskiy et al. 2014; Good et al. 2017). The general

conclusion is that the reproducibility of evolution depends
on the level of organization that is considered. If we con-
sider the DNA level, there is little reproducibility: the same
genotypes adapting to the same conditions will often
experience different nucleotide changes. However, as the
complexity level increases, the degree of parallelism
between different replicate populations also increases. For
instance, the fitness increase of replicate populations is
highly reproducible. This suggest that, at least for higher-
order phenotypes such as fitness, a predictive model can be
derived (Kryazhimskiy et al. 2014; Lässig et al. 2017).

One of the least understood components of the adaptive
process is the distribution of fitness effects of mutations
(DFEM). Classical models of the DFEM consider that the
effects of mutations are independent of the background in
which they appear. However, there is now plenty of
empirical evidence that mutations display some degree of
interaction with their background (Lunzer et al. 2005;
Trindade et al. 2009; MacLean et al. 2010; Starr and
Thornton 2016; de Visser and Krug 2014, for a review). In
these studies, specific mutations are introduced in a set of
different genetic backgrounds and the change in selection
coefficient Δs is measured. This Δs is usually dependent on
the background where the mutation is introduced, a phe-
nomenon known as epistasis. Following the terminology
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introduced by Good and Desai (2015), the term microscopic
epistasis refers to the dependence of Δs of a specific
mutation on the background where it is introduced. When
this dependence is random it is impossible to extrapolate
information gathered from one genotype to another. Sur-
prisingly, there is a large body of work with examples
where the fitness effects of mutations depends on the fitness
of the genotype in a predictable manner (Kryazhimskiy
et al. 2014; Perfeito et al. 2014; Woods et al. 2011; Chou
et al. 2009). The emerging pattern of negative correlation
between Δs and fitness of the background paints a relatively
simple view of epistasis which is known as diminishing
returns epistasis. This has been observed in different
microbial systems, but it must be interpreted with some
caveats. For practical reasons it is necessary to select spe-
cific mutations and backgrounds to be tested, resulting in a
set that might be biased.

Another source of information regarding patterns of
epistasis is the study of adaptation experiments. While
adapting, populations experience a large number of muta-
tions and their rate of adaptation is highly dependent on the
DFEM and its relationship with the available genetic
backgrounds. This second form of epistasis, describing the
change in properties of the DFEM as a function of the
background is known as macroscopic epistasis (Good and

Desai 2015). In the majority of scenarios, the rate of
adaptation depends negatively on the initial fitness of the
background, again a form of diminishing returns epistasis.
Although there is no direct link between micro and mac-
roscopic epistasis, it is tantalizing that both follow the same
overall trend of diminishing returns. It could be that the
same biological mechanisms are behind both, allowing for a
single model to explain them.

One of the most prominent classes of models that attempt
to tackle the effect of epistasis in adaptation are fitness
landscapes (Woods et al. 2011; de Visser and Krug 2014;
Bank et al. 2016). Originally proposed by Wright (1932) and
Fisher (1930), fitness landscapes describe the mapping
between genotype/phenotype and fitness. This map is
understood as a fundamental concept in evolutionary biology
and plays a crucial role in several theories, such as the evo-
lution of sex (Otto and Lenormand 2002), speciation (Gav-
rilets 2004), divergence (Chevin et al. 2010), and others. The
shape of this map largely influences the predictability of
evolution. There have been several attempts to generate fit-
ness landscapes from empirical data. Since the number of
experimentally accessible genotypes is small, authors have
focused on small regions (see de Visser and Krug 2014, for a
review). Most of these empirical landscapes are rugged, but
the level of ruggedness varies without any explicit pattern.

Fig. 1 Models of epistasis. a–e
represent the relationship
between phenotype and fitness
in different models (a Power
Law, b Stickbreaking, c
Saturation, d Thermodynamics,
e FGM). The equations for each
line are in the main text. f Mean
fitness effect of beneficial
mutations as a function of the
background fitness for each
model
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Additionally, when a larger section of the landscape is
explored, the authors find that it is not possible to extrapolate
global features from subsets of the data (Bank et al. 2016).
The smaller sub-landscapes represent “epistatic hot-spots”
that do not necessarily share the overall epistatic pattern. This
highlights the risk in extrapolating from small subsets of
mutational combinations. It is, however, unclear if a simpli-
fied fitness landscape generated with adaptation data, tuned to
explain the patterns of macroscopic epistasis, can also be
predictive of microscopic epistasis.

Several different types of fitness landscapes have been
proposed, but reviewing all of them is beyond the scope of
the present work. Instead, we will focus on two key features
related to epistasis. The first is the presence of a nearby
fitness optimum, and the second is the curvature of the
landscape as the population approaches the optimum. With
these two features in mind, we will ask whether one model
is able to explain and predict the adaptation of very different
populations. We chose five models to test against the data
which vary in either curvature or the presence of a max-
imum. The first is a power law-shaped model without a
fitness maximum but with diminishing returns epistasis
similar to that proposed by Wiser et al. (2013). We adapted
this model to become a phenotype-fitness landscape,
directly comparable to the others. As for models with a
maximum, we chose four. One of the simplest is the
stickbreaking model (Nagel et al. 2012), whereby the fitness
effect of beneficial mutations is a linear function of the
distance between the current genotype and the maximum. In
order to explore non-linear curvatures as the population
approaches the optimum, we tested two additional func-
tions. The first is inspired by a Michaellis–Menten type of
curve, whereby fitness saturates as phenotypic values
increase (Jiang et al. 2013); the second is inspired by
thermodynamics and the probability of binding of mole-
cules as a function of affinity (Jacquier et al. 2013). This
model produces a sigmoid type of fitness landscape. Our
fourth model is Fisher’s Geometrical Model of adaptation
(Fisher 1930), which has previously been shown to quali-
tatively capture the observed patterns of diminishing returns
epistasis (Couce and Tenaillon 2015; Blanquart and
Bataillon 2016). This model is substantially different from
the previous three in that fitness is not a monotonic function
of phenotype. Instead there is an intermediate value of
phenotype for which fitness is maximum. This leads to,
among other properties, sign epistasis. Here we use the
extension used in Gros et al. (2009) and Blanquart and
Bataillon (2016), which allows different curvatures of the
landscape. Figure 1a–e shows the phenotype-fitness func-
tion for the five models. These models focus on changes in
the fitness effect of mutations. An alternative hypothesis is
that the rate or fraction of beneficial mutations changes,
rather than its value. One example is the finite sites model

(used, e.g., in Zucker 2003), where there is a finite number
of beneficial mutations and the pool becomes smaller with
increasing number of fixations. We chose not to use these
models as they do not predict microepistasis and because
there has been little support for the reduction of the fraction
of beneficial mutations (Good et al. 2017). Moreover, while
our chosen models do not explicitly change the fraction of
beneficial mutations, they change the number of mutations
that behave as effectively neutral.

We tested the models described above against four pub-
lished datasets and a new dataset produced by us. The criteria
to include the published datasets was the existence of data on
macroepistasis (i.e., changes in the general properties of the
DFEM during evolution) and data on microepistasis (i.e.,
description of the fitness effects of mutations in different
backgrounds). We also wanted a representation of different
species and so we included a new dataset produced by us on
the yeast Schizosacharomyces pombe. The other datasets
include the long-term evolution experiment (LTEE) of the
bacterium Escherichia coli, and three datasets on the yeast
Saccharomyces cerevisiae. There are other datasets that
explore the adaptation rate of different background (e.g.,
Perfeito et al. 2014; Schoustra et al. 2016) but these either do
not include microepistasis (e.g., Perfeito et al. 2014) or have
complex demographic histories such as growth on a struc-
tured environment (e.g., Schoustra et al. 2016).

Methods

Epistatic models

We tested four different models of epistasis. For each one
we fitted the best parameters necessary to explain micro and
macroscopic epistasis. Independently of the model, we
assume that mutations only affect the growth rate m.

Power law

Lenski and collaborators proposed a model of epistasis
(Wiser et al. 2013) that explains most of the observations on
the LTEE. However, since the proposed model is not
commutative (Good and Desai 2015), we used a modified
version. In the original model, the fitness effect of a
mutation was a decreasing function of the number of
mutations fixed. This decrease had a characteristic para-
meter λ. As an example, let us take two mutations with
selection coefficient s1 and s2. Depending on the order of
mutations, the fitness of the double mutant will either be W0

+ s1 + λs2 or W0 + s2 + λs1. These two are only identical
when s2= s1, or λ= 1. In order to have a commutative
model with the same shape, and to compare it with the other
fitness landscapes, we changed the implementation of the
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power law. Mutations affect a uni-dimensional phenotype p
linearly and additively. The phenotype is then mapped to
growth rate or log-fitness m by a power law rule of the form:

mm ¼ αðpmÞk; ð1Þ

with pm being the phenotype value of the genotype, α and k
the model parameters. We assume the phenotypic effects of
mutations, Δp, are distributed exponentially with mean λ.

Stickbreaking

In the stickbreaking model, defined by Nagel et al. (2012), a
mutation increases fitness by a specific percentage α of the
distance to the maximum fitness mmax. The selection coef-
ficient of mutation i is given by:

smi ¼ mmax � mBð Þ � βi; ð2Þ

where the suffixes mi and B refer to mutation i and the
background B where the mutation appears. Considering that
mutations only differ in the value of β and that for beneficial
mutations 0 < β < 1, we assume that overall β is distributed
as a truncated exponential distribution with rate parameter γ.
The stickbreaking model can also be turned into a
phenotype-fitness landscape by considering that mutations
affect a uni-dimensional phenotype linearly and then
mapping the fitness effect of each new mutation with the
equation above. The growth rate of any mutant mm with
phenotype pm has the general form:

mm ¼ mmax � mmaxð1� βÞp: ð3Þ

Saturation

Similar to the models described above, the saturation model
(Jiang et al. 2013) considers that mutations change pheno-
type linearly, and growth rate is given by:

mm ¼ mmax � pm
pm þ 1

: ð4Þ

Thermodynamics

The thermodynamics model is inspired by the probability of
protein binding as a function of affinity (Jacquier et al.
2013; Bank et al. 2015) and considers that mutations change
phenotype linearly, and the growth rate is given by:

mm ¼ mmax

1þ e�pm
: ð5Þ

In all cases, pm is the phenotype of strain m. Mutational
changes in phenotype are additive and Δp is drawn from an

exponential distribution with parameter λ. The fitness of
mutant m is Wm ¼ emm .

Fisher’s geometric model (FGM)

FGM consists of an n-dimensional phenotypic space that is
mapped to fitness. Here we consider a simple version of
FGM where each mutation is fully pleiotropic and follow
Blanquart and Bataillon (2016) where the phenotype to
fitness map can have different shapes depending on para-
meter Q, such that

mm ¼ mmax � zk kQ; ð6Þ

with mmax being the maximum log-fitness and z the
Euclidean distance in phenotypic space.

Experimental evolution of fission yeast

All strains of Schizosaccharomyces pombe (fission yeast)
were constructed as described in Teresa Avelar et al. (2013)
and their genotypes are listed in Table S1. We used eight
different strains, four of which contain large chromosome
rearrangements produced in the lab through a cre-lox sys-
tem. In order to construct the rearrangement, loxP sites
along with selective resistance markers had to be introduced
in specific genes. The different rearrangements differ in the
genes where these genetic cassettes were introduced. For
each of the four rearrangements, there exists a strain with
the wild-type karyotype and the loxP cassettes inserted in
the same locus (for full details, see Teresa Avelar et al.
2013). Together, these eight strains consist of a set of dif-
ferent genotypes with different starting fitnesses. Popula-
tions of each strain were started from single clones in 96
deep-well plates (maximum volume of 2 ml) containing
500 μL of YES medium (5 g/L yeast extract, 30 g/L glucose,
and 225 mg/L of adenine, histidine, leucine, uracil, and
lysine) and grown at 32 °C in a shaking incubator (Infors
HT Multitron, 230 RPM). Every day cultures were diluted
250-fold, and allowed to grow until saturation (N ≈ 106).
Each genotype was cultured in 12 independent wells for
160 passages, or 1275 generations. Each genotype was
replicated at least 10-fold.

Fitness was measured in competition with an mCherry-
expressing reference strain, which has a different genotype
from the rest (see strain list). All strains or populations were
taken from the −80 °C freezer and grown for 2 days in the
same conditions as the evolution experiment. The test
populations were then co-cultured with the reference strain
under the same conditions. The competition experiment
lasted 7 days. Every day the cultures were diluted and
distributed to a new deep-well plate and onto a small 96-
well plate for measurement. The frequency of each
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sub-population was tracked by flow cytometry using a BD
LSR Fortessa. Analysis of the data was performed using the
flowing software (Terho 2013). Selection coefficient s was
estimated by fitting:

ln
f ðtÞ

1� f ðtÞ
� �

¼ st þ ln
f ð0Þ

1� f ð0Þ
� �

; ð7Þ

where f(t) is the frequency of the unmarked sub-population
at time t, with time measured in generations of the reference
strain. All raw data from this experiment are available in
Supplementary File S1 and the median selection coefficient
in Supplementary File S2.

Simulation of adaptation

For each dataset we simulated batch culture experiments
with the same overall population dynamics as reported by
the authors. The key parameters extracted from each sce-
nario were the initial population size N0, and the dilution
between passages d (see Table 1). For each model, we fitted
the parameters of the epistatic model under test plus the rate
of beneficial μb and, when possible, the overall mutation
rate μn. The latter is given by the total number of mutations
detected in the population by sequencing.

In batch culture experiments populations experience
cycles of growth intercalated with instantaneous crashes due
to the dilution between passages. Typically, the dynamics of
a population in each passage includes an initial phase of
slow growth (lag phase), followed by an exponential growth
phase, a deceleration phase, and ends with non-growth
phase (stationary phase). This dynamics can be complex
and adaptation may proceed by changing traits affecting any
of these phases. In order to be able to simulate large
populations with multiple genotypes, we made a series of
simplifications to the population dynamics:

(i) The death rate is null and the observed population
growth rate (m) is the per capita birth rate. Additionally, at
stationary phase m= 0, which implies that there is no
change in frequency of genotypes at this stage. Populations
have no lag or deceleration phase—we assumed that the
population is either growing exponentially or arrested at
stationary phase. Together with the previous simplification,
this means that the m we are estimating is an average value

over one passage. A common and fixed limiting resource
determines the maximum number of cells that can be pro-
duced P per passage. The carrying capacity of all genotypes
is the same and does not change during adaptation. Toge-
ther with simplification ii, this implies that adaptation can
only occur by increasing m. Stationary phase is reached
when

Pn
j Pj ¼ P, with Pj being the number of new indi-

viduals produced by j. The initial size (N(0)) of the popu-
lation is the same at every passage. Following assumption
iii, the size of the population at beginning of passage i
should be:

Nið0Þ ¼ Ni�1ðtendÞ
d

¼ Ni�1ð0Þ þ P

d
; ð8Þ

where d is the dilution between passages. Equation (8) can
be solved for the equilibrium of Ni(0)= Ni−1(0) to get
Nð0Þ ¼ P

d�1. Assuming that the observed initial population
sizes from Table 1 are already equilibrium values, we can
compute the number of new individuals produced per
passage as P=N(0)*(d− 1). Our mutation rates μ describe
the probability of a mutation occurring per cell division.
Together with assumption iv, this allows us to compute the
total expected number of mutations per passage as k1= μP
= μN(0)(d− 1). Exponential growth is deterministic. For
each individual j, the time until cell division is usually
considered to be exponentially distributed with mean mj.
For each sub-population composed of clonal individuals
this dynamics is well approximated by exponential growth
of the form

NjðtÞ ¼ Njð0Þemjt: ð9Þ
As pointed out by others (Wahl and Gerrish 2001), in

batch culture experiments much of the stochasticity on the
change in frequency of genotypes is due to random sam-
pling between passages rather than stochastic growth. We
therefore kept the sampling stochastic but growth determi-
nistic. Supplementary Fig. S9 shows the probability of
fixation of different mutations under these conditions. There
is only one mutation per cell division.

Given our assumption ii each passage was divided in two
different stages: first, we simulated the growth of the
population, with the possibility of appearance of new gen-
otypes by mutation, and the growth of these new genotypes.
As there is no dynamics in stationary phase (from
assumption i), we then simulated the dilution of the popu-
lation with random sampling of genotypes.

In order to simulate deterministic growth of all n geno-
types in the population as well as the stochastic appearance
of mutations, we started by sampling the number of divi-
sions (nM) that will produce a mutated individual from a
Poisson distribution with mean k1. We then randomly
selected the nM divisions from an uniform distribution
between 1 and P and found the ordered set

Table 1 Demographic parameters used in simulation

Dataset Initial population size Dilution

Fission yeast 104 250

Budding yeast 30 105 1024

Budding yeast 37 105 512

Budding yeast 2 × 105 32

E. coli 5 × 106 100

Power law fitness landscapes and their ability to predict fitness



C= {c1, c2,...,cnM}. The time between each mutation i and i
− 1 was obtained by computing how much time Δt it takes
for a population of n genotypes to produce ci− ci−1 indi-
viduals. Assuming deterministic growth of all genotypes at
the time of appearance of ci−1 we found Δt by solving
numerically:

Nðt þ ΔtÞ ¼ NðtÞ
Xn
l

eml�Δt , ð10Þ

NðtciÞ þ ðci � ci�1Þ ¼ N tcið Þ
Xn
l

eml�Δt; ð11Þ

for Δt; NðtciÞ was the population size when mutation i
appeared, n the number of different genotypes in the
populations, and ml the growth rate of sub-population l. For
each mutation we selected the background where it
appeared by sampling all genotypes present in the
population, weighted by the number of divisions they
experience during Δt (weight of genotype q is
Nq tci�1ð Þ � emqΔt � 1ð Þ). Each mutation produced a new
sub-population r with size Nr tcið Þ ¼ 1 and growth rate given
by the models described above.

Several of the analyzed datasets had large population
sizes and simulating the previous process became compu-
tationally impractical for large mutation rates of beneficial
mutations μb. We used an approximation of a stochastic
simulation based on the tau-leaping algorithm (Gillespie
2001). In this case, we allowed the population to evolve
without mutation for a certain amount of time, and then
introduced the expected number of mutations that happened
during that period. For an intermediate level of expected
number of mutations per passage 10 < k1 < 5000 we selected
a time step of the order of the mean generation time. This
introduces a small error on the timing of mutations, on the
order of the variance in growth rate of the population. For
k1 > 5000, the time step was equal to the whole passage, i.e.,
all mutations appeared at once in the beginning of the
growth phase. This last approximation was only necessary
for the LTEE dataset with high mutation rate. In that case,
the error introduced by the approximation was mitigated by
the large number of passages.

At the end of each passage, populations suffered a
reduction in size when diluted. This process is expected to
be random and therefore we simulated it by sampling the
number of individuals from each sub-population from a
multivariate hypergeometric distribution with sampling size
N(0), and the probability of selecting each sub-population i
equal to its frequency. Again, simulations with a large
number of competing sub-populations k2 were computa-
tionally impractical. For intermediate 100 < k2 < 1000, we
approximate the multivariate hypergeometric distribution by
a multinomial distribution with the same parameters. For

large k2 > 1000, we approximate this with a Poisson dis-
tribution for each sub-population with mean N(0)fi, where fi
is the frequency of sub-population i at the end of the pas-
sage. These two approximations are extensions to the well-
known unidimensional approximations of hypergeometric
distribution to a binomial distribution (for large populations),
or to a Poisson distribution. Stochasticity in the growth
phase has been shown to be small compared with sampling
with exponential growth and large dilution rates (Wahl and
Gerrish 2001). We follow that approximation here. In each
simulation we followed the growth rate and number of
mutations accumulating in each surviving lineage.

All the simulations were performed using Intel Python
2017 1.3 (Intel 2018).

Exploring the parameter space

In order to find the sets of parameters for each model that
can explain each different dataset we used Approximate
Bayesian Computation (ABC). In ABC a random set of
parameters is generated from a prior distribution and
simulations are performed with these parameters. A set of
summary statistics is then calculated for each set i of
parameters ssp and the same summary statistics are com-
puted from the observed data sso. The simulations with ssp
closer to sso are selected and the respective parameters
represent the posterior distribution.

We selected as summary statistics the normalized median
fitness and the number of mutations in evolved clones from
each background and time points. Note that we did not use any
variance measure to train the models, but we later included it in
one of the measures of predictability (cross-correlation analysis
as in Zucker 2003). For each parameter set we ran 100 simu-
lations. On the budding yeast datasets, given the large number
of backgrounds involved, we clustered the backgrounds by
initial fitness using the Freedman–Diaconis algorithm (Freed-
man and Diaconis 1981). For the LTEE we used only the
information up to the initial 10,000 generations.

In order to decrease the number of simulations necessary,
we used a two-step ABC strategy. First, we run sequential
ABC with the Leonormand implementation on the R
package Easy ABC (Jabot et al. 2013). With this method,
the prior begins as a bounded uniform distribution and is
updated at each step in order to increase the sampling on the
parameter regions with best scores. Convergence is
achieved when a small fraction of the newly generated
points is accepted (5% in our case). Second, we used a post-
processing technique implemented in the R package ABC
called neural networks (Csilléry et al. 2012; Blum et al.
2010). This strategy trains a neural network to predict the
best set of parameters in order to decrease parameter var-
iance (similar to Blanquart and Bataillon 2016). We used
the predicted posterior distribution as the prior for a new
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round of sequential ABC. Finally, we gathered all per-
formed simulations and computed a final posterior dis-
tribution for each model in each dataset. We selected the set
of parameters with the lowest distance to the data (dmin), and
estimated the error in the distance by bootstrap (ε). The final
posterior distribution was computed by selecting all the
parameters that have a distance to the data which is lower
than dmin+ 3.9*ε.

The parameters from the sequential ABC were size 1000
and method Leonormand. For ABC neural network we used
numnet= 1000 and maxit= 10,000.

We measured the accuracy of inference of parameters
from the adaptation data using cross-validation of our

simulated datasets for each model in each dataset, as in
Blanquart and Bataillon (2016), with the function cv4abc
from package abc (Csilléry et al. 2012). For 1000 random
simulations (ncv= 1000) we selected one of our simulations
as a pseudo-real target and applied the ABC rejection
algorithm on the remaining simulations. We computed the

prediction error, defined for each parameter as
P

ð~θi�θiÞ2
ncv�V ½θ� ,

where ~θi is the median of the posterior distribution, θi the
true value of parameter on simulation i, and V[θ] the var-
iance of the prior. A value close to 0 reflects perfect
inference, while a value of 1 indicates that no inference can
be made.

Fig. 2 Model comparison. Comparison of the r2 using simulations with
the best set of parameters for each model and dataset, selected using
ABC. The model names are abbreviated (Power Law—PL,

Stickbreaking—SB, Saturation—ST, Thermodynamics—TH, FGM). a
Fission yeast, b budding yeast 30, c budding yeast 37, d budding
yeast, e E. coli, and used to compute the correlation coefficient r2

Power law fitness landscapes and their ability to predict fitness



Normalization of fitness data

The definition of fitness is not the same between the dif-
ferent studies from which we selected our data. In order to
be able to compare between datasets we defined fitness of a
strain i as its mean growth rate over one passage mi. For
each dataset we also consider the unit of time as the mean
generation time of the reference r, so mr= ln2. The selec-
tion coefficient of a mutation i is then:

si ¼ mi � mr: ð12Þ
Below we describe the precise transformation between

the fitness we computed and the one reported by the
authors. For each dataset, with sn as our normalized s and so
as the original definition from the authors:

● E. coli: sn= (so− 1) ln 2.

● Budding yeast: sn ¼ lnfmðtÞ
fr ðtÞ�lnfmð0Þ

fr ð0Þ
Gpþlog2

fr ðtÞ
fr ð0Þ

, where fm and fr represent

the frequency of the mutant and the reference,

respectively, and Gp represents the generations of the

population.

● Fission yeast: We used the same equation as for budding
yeast, but since we had multiple data points we
estimated fitness using linear regression.

Statistical analysis

All statistic analysis were done with R 3.4.2 (R Core Team
2015).

We performed model comparison using two measures
from the ABC methodology and implemented on the R
package abc (Csilléry et al. 2012) as gfit and postpr. The
first, posterior predictive checks, measures the goodness of
fit (GoF) of the model to the data. In summary, for each
model in each dataset we selected one random simulation as
pseudo-real and computed the median of the distance of the
closest 1% other simulations. We repeated this procedure
1000 times to generate a null distribution of distances. We
then compared the distance between the best 1% simula-
tions and the observed data, and computed an empirical p-
value, that we corrected for multiple testing using Holm’s
method (Holm 1979). The second measure, model selection,
pools all simulations from all models and parameters and
picks the top 10% closest to the experimental summary
statistics. A neural network is then trained to assign a
probability to each model. This measure has been shown to
be less sensitive to biases in the priors (Csilléry et al. 2012).

In order to compare the observed evolutionary histories
with the model outcome and estimate each model’s

predictability, we used two correlation methods. We started
by simulating the expected evolutionary history (fitness and
number of fixed mutations per background per timepoint)
under each model in each experimental condition using the
inferred posterior distribution of parameters. We then calcu-
lated the coefficient of correlation (r2) and the cross-
correlation score (Zucker 2003). The r2 indicates how much
of the variance in the observed adaptation rate is explained by
the model. The cross-correlation score uses all biological
replicates and estimates Spearman’s correlation between their
distribution and the distribution of outcomes from the simu-
lations. Unlike the r2, this measure takes into account the
variance produced by the stochasticity of the evolutionary
process. We used bootstrap of the expected evolutionary
history to compute a distribution of both r2 and cross-
correlation. Note that the summary statistics we used for the
ABC fitting are the same as the experimental measures of the
evolutionary trajectories (fitness and number of mutations).

We also used the R packages matrixStats (Bengtsson
2017), boot (Davison 2006; Canty and Ripley 2012),
tmvtnorm (Wilhelm 2015), corpcor (Schäfer et al. 2014),
Hmisc (Harrell 2018), MBESS (Kelley 2018), and trunc-
norm (Trautmann et al. 2014).

Test models in new data

In order to test influence of the amount of data in the
observed r2 (Fig. 2a), we selected the posterior distribution
with the same methodology described above but using only
the information available up to some generations. Specifi-
cally, given that the fission yeast experiment was performed
for 1200 generations a fraction of 50% represent that only
data up to 600 generations was used to select the posterior
distribution of parameters. Then we used the median of the
complete set of simulations from these parameters to cal-
culate the r2 for the entire dataset.

In one of the budding yeast datasets, the authors mea-
sured fitness at two different timepoints. As above, we used
only the data from the first timepoint to select the posterior
distribution of parameters. We ran simulations using this
posterior distribution and computed the median predicted
fitness for each background at 500 generations (Fig. 2b).

We performed a similar experiment with the LTEE.
Using the posterior distribution of parameters computed with
the initial 10,000 generations we performed simulations for
the full time of the experiment (50,000 generations). We also
show the fit of a linear model to the data of 20,000–50,000
generations (as proposed by Good and Desai 2015).

Microepistasis

From both Kryazhimskiy et al. (2014) and Khan et al.
(2011), we retrieved the data concerning the effect of
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mutations in different backgrounds. We removed all muta-
tions that showed either no epistasis (one in each dataset) or
positive epistasis (from the LTEE dataset). For the power
law model, we considered the α and k estimated from the
respective adaptation dataset and fitted a Δp for each
mutation. For the stickbreaking, saturation, and thermo-
dynamics models, we considered the maximum fitness
estimated from the adaptation data and also fitted a Δp for
each mutation. The distributions displayed in Fig. 3a and b
result from sampling from the posterior distribution of
parameters for each model, while Fig. 3c and d showed the
result from the best set of parameters for microepistasis for
the power law model.

Results

General model of epistasis

The ubiquitous observation of diminishing returns epistasis
in different systems (Couce and Tenaillon 2015) suggests a
general model for the selection coefficient s of new muta-
tions and the DFEM. Here, we tested two important prop-
erties of fitness landscapes that may help us understand
diminishing returns epistasis and predict adaptation rates.

The first property we tested is whether the observed
diminishing returns epistasis of beneficial mutations
requires the proximity of a fitness optimum.

We began by choosing a model without a maximum, but
with the potential to create diminishing returns epistasis. We
chose a power law model, inspired on the observations from
the LTEE (Lenski et al. 1991) that selection coefficient and
time are related by a power law (Wiser et al. 2013). This
model does not have a maximum, i.e., fitness tends to
infinity as beneficial mutations accumulate. We modified
the empirical model used by the authors in order to make it
commutative (i.e., so that the order of mutations does not
matter) and with an explicit phenotype-fitness landscape
associated. Our new model assumes that mutations change a
general phenotype p linearly and that this phenotype in turn
can be mapped to growth rate m by a power law relationship
of the type:

m ¼ αpk; ð13Þ

with α being a scale parameter and k modulating the degree
of epistasis. The selection coefficient s is the difference
between growth rates (s=mmutant−mbackground). As long as
0 < k < 1 the model predicts diminishing returns epistasis,
i.e., the selection coefficient of a mutation that changes the

Fig. 3 Model robustness to
partial data. a The correlation
coefficient r2 was computed for
the Fission yeast dataset using as
training set different fractions of
the data. b Using only the data
for the first 250 generations of
the Budding yeast dataset fitness
was predicted for 500
generations. The coefficient of
correlation r2 as computed
between the predicted and the
observed fitness at 500
generations for each model
(Power Law r2= 0.48,
Stickbreaking r2= 0.03,
Saturation r2= 0.18,
Thermodynamics r2=−0.02,
and FGM r2= 0.05). c Using the
informations on the initial
10,000 generations the next
40,000 generations of the LTEE
were predicted. The coefficient
of correlation r2 as computed
between the predicted and the
observed fitness for the last
40,000 generations for each
model (linear r2= 0.82, Power
Law r2= 0.78, Stickbreaking r2

=−1.6, Saturation r2= 0.48,
Thermodynamics r2=−1.7, and
FGM r2=−1.8)
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phenotype by Δp is inversely correlated with the back-
ground fitness (Fig. 1a). In order to simulate the adaptive
process, we considered that each mutation has a specific Δp,
and that these values are additive and distributed exponen-
tially with mean λ. Consistent with diminishing returns
epistasis, the power law model predicts a slowdown in the
adaptation rate as the population increases in selection
coefficient (Fig. 1f, red line).

The second property of fitness landscapes that we tested
was the curvature of the phenotype-fitness map when there
is a maximum fitness. For that, we tested four models with
different properties. The first was the stickbreaking model
from Nagel and colleagues (2012). This model assumes that
a maximum growth rate mmax exists and that each individual
mutation increases the selection coefficient by a fraction β
of the distance to the maximum, such that:

mmutant ¼ mmax � mmax � ð1� βÞp: ð14Þ
The second model with a maximum that we tested was

the saturation model:

mmutant ¼ mmax
p

pþ 1
: ð15Þ

This model is inspired by a Michaelis–Menten type of
relationship between phenotype and fitness. In the bio-
chemical model, the speed of a reaction increases with the
concentration of substrate, but it decelerates for high sub-
strate and has an asymptote. Here the substrate is the phe-
notype p and the speed is fitness. Just like in the
stickbreaking model, the landscape is concave (Fig. 1b, c)
but the change in mean selection coefficient with back-
ground is different (Fig. 1f, green and blue lines).

A different type of model is inspired by thermodynamics
(Jacquier et al. 2013; Bank et al. 2015), which we formulate as:

mmutant ¼ mmax

1þ e�p
; ð16Þ

where fitness is at first a convex (i.e., accelerating) function
of phenotype that then becomes concave (Fig. 1d). This
model has a characteristic type of microepistasis (Fig. 1f,
pink line).

Lastly, we tested FGM, which in Couce and Tenaillon
(2015) was shown to best describe the experimental patterns
qualitatively. FGM can have different formulations with
multiple parameters. Here we decided to use one of the
simplest versions in order to compare with the other models
which only have three or four parameters. In this version of
FGM, mutations are fully pleiotropic and can affect n
phenotypes randomly. Fitness is a multivariate function of
these phenotypes with parameter Q describing its shape, as
described in Blanquart and Bataillon (2016). Specifically,

mmutant ¼ mmax � zk kQ; ð17Þ

with ||z|| as the Euclidean distance of the mutant phenotypes
to the optimal phenotypic values. One of the biggest
differences between this model and the previous is that the
optimum fitness is not given by the maximum phenotype,
but rather by an intermediate value (Fig. 1e). The shape of
microepistasis is similar to the thermodynamics model (Fig.
1f, green line).

In all models, only one parameter is specific of each
mutation. The rest are specific of the landscape. Hence we
will be able to fit the model to data on adaptation rate
(macroepistasis) and use it to predict the fitness effects of
single mutations with only one free parameter. As Fig. 1f
shows, these models make different predictions on the
average shape of microepistasis. Supplementary Fig. S1
shows the full distribution of beneficial mutations for each
model in two backgrounds.

Power law model as the general model

The models defined above produce predictions for both
micro and macroscopic epistasis. One way to test for
microscopic epistasis is to measure the effects of the same
mutation in different backgrounds. Although this strategy
allows for a thorough description of the fitness landscape
for a specific mutation, it requires an initial selection of the
mutations and backgrounds to be tested, which can lead to a
bias on the observed behavior. Adaptation experiments, on
the other hand, are biased in a different way in that only
strongly beneficial mutations are sampled. We selected a set
of experiments performed with different conditions, mea-
suring adaptation on prokaryotes and eukaryotes. When
possible, we tested whether patterns of macroepistasis can
explain microepistasis.

In all cases, we used an ABC approach to find the best
parameters that explain the observed fitness changes over
time. We simulated the evolution experiments, including the
demographic dynamics described by the authors of the
datasets. For all models, the best parameters are shown in
Table 2 and Supplementary Tables S2–6. We measured the
accuracy of parameter inference under this methodology

Table 2 Best parameters for power law model

Dataset Rate beneficial
mutations

Rate neutral
mutation

α k λ

E. coli 8.5e− 05 1.1e− 03 0.32 0.13 66

Budding yeast 6.0e− 05 1.9e− 02 0.40 0.20 1.2

Budding yeast
30

3.0e− 04 1.0e− 03 0.26 0.27 1.2

Budding yeast
37

2.0e− 04 2.0e− 03 0.13 0.41 1.9

Fission yeast 2.3e− 05 0.31 0.13 57
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with cross-validation and found that, for the majority of
scenarios, we can find the true parameters underlying the
adaptations dynamics (Supplementary File S3).

The ABC framework provides two standard methods to
compare different models. The posterior predict check (also
know as GoF test) measures the GoF of the model to the
data by testing if the model can recapitulate the observed
summary statistics. The method generates an empirical p-
value (Supplementary Table S7) that can be used to reject
models. In the second method, model selection, a neural
network is trained with the best simulations across all the
models for the same dataset and the probability of each
model is estimated (Supplementary Fig. S3). We applied
both of these methods to all models in all datasets and found
that there was little power to reject any of the models with
the GoF empirical p-values. However, the model selection
method indicated that the power law had the highest model
probability in all dataset except one, budding yeast at 37 °C.
In this case, the power law and the saturation model were
the most top picks with similar probabilities (Fig. S3C).

Since our main goal was to assess the predictive potential
of these models, we measured the ability of each one to
recapitulate the evolutionary history present in the data. For
this purpose we computed the coefficient of correlation, r2

(Fig. 4), and estimated the cross-correlation (Zucker 2003)
(Supplementary Fig. S2) between the output of the model
and the experimental data. While the r2 measures the
amount of variance in the observed data explained by the
model, the cross-correlation also evaluates the ability of the
model to recapitulate the stochasticity in the evolutionary
process (see Methods). These measures may also help us
choose between models since the summary statistics we
used for the ABC are the same as the authors reported for
the evolutionary trajectories (fitness measures and number
of acquired mutations).

All of the measures, both from model comparison and
from model predictability, have strengths and weaknesses.
Therefore, we searched for robust global patterns across
datasets and measures.

The first dataset we looked at was using the fission yeast
S. pombe. In this experiment, we propagated eight strains
which differ by the presence of cre-lox cassettes at different
loci and by the presence of large chromosome rearrange-
ments (Teresa Avelar et al. 2013, Methods and Table S1).
Replicate populations were evolved for about 1000 gen-
erations and fitness was measured at regular intervals (see
Supplementary Files S2 and S3). As shown in other
organisms, the adaptation rate was inversely correlated with

Fig. 4 Microepistasis. The
model names are abbreviated
(Power Law—PL, Stickbreaking
—SB, Saturation—ST,
Thermodynamics—TH, FGM).
a The correlation coefficient for
microepistasis on the Budding
yeast dataset was computed
using the general parameters
inferred from the adaptation data
for each model except FGM. b
The correlation coefficient for
microepistasis on the LTEE
dataset was computed using the
general parameters inferred from
the adaptation data for each
model except FGM. c, d
Simulations using the best set of
parameters for microepistasis
obtained for the power law
model using the information
from adaptation on the Budding
yeast or LTEE data,
respectively. Poits represent the
experimental data and lines the
model prediction
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initial fitness, with the less fit strains showing the highest
fitness increase. We fitted all five models to this data
(Supplementary Fig. S4). While we were unable to reject
any of the models (p-value ≥0.05, Supplementary Table S7,
first column), the power law was the model with the highest
probability (Supplementary Fig. S3 panel A). This result
was also observed for both predictability measures (Fig. 4
and Supplementary Fig. S2, both panel A), with the power
law model having better predictability, followed by stick-
breaking and the thermodynamics model.

We repeated the same analysis for the dataset described
in Kryazhimskiy et al. (2014), where 66 strains of the
budding yeast S. cerevisisae were propagated for about 500
generations and their competitive fitness measured at two
timepoints. For this and the following datasets we have
information on the average number of mutations acquired
per line and we used that information for the fit and to infer
the overall mutation rate (see Table 2 and Supplementary
Tables S2–S6). As above, no model was rejected (p-value
≥0.05, Supplementary Table S7, second column) and the
power law had the highest model probability (Supplemen-
tary Fig. S3 panel B). As for the model predictability, while
power law displayed the higher r2 (Fig. 4b) the best cross-
correlation score was from the thermodynamics model,
closely followed by the power law (Supplementary Fig. S2
panel B).

Next, we used two additional datasets on budding yeast
produced by Jerison et al. (2017). In this case, 230 different
strains were adapted for 500 generations in two different
temperatures: 30 and 37 °C. For both datasets the model
comparison results were similar to the ones described
above, with no model being rejected (Supplementary Table
S7, third and fourth column). The power law was the model
with the higher probability (Supplementary Fig. S3 panels C
and D), although very similar to the Saturation model on the
30° dataset. The power law was also the model with the
higher predictability measured by r2 (Fig. 4 panels C and D)
and by cross-correlation on the 37° dataset (Supplementary
Fig. S2 panel D). Similarly to the previous dataset, for the
30° data the Saturation model had the higher cross-
correlation score (Supplementary Fig. S2 panel C), closely
followed by the power law model. It is interesting to note
that the previous dataset was also grown at 30°, even though
the genetic backgrounds are very different.

Finally, we took advantage of a large dataset from the
Long-Term Experiment in E. coli. Twelve populations of
this bacterium were started from the same genotype about
30 years ago and have been evolving to this day. We took
the first 10,000 generations of adaptation and fitted them
to the models as described above. As with the yeast, no
model could be rejected (Supplementary Table S7, fifth
column) and the power law was the model with higher
model probability (Supplementary Fig. S3 panels E) and

predictability (Fig. 4 and Supplementary Fig. S2, both
panel E).

We find that the power law is a very strong candidate for
a general model, able to explain macroepistasis across
prokaryotes and eukaryotes. In Table 2, we show for each
dataset the parameters that best fit each of the datasets
(Supplementary Tables S2–S6 show the parameters for the
other models). The estimated mutation rates are within what
was previously described for these organisms. The para-
meters of the power law differ between datasets but we do
not have a clear a priori expectation for their values. In the
discussion section we speculate about their biological
significance.

Model robustness to partial data

In order to assess the predictive power of each model, we
first estimated how much predictability changed with the
fraction of data used. We focused on predicting future fit-
ness only, i.e., we used data from early time points to
predict subsequent fitness. In all cases we did not fit any
parameter to the datasets to be predicted. We took our fis-
sion yeast data and used only an initial fraction of the
timepoints to predict the following fitness. Figure 2a shows
how the r2 of each model changes with the fraction of data
used in training. It shows that information on the first 500
generations of the experiment was sufficient to achieve the
maximum levels of r2 for all models. The power law per-
forms best irrespective of the amount of training data used.
In the yeast dataset with 66 yeast genotypes adapting to
standard laboratory conditions (Kryazhimskiy et al. 2014),
the authors report fitness for two data points, generation 250
and generation 500. We used the data from generation 250
to predict fitness at generation 500. The results are shown in
Fig. 2b. All models capture the qualitative dynamics of the
experiment. However, the power law shows the best fit with
an r2 of 0.48. We also tested the ability of the models to
predict fitness in the later generations of the LTEE. We used
only the data from the first 10,000 generations to train the
data and try to predict fitness until generation 50,000. Of all
the five models we described before, the power law is the
one that best fits the data. It has recently been proposed that
this part of the LTEE has a different dynamics in the last
generations which in fact shows no signs of epistasis (Good
and Desai 2015). To test for this, we fitted a straight line to
the LTEE in this interval. The r2 is slightly higher but
similar to that of the power law.

Prediction of microepistasis

Another independent measure of predictability in these
datasets is microepistasis. Both the LTEE (from Khan et al.
2011) and the yeast dataset (from Kryazhimskiy et al. 2014)
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have data on the fitness effect of single mutations across
backgrounds. In both cases, we focused on mutations that
show diminishing returns epistasis and no sign epistasis.
Exceptions to diminishing return epistasis certainly exist,
but we do not intend to explain them here. Rather we are
focusing on the more common pattern. Hence we removed
two mutations from the LTEE that showed synergistic
epistasis or no epistasis and one mutation from Kryaz-
himskiy et al. (2014) that had no effect on fitness. For each
model except FGM, we used all the parameter values esti-
mated from the fitness trajectories described above. For
each mutation, only one parameter was fitted: the fitness
effect on phenotype, Δp. In order to fit FGM to micro-
epistasis, we would need to fit for each background and
mutation the phenotypic value in each dimension n of the
landscape. The number of free parameters would be very
large and it would make the comparison with the other
models difficult to interpret. Hence we opted not to use
FGM to predict microepistasis. All models are able to
capture the trend of diminishing returns epistasis with
similar r2 (Fig. 5a, b) but no clear pattern of one model
being better than the other. This result clearly demonstrates

that we can make a direct link between macro and micro-
epistasis, with the prediction for the power law model in
Fig. 2c and d.

Discussion

The seemingly pervasive diminishing returns epistasis,
whereby the fitness effect of new mutations depends on
initial fitness, suggests that a general model of adaptation
can be derived. In this work we selected five models and
tested their ability to describe and predict patterns in two
different experiments: a bound-less model, the power law;
three bounded models with different curvatures; and Fish-
er’s geometrical model. We observe that the power law fits
well experimental data from three species in different
environments. Although standard goodness-of-fit methods
do not allow us to reject any of the models, we observe
consistently that the power law has the best scores. More-
over, when we use correlation measures such as r2, the
power law again is the highest ranking model across data-
sets. There is a caveat that the power law has one additional

Fig. 5 Power law. The
predictions obtained from the
best set of parameters for the
power law model. a Fission
yeast, b budding yeast, c
budding yeast 30, d budding
yeast 37, e E. coli; points
represent the experimental data
and lines represent the results of
simulations, smoothed over
multiple replicates
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parameter when comparing with the first three bounded
models. It is unlikely that this is the reason behind the best
fit because the other three models have sufficient differences
in curvature that one would expect that at least one of them
would provide a better fit. In addition, the predictive
capacity of the power law remains when we test it against
new data (Figs. 2, 3). This shows that, even if it were not the
best model, it is the more useful. Figure 5 shows for all
datasets the experimental data along with the power law
prediction with the best fitted parameters.

Previous work conducted a similar unification of data
from different sources (Couce and Tenaillon 2015). There,
the authors tested four models: a model similar to the power
law where the effect of mutations changes exponentially
with initial fitness; a model where the number of mutation
decreases as an exponential function of initial fitness; the
finite sites model; and the FGM. The authors found that
FGM was the most robust model in qualitatively describing
diminishing returns epistasis. Here, we expand on that
analysis by including models with different curvatures
toward the maximum and quantitatively analyzing how well
each model explains each dataset. We chose five models
based on whether or not they had a maximum fitness and on
the curvature of the phenotype-fitness map (Fig. 1a–e).
Importantly, they all make a different range of predictions
on microepistasis (Fig. 1f). The datasets we chose include
three different species. We found that the power law model
has a better fit to the observed data for all datasets in nearly
all measures (Fig. 4, S2).

These five models were chosen based on their simplicity
or the fact that they were previously shown to have some
power to describe adaptation experiments (Nagel et al.
2012; Wiser et al. 2013; Couce and Tenaillon 2015). They
are not explicitly describing any known biological
mechanism which makes their interpretation difficult.
However, by analyzing the power law model and the
behavior of micro and macroscopic epistasis as we change
the parameters values it is possible to assign some meaning
to each parameter:

● ɑ-scale parameter: All s are relative to the reference used
in the study and α defines what is the fitness value of one
unit of p in units of generation time of the reference.
This value should be specific to each experimental
condition.

● k-epistatic parameter: This parameter defines the
strength of epistasis in the system. With k= 0 mutations
cannot change fitness (a limit scenario) and as it
increases, the model predicts less epistasis until k= 1
where mutations are non-epistatic. This parameter
represents a summary of some underlying complex
fitness landscape and thus should be shared between
micro and macroscopic epistasis.

● λ-mean change in phenotype: This parameter defines
how fast the underlying phenotype changes with
mutations. The phenotype p represents a projection of
the fitness-related phenotypes to one dimension and
represents the mean change in this effective phenotypic
dimension.

In order to simulate adaptation under the different
models, we had to make a number of simplifications. Two
of them in particular have consequences on how our results
are interpreted. The first one was that the growth between
passages was described by a single parameter m. One way
to give biological meaning the power law landscape will be
do dissect how the different phases of growth contribute to
fitness. The second simplification was that we only incor-
porated genetic drift at the sampling between passages
rather than during cell division. We chose to simulate
explicitly the exponential growth of populations instead of
using discrete generations with an appropriate effective
population size. This allowed us to include any impact of
severe, periodic bottlenecks from the experimental settings
as seen in Wahl et al. (2002). However, we had to make the
simplification that growth is deterministic and all the sto-
chasticity associated with drift originates from the random
sampling between passages. Therefore, in our simulations,
the probability that a beneficial mutation escapes drift is
likely higher than in the experiments (although similar to
the expected from Wahl et al. 2002 and dependent on s; see
Supplementary Fig. S9). The immediate consequence of a
decrease in genetic drift is that we underestimate the ben-
eficial mutation rate. There may also be changes to the
distribution of contending mutations which will in turn
affect how well each model fits to the data. However, the
alternative of using a constant population would have more
drastic consequences on the distribution. In order to over-
come these problems, new efficient simulation tools need to
be developed and validated, preferably against measures of
drift in experimental systems.

Given the pervasive nature of diminishing returns epis-
tasis for beneficial mutations, it is reasonable to assume that
a general model exists that can explain and predict adap-
tation across different systems. Since epistasis is the result
of specific constraints to biological systems, this implies
that there are common rules in how biological systems work
(in line with the results obtained in Chiu et al. 2012). While
the power law model we tested explains the experimental
results well, the best set of parameters estimated for each
dataset differs in all scenarios. We suggest two different
interpretations for these relatively arbitrary sets of para-
meters. The first hypotheses is that indeed, each species in
each condition will behave as the model predicts, but
without any relation to other species or conditions. This
would strongly decrease our ability to extrapolate
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knowledge obtained in experiments to predict new data. Our
second hypothesis is that, given the complex multi-
dimensional space defined by the model parameters, we
might have only found a local maximum of our score
function. This would mean that there might exist a region of
parameter space that explains all datasets well but that we
have not been able to find it despite our best efforts. As is
common in biology, these two hypotheses are not mutually
exclusive. It is possible that in each dataset, given the
specificities of the species, genotypes, and conditions
selected, the best possible set of parameters that reproduce
the observed behavior is unique to this set. However, some
potentially general set of parameters or parameters combi-
nations might be able to also reproduce the data within
reasonable bounds.

In order to test the predictive power of each model, we
tested whether they could predict the dynamics on unob-
served data. We started with extra data from the LTEE,
where the model predicted an adaptation rate and rate of
fixation within the observed values. While fitness was
generally well predicted, there was a significant over-
estimation of the fixation rate (Fig. 2c). This could be due to
the presence of other types of selection such as frequency-
dependent selection, which our model does not capture and
which have been observed in the later stages of the LTEE
(Good et al. 2017). We also tested if the models could
predict microscopic epistasis from the LTEE. We found that
the power law model captures the overall trend of dimin-
ishing returns for each individual mutation. For the budding
yeast dataset we also tested how good each model was at
predicting the fitness effect of individual mutations. We
found that the power law could only explain 62% of the
observed variation in change in selection coefficient with
background. Since only a few mutations (all gene knock-
outs) were tested, it could be that they are not a repre-
sentative subset of the adaptation experiment.

Previous work has attempted to fit diminishing returns
epistasis patterns in similarly simple models. In particular,
Wiser et al. (2013) found that a power law model fits the
LTEE better than a model with a maximum. Here, we
expand on their analysis and show that the same model that
explains the experimental evolution can also capture the
patterns of microepistasis observed when single mutations
are taken and tested on different backgrounds (Fig. 3).
Moreover, we extend their analysis to other datasets.
Recently, Blanquart and Bataillon (2016) used FGM to
show that it can predict microepistasis in some cases, but
not in others. In a similar manner, Good and Desai (2015)
have analyzed patterns of micro and macroepistasis in the
LTEE and conclude that a two-epoch model is needed to
explain all of the trajectory of the LTEE. Here, we show
that by reformulating the power law model into a commu-
tative model, we do not need two epochs to reasonably

explain the later time points of the experiment with only
information on the first 10,000 generations (Fig. 2c). There
is, however, some biases in the residuals of our prediction
and a recent publication has shown that there is a different
type of dynamics in the latter part of the experiment (Good
et al. 2017). More work is needed to understand how much
we can predict on LTEEs and whether or not we need to
invoke different rules as hundreds of mutations accumulate.

In this work we focused on a simplified formulation of
fitness landscapes. The power law model is effectively one
dimensional on the phenotypic level, which we expect to
represent multiple underlying biological phenotypes con-
tributing to fitness. Multidimensional phenotypic land-
scapes, namely, FGM (Fisher 1930) received a lot of
attention in the literature and is regarded as a standard
evolutionary model (Tenaillon 2014). Although FGM can
explain several patterns in adaptation, here we show that if
we reduce FGM to a comparable simplicity to the power
law, the latter is better at describing experimental data than
the former. Of course, we cannot exclude that other for-
mulations of the model would outperform the power law.
Importantly, FGM predicts that beneficial mutations even-
tually overshoot the optimum phenotype level, becoming
deleterious. In the microscopic epistasis datasets analyzed
here there is no evidence for this sign epistasis.

We note that across many systems there are several
examples of sign epistasis, i.e., of mutations that are both
beneficial and deleterious depending on the genetic back-
ground. Except for FGM, none of our models allows for a
mutation to have a deleterious effect in any background.
This makes them unsuitable to describe populations where
deleterious mutation are expected to fix, such as mutation
accumulation experiments (e.g., Kibota and Lynch 1996). It
is not, however, clear whether we need the full spectrum of
mutations to explain the evolution of populations under
strong positive selection.

To put into perspective how good our predictions are, we
tested the performance of each model using only a portion
of the experimental data. We show that the power law is
able to predict fitness, even with small datasets. Moreover,
we can use data from adaptation experiments (macro-
epistasis) to predict the fitness effects of single mutations
across backgrounds (microepistasis). This might be rele-
vant, for example, when building transgenics using genes
that resulted from evolution experiments.

In this work we found that a phenotype-fitness landscape
shaped like a power law can satisfactorily explain and
predict patterns of adaptation in different microorganisms.
This observation implies that, at least in the laboratory,
microorganisms are very far away from their optimum and
may not reach it at all since with time it is expected that the
fitness landscape might change radically (Blount et al.
2008) or new interactions might emerge (Good et al. 2017).

Power law fitness landscapes and their ability to predict fitness
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