
Continual evolution through coupled fast and
slow feedbacks
Meike T. Wortela,b,c,1 , Han Petersd, Juan A. Bonachelae, and Nils Chr. Stensetha,1

aCentre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway; bOrigins Center, 9747 AG Groningen,
The Netherlands; cInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; dKorteweg de Vries
Institute for Mathematics, University of Amsterdam, 1098 XG Amsterdam, The Netherlands; and eDepartment of Ecology, Evolution, and Natural Resources,
Rutgers University, New Brunswick, NJ 08901

Contributed by Nils Chr. Stenseth, December 24, 2019 (sent for review September 19, 2019; reviewed by Peter A. Abrams and Michael H. Cortez)

Continual evolution describes the unceasing evolution of at least
one trait involving at least one organism. The Red Queen Hypoth-
esis is a specific case in which continual evolution results from
coevolution of at least two species. While microevolutionary stud-
ies have described examples in which evolution does not cease,
understanding which general conditions lead to continual evolu-
tion or to stasis remains a major challenge. In many cases, it is
unclear which experimental features or model assumptions are
necessary for the observed continual evolution to emerge, and
whether the described behavior is robust to variations in the
given setup. Here, we aim to find the minimal set of conditions
under which continual evolution occurs. To this end, we present
a theoretical framework that does not assume any specific func-
tional form and, therefore, can be applied to a wide variety of
systems. Our framework is also general enough to make predic-
tions about both monomorphic and polymorphic populations. We
show that the combination of a fast positive and a slow negative
feedback between environment, population, and evolving traits
causes continual evolution to emerge even from the evolution
of a single evolving trait, provided that the ecological timescale
is sufficiently faster than the timescales of mutation and the
negative feedback. Our approach and results thus contribute to
a deeper understanding of the evolutionary dynamics resulting
from biotic interactions.

ecoevolutionary dynamics | Red Queen | fast–slow feedbacks |
evolutionary modeling

The evolutionary dynamics of a species in a complex ecosys-
tem can be driven by the properties of the species, by the

interaction with coexisting species and their environment, and/or
by external factors. To better understand to what extent the
emerging ecological and evolutionary dynamics are caused by the
species or by (intraspecific or interspecific) biotic interactions, it
is essential to study systems in the absence of any abiotic drivers.
Isolating a system from all abiotic factors may lead to a static
adaptive landscape, where adaptation follows a path toward a
peak in that landscape—reachable or not (1, 2). However, since
a major part of any individual’s environment is typically com-
posed of other (evolving) species, any species’ environment will
normally change even without external abiotic variation, through
both ecological and evolutionary changes. Hence, the result-
ing adaptive landscape is expected to be dynamic, potentially
leading to continual coevolutionary dynamics, where traits are
oscillating or changing continually in a directional manner over
evolutionary time (3).

Continual evolutionary dynamics are evolutionary dynamics
that do not result in stasis, because the evolving traits eventually
show significant changes over time. This means that, although
the evolutionary dynamics could be apparently stable for some
period, eventually sustained fluctuations (i.e., either periodic or
irregular changes over time) will materialize for genotypes and
phenotypes over long timescales. Continual evolutionary dynam-
ics may involve one or more evolving traits and one or more
evolving species and includes both arms race and fluctuating

dynamics. Therefore, these dynamics are more general than Red
Queen (RQ) dynamics, as the latter typically refers to systems of
at least two species, whereas the former includes systems with a
single species.

The RQ dynamics (4) is a concept that has had a major
influence on microevolutionary and macroevolutionary theory.
The analysis of macroevolutionary models has led to the con-
clusion that the emergence of either RQ dynamics or stasis
depends upon the nature of the within-system biotic interac-
tions (5–8). This body of work, however, has not been able
to translate into ecological terms what the conditions for the
emergence of the RQ are, although recent research found that
symmetric competitive interactions are more likely to lead to
stasis (9).

From the microevolutionary perspective, theoretical work has
focused on mechanistic descriptions of specific examples where
the RQ can emerge (3). Theoretical studies of microevolutionary
RQ dynamics mostly use methods based on adaptive dynam-
ics and quantitative genetics (10–16). The adaptive dynamics
approach assumes that the ecological dynamics have reached an
equilibrium before evolution can occur, and studies the attempts
of invading this stationary state of the resident by mutants
(defined as individuals with a value of the adaptive trait that
is slightly deviating from that of the resident). These assump-
tions enable a rigorous theoretical analysis of the system, and
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are often still a good approximation even if those assumptions
are not strictly met. The quantitative genetics approach, on the
other hand, does not require an ecological equilibrium, but also
requires the timescale separation between evolutionary adap-
tation and ecological dynamics. Genetic variation is sometimes
incorporated in the quantitative genetics approach as affecting
the speed of evolution, with the mean trait value affecting the
ecological dynamics (e.g., ref. 17). If the rate of evolutionary
change is very slow, the quantitative genetics approach becomes
similar to adaptive dynamics. Both methods assume that adaptive
traits evolve along a fitness gradient. Following these theoretical
frameworks, studies focusing on predator–prey or host–parasite
systems have been able to reach conclusions about the con-
ditions that increase or decrease the chance of RQ dynamics
under the specific circumstances defined in the study [e.g., fast
adaptation is less likely to lead to RQ dynamics (11), and RQ
dynamics require an intermediate harvesting efficiency of the
prey (10)].

With exceptions [e.g., evolutionary branching models (18)],
most of the work mentioned above constrains the evolving
population to be monomorphic, and therefore there is no guar-
antee that the same examples will lead to RQ dynamics in a
polymorphic setting, which includes coexistence of subpopula-
tions with different trait values. A polymorphic trait distribu-
tion arises easily with asexual reproduction or traits that are
determined by a few loci, but can also arise when assortive
mating develops (see the discussion in ref. 18). Hence, the
conditions that lead to the emergence of the RQ, or, more gen-
erally, continual evolution, in polymorphic populations remain
elusive. Since most evolution experiments concern microorgan-
isms, which are prone to showing polymorphic populations,
this knowledge gap can prevent linking theoretical results to
experimental data. Here, we fill this gap by studying the mech-
anisms leading to continual evolution without constraining the
distribution of phenotypes that may be present in the pop-
ulation, and therefore the emergent continual evolutionary
dynamics do not rely on the assumption of a monomorphic
population. Additionally, we allow for interactions with (pos-
sible abiotic parts of) the environment (19) and for mutations
of small and large effects, which can be expected in such
populations (20–22).

Most of the theoretical microevolutionary RQ studies use
specific functional forms for their analysis, hampering the gen-
eralization of the obtained results. Metaanalyses and reviews
[such as the one by Abrams (23)] can provide some more general
insights, but, since many of these studies use similar equa-
tions, the breadth of their conclusions is still limited. To obtain
general results and a broad understanding of what ecological
interactions can cause evolutionary patterns such as continual
evolution, we need as general models as possible. Here, we
aim at extending the theoretical understanding of the condi-
tions that lead to either continual evolution or stasis. For this
purpose, we use a general model with a reduced set of assump-
tions regarding the form of the model functions. We find that
a system with slow and fast feedback interactions in a poly-
morphic setting exhibits continual evolutionary dynamics in the
presence of a timescale separation between the ecological and
evolutionary dynamics, regardless of the size or effect of muta-
tions. Note that the separation of timescales can result from
either ecological processes that are much faster than evolution-
ary ones or from differential rates for different evolutionary
processes.

Generic Model and Emerging Ecoevolutionary Dynamics
General Model Description. We model a population with genetic
variation using differential equations that allow for mutations
that are not constrained to be infinitesimal changes in the
trait value. Note that, although, for simplicity, we focus on

one trait for most of this study, our framework for continual
evolution is generalizable to any number of traits. In order
to focus our argument, we use a general model of a popu-
lation density distribution u(x , t) over the trait space x and
the distribution of environmental factors (i.e., abiotic factors
and nonevolving species here, but the coevolving species in
a RQ scenario), ϕ(y , t), over the space of values for the
environment y ,

∂

∂t
u(x , t) = u(x , t) · f (u,ϕ) + εm · g(u)

∂

∂t
ϕ(y , t) = εe · h(u,ϕ).

[1]

In this general case, the evolving trait is not specified, and
therefore its trait space could have any shape and dimen-
sionality (i.e., any number of evolving traits). Distinct peaks
for u(x , t) in the trait space, for example, represent a poly-
morphic trait distribution within a species if there can be
exchange of individuals between these distinct peaks, or differ-
ent species if there is no exchange between peaks (or very low
exchange, in a macroevolutionary setting). Similarly, the envi-
ronment space, y , which consists of all nonevolving parts of
the system, could have any form. The functional f describes
the growth of the population, which can depend on the popula-
tion density distribution u(x , t) as well as on the environmental
factors ϕ(y , t). The functional g describes the change in the
population density due to mutations, which could reasonably
be represented by a diffusion process (9). This change due to
mutations is modeled in an unbiased manner, with the bene-
fits of a mutation resulting from the relative performance of
its associated population. The functional h encodes the rate of
change in environmental factors, which can again depend on
u(x , t) and ϕ(y , t). Timescale differences between growth, envi-
ronmental factors, and mutations are represented with εe and
εm . More subtle differences in timescales can be incorporated
through the individual parameters, but the timescale differ-
ences captured in the εe and εm suffice to derive the results in
this paper.

Continual Evolutionary Dynamics and the Role of Feedbacks. In
this paper, we show the conditions that guarantee contin-
ual evolutionary dynamics in the generic model above, Eq. 1.
These conditions include a fast positive feedback and a slow
negative feedback. The former is incorporated in the model
through a positive effect of the trait density u on the popu-
lation growth f (essentially, an Allee effect). For the latter,
the negative effect is implemented through how the dynam-
ics of the environmental factors depend on the population
density (i.e., how the functional h depends on u) and how
environmental factors affect the growth of the population (i.e.,
how ϕ affects f ). The negative feedback is either a much
slower process or a process that only affects population growth
once it has changed by a large amount; in other words, it
occurs within a much longer time frame, which can be encoded
through εe << 1.

A biological example of the slow negative feedback could be
a predator–prey interaction where the generation time of the
predator is much longer than that of the prey, and where the
predator targets preferentially a specific prey phenotype or prey
type [e.g., bears preferring large salmon (24) or zooplankton
preferring phytoplankton with a certain nitrogen-to-phosphorus
ratio (16)]. For the former example (predator that feeds on
prey with a specific size), the evolving trait would be the body
size, and, therefore, u would indicate the density of prey with
a specific size value, x ; the environment space y would repre-
sent the preference of predators for each different size, and,
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therefore, the function h would represent the growth of preda-
tors which depends on the density of their specific target prey.
Prey growth is represented by function f , which incorporates the
negative effect caused by (their specific) predators, but also a
positive effect due to, for example, cooperation in defense or
feeding (when the evolving population is foraging on a certain
vegetation area with sufficient resources, the more individuals
forage in the same place, the better they are protected against
predation). Evolutionary changes in size would be encoded in
the g function.

A predator–prey system with only a single evolving trait and
with positive and negative feedbacks could be a predator that
adapts not to a prey trait but to the prey population size, as in
adaptive foraging (25). The positive feedback originates from an
increase in prey population size that leads to decreased selection
on a foraging trait of the predator, leading to a stronger increase
in prey population size. The slower but stronger negative feed-
back results from a very high prey population that, through
density dependence (e.g., intraspecific competition), leads to a
rapid decline of the prey population. Here, x is the combina-
tion of the foraging trait of the predator and the prey population
size, such that the positive feedback is contained in this vari-
able, while only the foraging trait of the predator evolves. Then
u would indicate the density of predators with specific foraging
traits and the prey population size. The environment y consists of
the factor that causes the prey collapse, for example, the resource
level for the prey. The function h describes the change in prey
resource level, and the function f describes both the growth of
the predator population (which depends on the foraging trait and
the prey population size) and the change of prey population size
(which depends on the predators and the prey resource level, ϕ).

Another system that is a potential example is a species with
a complex life cycle that switches to a different habitat at a
specific age (e.g., ref. 26). In this case, the trait space x is a
one-dimensional space representing the age at which the indi-
vidual moves to the second habitat; the environment space y
consists of resource densities at the two different habitats; the
function h signifies how the resource densities in both habitats
depend on 1) the density of the species and 2) the distribution
of ages at which the species changes habitats: As the switching
age increases, the risk of depleting resources in the current habi-
tat increases. The function f signifies the growth of the species,
which depends on the distribution of switching ages and resource
density. This function includes a positive effect provided by more
individuals shifting at the same time (e.g., increased protection
or reduced founder effect), and the negative effect of competi-
tion for resources. The evolution of the switching age is encoded
by the g function. More examples of the fast positive and slow
negative feedbacks are listed in Box 1.

We use the slow negative feedback in the proofs below to
ensure that, when one type is abundant, over time other types
will grow faster, and there will be trait changes and not an
equilibrium at one extreme of the trait values. The fast posi-
tive feedback translates into trait changes from the vicinity of
one extreme to the other that occur quickly enough, ensuring
that the system does not relax to an equilibrium at an inter-
mediate trait value or an equilibrium with a coexistence of two
subpopulations with more extreme trait values. In some systems,
it will be unlikely that the system goes to such an equilibrium,
and, therefore, the fast positive feedback will not be required in
every model.

Results
General Conditions for Continual Dynamics. We now prove the exis-
tence of continual evolution for the generic model represented
by Eq. 1. The main idea of the proof holds independently from
context, and works in arbitrary trait spaces, both continuous and
discrete.

Box 1: Nonexhaustive list of processes that could potentially
lead to the type of fast positive and slow negative feedbacks
considered by our framework. These feedbacks operate at
the level of the trait; that is, after an increase of the number
of individuals with a certain trait value, a slow negative feed-
back leads to a negative effect on the selection for that trait
value over time. Note that “fast” and “slow” refer to the rela-
tive rates of the respective ecological processes, also relative
to the evolution of the trait of interest.

Fast Positive Feedbacks.

• Increased mating opportunities in larger groups of
individuals with similar trait values.

• Increased fitness of offspring when mating occurs
between individuals with trait values approaching the
same extremal trait.

• Increased survival/protection from predation when form-
ing groups with individuals of similar trait value.

Slow Negative Feedbacks.

• Microbial byproduct formation that inhibits growth for
cells with a similar trait value when their population
density reaches high concentrations.

• Viruses that evolve as a result of a vaccination campaign
(devised seasonally due to the virulence of the virus the
previous season).

• Slowly evolving predator/parasite that specializes on a
specific prey/host trait value.

• Prey/host population changes in response to a preda-
tor/parasite population with a specific trait value.

We assume the existence of one-dimensional projections
u 7→M (u) and ϕ 7→Φ(ϕ), both taking real values, and focus on
studying the evolutionary dynamics in the (M , Φ) plane. In gen-
eral, it will not be possible to determine the values of ∂M /∂t
and ∂Φ/∂t without knowing u and ϕ. However, to prove contin-
ual evolution, one merely needs to know how the signs of the two
derivatives behave in suitable regions in the (M , Φ) plane.

In the most general scenario, there is no specification on
the projections M (u) and Φ(ϕ), nor is there any information
on the dynamics in (u,ϕ) coordinates. The assumptions refer
directly to the signs of ∂M /∂t and ∂Φ/∂t in different parts of
the dynamical plane. In this scenario, there is no reference to
how these conditions can be obtained from knowledge of the
dynamics in the (u,ϕ) coordinates; the conditions are taken
as given.

A fast positive feedback is modeled directly, by assuming that
a sufficiently large value of M implies that ∂M /∂t is positive
and, similarly, that a sufficiently small value of M implies that
∂M /∂t is negative. We also assume the existence of a slowly
reacting, negative feedback, modeled indirectly via Φ: for large
M , the external factor Φ will slowly increase, and, for sufficiently
large Φ, the value of M will slowly decrease (this implies a feed-
back loop through the environment as in the biological examples
above). Similar assumptions are stated for small M and small
Φ. While the value of Φ adapts to the value of M very slowly,
we assume that the negative feedback eventually dominates the
positive feedback: for sufficiently large Φ, the rate ∂M /∂t is
negative, regardless of the value of M .

These feedback assumptions are stated more formally in Box
2, conditions PF1, PF2, NF1, and NF2. The following result,
which guarantees continual evolution, is proved in SI Appendix,
section S1 under these feedback assumptions, provided there
is a sufficiently strong separation of timescales between the
ecological dynamics in M , on the one hand, and between the
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Box 2: Assumptions on the positive and negative feed-
backs required for the proof.
We assume that there exist values 0<Φ−<Φ+< 1 such
that the rates of change due to ecology only satisfy the
following feedback conditions:

• Positive feedback, assumption 1 (PF1): When Φ<Φ+,
we assume that ∂M /∂t > 0 whenever M is unequal to,
but sufficiently close to, 1, and, similarly:

• Positive feedback, assumption 2 (PF2): When Φ>Φ−,
we assume that ∂M /∂t < 0 whenever M is unequal to,
but sufficiently close to, 0.

• Negative feedback, assumption 1 (NF1): When Φ≥Φ+

and M < 1, we assume that ∂M /∂t < 0. When M = 1
and Φ≤Φ+, we assume that ∂Φ/∂t > 0, and, similarly:

• Negative feedback, assumption 2 (NF2): When Φ≤
Φ− and M > 0, we assume that ∂M /∂t > 0. When
M = 0 and Φ≥Φ−, we assume that ∂Φ/∂t < 0.

Note that, for simplicity, this list and the proofs in SI
Appendix use a normalized version of M and Φ, but they
could more generally be phrased in terms of an M and Φ
within any arbitrary (but constrained) range.

ecological dynamics in Φ and the effects of mutations, on the
other hand.

Theorem. If the feedback assumptions above are satisfied, then
there exist initial values (u,ϕ) for which M (t) will fluctuate indef-
initely between values arbitrarily close to both a maximum and a
minimum value.

Let us emphasize that, when the spaces for the variable u
or ϕ (i.e., x or y , respectively) are multidimensional, there is
no reason to expect strictly periodic dynamics. When x and y
are one-dimensional, we expect periodic dynamics due to the
Poincaré–Bendixson theorem, but, as we show below, higher-
dimensional x and y can also show nonperiodic continual evolu-
tion (see Continual Dynamics in the Case of Two Evolving Traits:
An Example).

Fig. 1 illustrates the emerging behavior in the (M , Φ) plane.
When M is sufficiently close to (but, due to mutations, never
equal to) its maximum value, Φ increases until it gets very close
to a sufficiently large value Φ+ (step 1). When Φ is near Φ+,
the value of M decreases due to the dominant negative feed-
back (step 2). Initially, the decrease in M is slow, and, during
that time, Φ continues to increase. However, because the dynam-
ics of M are much faster than the dynamics of Φ, eventually,
M decreases very quickly toward its minimum value while Φ
remains effectively constant (step 3). After a limited amount of
time, M eventually reaches a value arbitrarily close to its mini-
mum, and Φ decreases (step 4). Due to the timescale separation
assumption, the decrease in Φ is arbitrarily small in the time
interval in which M decreases, and hence the decrease in M is
not prevented by Φ. The symmetry in the feedback conditions
(i.e., the fact that PF1 and NF1 can be obtained by replacing
M → 1−M and Φ→ 1−Φ in PF2 and NF2) guarantees that the
process repeats itself.

Note that the simple formulation of the negative feedback
conditions (NF1 and NF2) is not realistic on the whole (u,ϕ)
space. For example, when the population density u is concen-
trated around a single trait, one cannot expect any dynamics due
to ecology, regardless of Φ, because, near such a single trait, the
rate of change ∂M /∂t is governed almost entirely by mutations,
which, by assumption, act at a much slower timescale. Also, in the
proof sketched above, it is essential that the time interval needed
for M to decrease to a value close to its minimum is independent
of the slower timescale. It is sufficient, however, if the feedback
conditions hold in the region of (u,ϕ) space reached by the

dynamics. In the more explicit case discussed below, we exploit
this observation to obtain more realistic feedback assumptions.

Continual Dynamics with a Single Evolving Trait. Let us discuss a
more explicit case involving a continuous one-dimensional trait
space, x (representing, for example, a continuous trait such as
length), and a single environmental factor, ϕ. For this case, we
will use as the one-dimensional projection M (u) the average
trait value,

M (u) =

∫
x
x · u(x , t)∫
x
u(x , t)

. [2]

As explained in SI Appendix, section S1, suitable feedback con-
ditions in the (u,ϕ) space determine, to a large extent, the
dynamical behavior in the (M ,ϕ) plane. While it will gener-
ally not be possible to deduce ∂M /∂t and ∂ϕ/∂t from only
knowing M and ϕ, it will be possible to determine the signs of
these rates in large regions of the plane. As discussed in the
previous section, this can be sufficient for deducing continual
evolution.

As a practical example, let us consider the logistic growth
model, that is, that the growth function in Eq. 1 is given by

f (u,ϕ) =µ(u,ϕ)

(
1−

∫
u(x ′, t)dx ′

K

)
− d ,

where d represents a mortality rate, K is the carrying capacity,
and the growth rate µ depends on the populations density u and
environmental factor ϕ. The positive feedback is incorporated
directly through the effect of u on the growth rate µ, while the
negative feedback is incorporated indirectly through the effect of
u on ϕ and the (opposite) effect of ϕ on µ. Fig. 2 illustrates the
indirect negative feedback.

Population density projection ( )

En
vi

ro
nm

en
ta

l p
ro

je
ct

io
n 

φ

+

-
d /dt positive

d /dt negative

1

2

3
4

Fig. 1. Sketch of emerging behavior in a one-dimensional projection: the
dynamics in the (M(u), Φ(ϕ)) plane, where M(u) is a one-dimensional pro-
jection from the population density space and Φ(ϕ) is a one-dimensional
projection from the environmental space. Because of the assumptions on
the sign of the derivatives of these projections (red arrows), there will be
continual dynamics (green arrows). The numbers correspond to the steps of
the dynamics as described in the main text.
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slow
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feedback

one species

one or several species
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Average trait value 
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Fig. 2. A single evolving trait with a range of possible trait values. One
species has a single evolving trait, with a phenotype ranging from x = 0 to
x = 1. Dashed lines indicate the negative feedback, which originates from
the interaction with the environment ϕ (which can be a species, an abi-
otic factor, or a property of the ecosystem). Thicker lines denote a stronger
interaction with the environment, and therefore a stronger negative feed-
back. Inset illustrates that M is calculated by taking the average trait value
in the population, thus weighing the trait values by the density of that
phenotype (Eq. 2).

The logistic equation is a simplistic model, but it helps repre-
sent biological examples for which continual evolution can occur.
For instance, a plausible biological example would be a species
whose growth is determined by a trait that affects the environ-
ment (e.g., food choice), while the carrying capacity and death
rate are determined by other factors (e.g., space and predation,
respectively). This trait could have a positive effect on growth
when the resource is spatially localized.

As we show in SI Appendix, section S1, given the mean trait
value M (Eq. 2), the sign of ∂M /∂t can be determined from
the values of M and ϕ when µ is assumed to be either constant
or strictly monotonic for all relevant parameters. Therefore,
under the corresponding feedback assumptions and timescale
separation assumptions, the logistic model can satisfy continual
evolutionary dynamics.

To simulate this example numerically, we split the popu-
lation into discrete groups with similar trait values. Fig. 3A
shows that forcing the absence of evolution leads to extinc-
tion of all but one group; fast evolution (i.e., large εe) leads to
an equilibrium, that is, to a static u(x , t) that shows one sin-
gle, well-defined mean value M ; slow evolution, on the other
hand, leads to continual evolutionary fluctuations where the
average trait value approaches one of the two extremal values
in an alternating way. Fig. 3B shows the distribution of pheno-
types over time for the latter case. The population is centered
around one of the extreme trait values most of the time, but
intermediate phenotypes are also seen in the transition periods.
Fig. 3C shows that the diversity of phenotypes, measured by the
Shannon index (SI Appendix, section S2), peaks at shifts of the
mean trait value due to the flattening of u during the transition
period, which increases the standard deviation of the distribution
(see ref. 27).

Conditions for Continual Dynamics in the Case of a Single Evolving
Trait Consisting of Two Phenotypes. To understand, in more detail,
the role of a fast positive and a slow negative feedback in the
emergence of the evolutionary oscillations, we reduced the sys-
tem to a simpler version. In this case, the trait space x consists

of only two points, A and B , representing a trait with only two
main values (i.e., only two phenotypes are possible). One of the
phenotypes is interacting with an external factor, and the other
one either interacts less strongly or not at all (Fig. 4A). This
representation reflects a biological system where a trait value
is either present or not, for example, a parasite choosing one
host type over another. When the trait also affects mate choice
(for example, because they will be located near the same host),
the trait shows a positive feedback. The slow negative feedback
could result from the fact that one of the hosts can develop
defenses.

We analyzed this system, where individuals with both pheno-
types (uA and uB ) and the environmental factors (ϕ) change
over time. Phenotype A could represent the parasite phenotype
choosing the host that can develop defenses; the (less) interact-
ing phenotype B could represent the phenotype choosing the
host that cannot develop defenses, and the external factors ϕ
would therefore refer to the amount of defense (for the host that
can develop defenses). Thus, ϕ is positively affected by uA and
negatively affected by uB ,

d

dt
uA(t) = uA · fA(uA, uB ,ϕ) + εm ·m(uA, uB )

d

dt
uB (t) = uB · fB (uA, uB ,ϕ)− εm ·m(uA, uB )

dϕ

dt
= εe · h(uA, uB ,ϕ). [3]

This set of equations directly results from Eq. 1 by splitting
the population density distribution u(x , t) into two subpopula-
tions: uA (for individuals showing trait value A, i.e., phenotype
A) and uB . Because the only relevant mutations in this case
are mutations that change the phenotype from A to B and vice
versa, the evolution function g can be simplified into a func-
tion m that describes the net mutations from one trait value
to the other (hence the opposite sign). The dependency of
the functions fA and fB on the subpopulations uA and uB is
assumed to cause a positive feedback (see conditions PF1 and
PF2 in Box 2), while the dependency on ϕ of the functions
fA, fB , and h generate a negative feedback, given by condi-
tions NF1 and NF2, assumed to eventually dominate over the
positive feedback. In SI Appendix, section S1, we prove that,
under the additional, mild “unique stable value assumptions”
(USV1 and USV2), sufficiently small εm and εe lead to the emer-
gence of continual evolution. It is both natural and necessary to
assume that the effect of evolution is relatively small (but never
zero), as large values of εm typically cause convergence to an
equilibrium. The detailed proof can be found in SI Appendix,
section S1.

The idea of the proof for a variable population size is illus-
trated in Fig. 4B. The diagrams show an approximation of the
dynamics in the (uA, uB ) phase planes. This approximation is
without the mutation term, but, since mutations are rare (in
our case the mutation term is small), the actual phase plane
will not be very different. The assumptions above guarantee that
the phase plane for intermediate ϕ resemble the one shown in
Fig. 4 B, b1. When the environmental strength ϕ is interme-
diate, there are four intersections of the lines duA/dt = 0 and
duB/dt = 0, that is, four equilibria, where one is repelling (the
origin), another one is a saddle point (the point in the middle),
and the other two are attractors. The nature of the equilibria can
be seen from the sign of the derivatives. Depending on the ini-
tial value for uA and uB , the system converges to an attractor
near the uA axis or the uB axis. When the system is near the for-
mer, uB will be almost 0, and, since uA has a positive effect on ϕ,
ϕ will increase. The change in ϕ will, in turn, change the phase
plane diagram, and the intersection near the uA axis will become
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Fig. 3. Example of evolutionary dynamics with a single evolving trait: behavior of a system following the outline of Fig. 2. (A) System behavior for no
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fluctuations. Simulation is of 100 phenotypes equally distributed over the range of trait values; see SI Appendix, section S2 for the exact equations and
parameter values.

repelling (Fig. 4 B, b2). When ϕ is high enough, there will be
only one attracting intersection (near the uB axis), and the sys-
tem will approach that state. As uB increases (and uA decreases),
ϕ decreases, but, since the fast–slow condition guarantees that
the dynamics in ϕ are slower than in uA and uB , the system will
come close to the intersection near the uB axis before ϕ changes
significantly. When ϕ does change, the system will pass by the
phase plane depicted in Fig. 4 B, b1 (figure for intermediate ϕ),
but now ϕ will continue to decrease, and the intersection near

the uB axis will eventually disappear (Fig. 4 B, b3). This cycle will
continue indefinitely, giving rise to continual evolution.

The proof of continual dynamics above only required some
restrictions on the functions f , m , and h , and did not use any
functional forms. However, to give an indication of the expected
dynamics, we constructed an example that follows these restric-
tions (see Fig. 5 and SI Appendix, section S2 for details and
additional example). Our proof states that stable continual evo-
lutionary cycles will emerge for almost all initial values if εe and

A

B

d A/dt = 0

d A/dt > 0

d B/dt = 0

d B/dt > 0

φ intermediate

lower φ

higher φ

Phenotype A Phenotype Bmutations

fast positive feedback

environmental factor φ

slow
negative
feedback

A Bone species

one or several species or abiotic property

b1)
b2)

b3)

++

-

++

-

Fig. 4. Continual evolution with a single evolving trait consisting of two phenotypes. (A) A species with only two possible phenotypes, A and B, which both
show fast positive feedbacks on their own phenotype. The arrows signify the different processes/feedbacks, with thickness representing the strength of the
interaction, and the number of dashes representing the timescale. Continuous arrows are the fast positive feedback. Phenotype A shows a strong negative
feedback on an external factor ϕ (thick dashed line), while phenotype B shows a weaker (or nonexistent), negative feedback (thin dashed line); this feedback
could result from the phenotype having a positive effect on the environment and the environment having a negative effect on the phenotype (as in the
figure), or vice versa. Mutations are represented with the thinnest and most spaced dashed lines, because they are the weakest and slowest interactions;
they are only possible between the two phenotypes, although rates are low. (B) Approximate phase planes. Block arrows and colored areas show the sign
of the derivatives. Blue and red lines show the isoclines where the derivatives are 0. The isoclines for duA/dt = 0 and duB/dt = 0 cross as shown, because
the fast positive feedback ensures that the growth of the subpopulation uB decreases faster with increasing uA than the growth of the subpopulation uA,
and vice versa. Black dashed lines show the direction of change over time. Different phase planes with black solid lines above show how the phase planes
will change over time.
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Fig. 5. Example of evolutionary dynamics with a single evolving trait con-
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outline of Fig. 4A. Phase plane diagram of the density of individuals with
phenotype A and environment ϕ shows the possible system behavior for
different values for the relative timescales of population dynamics, feed-
backs, and mutation (evo). Slow feedback and mutations (εm = 0.00005 and
εe = 0.0005) lead to continual cyclic evolutionary dynamics (red lines and
Top Inset), almost independent of initial conditions (two initial conditions
shown). With fast feedback and mutations (εm = 0.01 and εe = 0.1), an equi-
librium is reached (gray line and Middle Inset). No mutation (εm = 0 and
εe = 0.01) leads to the extinction of one of the traits (black dashed line and
Bottom Inset). See SI Appendix, section S2 for equations and parameter val-
ues. Note that Continual evo refers to continual evolution, whereas Fast evo
and No evo refer to fast and no mutations, respectively.

εm are chosen to be sufficiently small. Fig. 5 shows that this is the
case, by using two different initial states. On the other hand, a
high mutation rate and/or a fast feedback lead to a stable equi-
librium (i.e., stasis), whereas the absence of mutations causes one
of the two phenotypes to go extinct.

Continual Dynamics in the Case of Two Evolving Traits: An Example.
In natural systems, multiple traits determine the fitness of an
individual. An extension of our model to more traits can thus
provide a more realistic picture of the dynamics expected in nat-
ural populations. We extended the system to a species with two
evolving traits, each associated with a different environmental
factor through a negative feedback. In other words, the trait
space x is now a two-dimensional space and, since both traits
are associated with a different environmental factor, the space
of external factors y is also a two-dimensional space. A biolog-
ical example would be a species having two of the feedbacks
mentioned before (e.g., both a habitat shift and size-dependent
interaction with a predator).

For the sake of simplicity, we discretized the trait space, and
therefore the number of possible phenotypes is now the prod-
uct of the number of possible values for each of the traits. In the
simplest case, which we only use for a schematic representation
of the population, there are only two values per trait, thus defin-
ing four possible phenotypes in the population (Fig. 6A): high
susceptibility for both feedbacks (A1 in that figure), low suscep-
tibility for both feedbacks (B2), and high susceptibility for one
and low for the other feedback (A2 and B1). For our simula-

tions, we extended the system to eight possible values per trait,
and therefore 64 possible phenotypes in total. Our results show
that this system can lead to continual evolution. Interestingly,
the emerging evolutionary fluctuations generally become irreg-
ular (in Fig. 6B, shown through the mean trait value M for each
trait of the population). Moreover, looking at the change of the
diversity index over time, we can conclude that there is no fixed
period in the dynamics (Fig. 6C). Based on the example with
two traits, we do not expect a natural system to come back to
exactly the same state recurrently (i.e., to show periodic dynam-
ics). Moreover, while we cannot prove that/whether there is a
projection to one-dimensional M and Φ, our simulations indicate
that the combination of the feedbacks proposed here still induces
continual large fluctuations. See SI Appendix, section S2 for
more details.

Discussion
We have shown that, when allowing for phenotypic variation in
the population, a simple motif of fast positive and slow (but even-
tually dominant) negative feedbacks leads to continual evolution
regardless of whether mutations have small or large effects. Our
results are general because the evolutionary dynamics do not
depend on specific equations, parameter values, or dependencies
between traits (trade-offs). Our results are also robust to small
temporal change in the population density distribution (e.g.,
migration, random effects). Previous work has shown that con-
tinual evolution can be found in specific (and typically simple)
models. In the literature, generality is typically claimed by show-
ing that the reported results remain for a range of parameter
values or different equations (11, 28). Here, we avoided the use
of specific equations and parameter values to obtain truly general
results that are robust across parameter values and functional
forms. On the other hand, previous examples that have avoided
using specific functional forms to explain some aspect of contin-
ual evolution required additional restrictions on the models. For
example, Dercole et al. (28) focused on predator–prey interac-
tions, Nordbotten and Stenseth (9) considered bilinear species
interactions (i.e., interactions between species that are linear in
both species’ densities, like in the Lotka–Volterra model), and
Bonachela et al. (27) considered a fixed set of three species that
interact, forming a nontransitive cycle. Our proofs are accompa-
nied by specific examples for the sake of concreteness, but our
results are not restricted to those examples.

In all our examples, continual evolutionary dynamics stem
from switching between multiple ecological attractors that are
nodes [ecogenetically driven RQ dynamics (29)]. Our conclu-
sions remain the same when these attractors are limit cycles
instead. An example of this type of dynamics is given in Khibnik
and Kondrashov’s (29) figure 4. Interestingly, including a poly-
morphic population in their example eliminates the evolutionary
oscillations, and only ecological cycles remain, that is, ecologi-
cally driven RQ dynamics (fluctuations in traits that are fast and
small in amplitude and only follow ecological population density
oscillations). However, when we made their negative feedback
slower by decreasing the parameters for the predator dynamics
10-fold (their parameters r4 and γ), ecogenetically driven RQ
dynamics were retrieved, which supports the applicability of our
claims to existing examples.

Some of our results are in line with and extend previous con-
clusions. The dynamics of continual evolution are very similar to
microevolutionary RQ dynamics; the difference is that continual
evolution does not require coevolution. Khibnik and Kondrashov
(29) mention that RQ dynamics with a single evolving trait are
possible when the dynamics are ecologically driven (the traits fol-
low ecological dynamics), or ecogenetically driven and switching
between two different ecological attractors. Continual evolution
of a single trait might be quite prevalent, and examples include
predator–prey systems in which the prey evolves but the preda-
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tor does not (or evolves much more slowly, as might be relatively
common; see, e.g., ref. 30) and contest competition (20). More-
over, our case of a single evolving trait with two phenotypes
reproduces previous results by Mougi and Iwasa (11) showing
that fast adaptation is less likely to lead to RQ dynamics. In
Bonachela et al. (27), we also found that biotic drivers that
respond too fast to the environment do not lead to RQ dynam-
ics, and, similarly to that paper, the dynamics in this work are
not linked to population density fluctuations (Fig. 3A). Also, as
observed before (e.g., ref. 27), we show, for a one-dimensional
trait space, that evolution should not be too slow relative to
the negative feedback, and that ecology and evolution have to
interact to guarantee continual dynamics. The average popula-
tion trait has to change drastically while the negative feedback
changes relatively little. If a trait evolved gradually, evolution
should not be much slower than the dynamics of the feedback,
or otherwise the feedback would “catch up” with the average
population trait while this average is near the equilibrium value.
An example of such a kind of dynamics could be found in
predator–prey systems with a slowly evolving predator [due to,
e.g., generation times that are much longer for the predator than
for the prey, like in the laboratory system of an algae and a rotifer
(31)]. In these cases, nonoptimal predator phenotypes might stay
in the population and not go extinct. Thus, the species does not
need de novo mutations for continual evolution to emerge, as
the trait space can be explored through selection and recombi-
nation. This type of RQ dynamics where the traits stay in the
population are more common in higher organisms. Faster evolu-
tionary change through mutations might also occur when species
are regularly exposed to different environments and evolve
adaptability (32, 33).

We included the possibility of polymorphism (often left out
of RQ studies, typically focused on cycling monomorphic pop-
ulations), which can have a pronounced effect on the results.
As shown in SI Appendix, section 2, existing examples of mod-
els showing RQ dynamics can lose these evolutionary oscillations
when the more general setting of a polymorphic population is
considered. Even when the original models do not seem to be
directly linked to the motif described in this paper, including our
fast positive–slow negative feedback combination leads to recov-
ering continual evolution. This is the case for models such as the
one in Mougi and Iwasa (11), where the RQ dynamics remain

when polymorphism is introduced but become ecologically driven
(i.e., evolution just follows the population’s ecological predator–
prey cycles). Other cases that do include polymorphic populations
are the stochastic model by Dieckmann et al. (10); models of
evolutionary branching and extinction using adaptive dynamics
(summarized in ref. 18); and a Lotka–Volterra predator–prey
model with a polymorphic population that, similarly to our results,
shows examples of RQ dynamics (34).

Our results are an important addition for linking theoretical
to experimental observations of evolutionary dynamics. Collect-
ing evidence of continual evolution from natural systems is a
difficult task (23), and, in experiments, the need for long-term
measurements is a problem. Experiments show the effect of evo-
lution on predator–prey dynamics (e.g., ref. 35), with at least one
suggesting RQ dynamics (11), but, due to the limited measure-
ment time, it cannot be excluded that the cycles will eventually
dampen. On the other hand, there is an increase in the num-
ber of long-term adaptation experiments, but these are usually in
bacterial systems, whereas most of the modeling has focused on
sexually reproducing predator–prey communities. Here, micro-
bial systems are included by allowing for polymorphism and
larger mutation effect sizes. In bacterial systems, polymorphic
populations are common even under reasonably constant con-
ditions, as recently shown in the long-term evolution experiment
with Escherichia coli (36). A polymorphic trait distribution might
result from density-dependent dynamics, as shown theoretically
in a chemostat (37).

We see several interesting directions for further research.
First, we show that, under specific assumptions, we can guaran-
tee the emergence of continual evolution. It would be interesting
to investigate whether systems that do not follow some of these
assumptions (e.g., fast negative feedbacks, no positive feedback,
not enough timescale separation) can be proven to lead to sta-
sis. Second, the methods used in this paper with a polymorphic
population to link the ecological and evolutionary timescales
could be combined with individual-based models (26). Third,
our results are limited to only one evolving species, although
the feedbacks we describe could come from another evolving
species or be a result of a more complex ecosystem. A next
step would thus be extending our study to more than one evolv-
ing species. Fourth, our results can be extended to systems with
nonsymmetric feedback assumptions and systems where the
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negative feedback does not operate through an environmental
factor, such as in contest competition (21, 38). Finally, the results
in this paper are constrained to microevolutionary dynamics, but
the general model (Eq. 1) allows for extension to macroevolu-
tionary phenomena. In this respect, our results are in line with
the results in Doebeli and Ispolatov (39), which show that most
coevolutionary dynamics are found with intermediate diversity,
for a fixed phenotypic space. Here we see that, if diversification
emerges (and, therefore, a phenotypically polymorphic popula-
tion that fills more niches), the coevolutionary dynamics cease
(SI Appendix, Fig. S3).

In conclusion, our general framework shows, without con-
straining functional forms or phenotypic diversity within the
system, that a fast positive feedback combined with a slow

negative feedback leads to continual dynamics if there is enough
separation between the timescales involved. By doing so, we have
improved the understanding of continual evolution and coevolu-
tion in a large class of systems. Importantly, our general frame-
work may be used to study and predict evolutionary dynamics
without knowledge of the exact equations describing the system,
and thus assess what likely happens and has happened in nature.
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