
Trends
A simple analogy between learning and
evolution is common and intuitive. But
recently, work demonstrating a deeper
unification has been expanding rapidly.

Formal equivalences have been shown
between learning and evolution in sev-
eral different scenarios, including:
selection in asexual and sexual popula-
tions with Bayesian learning, the evolu-
tion of genotype–phenotype maps with
correlation learning, evolving gene reg-
ulation networks with neural network
learning, and the evolution of ecological
relationships with distributed memory
models.

This unification suggests that evolution
can learn in more sophisticated ways
than previously realised and offers new
theoretical approaches to tackling evo-
lutionary puzzles such as the evolution
of evolvability, the evolution of ecologi-
cal organisations, and the evolution of
Darwinian individuality.
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How Can Evolution Learn?
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The theory of evolution links random variation and selection to incremental
adaptation. In a different intellectual domain, learning theory links incremental
adaptation (e.g., from positive and/or negative reinforcement) to intelligent
behaviour. Specifically, learning theory explains how incremental adaptation
can acquire knowledge from past experience and use it to direct future behav-
iours toward favourable outcomes. Until recently such cognitive learning
seemed irrelevant to the ‘uninformed’ process of evolution. In our opinion,
however, new results formally linking evolutionary processes to the principles
of learning might provide solutions to several evolutionary puzzles – the evo-
lution of evolvability, the evolution of ecological organisation, and evolutionary
transitions in individuality. If so, the ability for evolution to learn might explain
how it produces such apparently intelligent designs.

Learning and Evolution
New insights and new ways of understanding are often provided by analogies. Analogous
reasoning is regarded as a core faculty of human cognition [1], and necessary for complex
abstract causal reasoning [2]. In biology, analogy is sometimes considered to be the poor cousin
of homology – similar, but not really the same. But in science more generally, analogies can be
founded on perfect equivalences, for example, mathematical isomorphisms or algorithmic
equivalence, thus enabling the transfer of ready-made results from one system or discipline
to another, for example, between quasispecies theory and population genetics [3,4], electro-
magnetic fields and hydrodynamics [5], and magnetism and neural networks [6]. The previously
casual analogy between learning systems and evolution by natural selection has recently been
deepened to a level where such transfer can begin.

How Intelligent is Evolution?
Evolution is sometimes likened to an active problem solver, seeking out ingenious solutions to
difficult environmental challenges. The solutions discovered by evolution can certainly appear
ingenious. Mechanistically, however, there appear to be good reasons to doubt that cognitive
problem solving and evolution are equivalent in any real sense. For example, cognitive problem
solving can utilise past knowledge about a problem domain to ‘anticipate’ future outcomes and
direct exploration of solutions, whereas evolutionary exploration is myopic and dependent on
undirected variation. Intelligent problem solvers can also form high-level or modular represen-
tations of a problem, making it easier to reuse partial solutions in new contexts, whereas
evolution merely plods on, filtering random replication errors.

Yet, this is not the whole story. Whilst genetic variation might be undirected, the pattern of
phenotypic variation is shaped and biased by the processes of development. Moreover, the
organisation of developmental processes (from gene regulatory interactions to morphological
body plans) is itself, in large part, a product of past evolution. This affords the possibility that
random genetic changes might produce phenotypic changes that are ‘informed’ by past
selection [7–9,38,86–88]. This can direct phenotypic variation into different or higher-level
morphological dimensions and/or modularise phenotypic features and redeploy them in new
contexts [8,10,11,38,86–88]. The question thus arises: is evolution by natural selection (e.g., by
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Glossary
Algorithm: a self-contained step-by-
step set of instructions describing a
process, mechanism, or function. An
algorithmic description of a
mechanism is sufficiently abstract to
be ‘multiply realisable’ – i.e., it may
be instantiated or implemented in
different physical substrates (e.g.,
biological, computational, mechanical)
whilst producing the same results.
For example, Darwin's account of
evolutionary adaptation (via repeated
applications of variation, selection,
and inheritance) is fundamentally
algorithmic and hence encompasses
many possible instantiations (e.g.,
including the molecular details
unknown at the time).
Associative learning: learning
correlations between inputs and
outputs, or learning what features co-
occur in the input [6,26,29,35], e.g.,
associate memory.
Associative memory: associative
memory is an ability to recall a
pattern from a stimulus, for example,
‘Darwin’ ! ‘Evolution’, ‘Hebb’ !
‘Learning’ (heteroassociative
memory), or to recall a complete
pattern from a noisy or partial
stimulus, for example, ‘Cha-les -ar-in’
! ‘Charles Darwin’, ‘-ona-d H-b-’ !
‘Donald Hebb’ (autoassociative
memory) [6]. Analogue of, for
example, evolving the mapping
between genotype and phenotype, or
the correlations among phenotypic
features governed by developmental
interactions [32,33,82].
Bayesian learning (Bayesian
updating): a learning method using
Bayes rule as a principled way to
incorporate new information with past
experience. Analogue of selection in
asexual population (replicator
equation) [20,21].
Bivariate model: a model that
captures pairwise interactions
between features (also known as
correlation model restricted to
pairwise correlations).
Correlation learning: see
associative learning.
Deep learning: learning high-level
representations by learning
correlations on top of correlations,
etc. Levels can be learned
simultaneously [29], or one at a time
(deep belief networks) [30].
Evo-devo: evolutionary
developmental biology [43]. Here, we
are particularly interested in the
evolution of developmental
adapting the organisation of developmental processes) able to facilitate subsequent adaptation
in the same way that a learning system can exploit knowledge from past experience? If so,
evolution might be a ‘smarter’ problem solver than generally appreciated [12] and learning theory
could explain how.

Of course, at the time when Darwin sought a mechanistic explanation for evolutionary adapta-
tion, the theory of algorithms (see Glossary) did not exist as we know it now and an analogy with
learning would not have been illuminating. A century later, when Turing provided the first formal
framework of computation, it was immediately used to propose an algorithmic account of
learning and intelligence [13]. The well-developed understanding of learning algorithms that we
have now vastly expands the space of mechanistic possibilities that can be used to answer
Darwin's question.

This opinion paper discusses how (i) recent work shows that the link between learning and
evolution is a mathematical equivalence; (ii) accordingly, knowledge from the theory of learning
can be converted and redeployed in evolutionary theory; and (iii) this offers exciting opportunities
to address fundamental evolutionary puzzles in new ways.

Unifying Learning and Evolution
A system exhibits learning if its performance at some task improves with experience [14].
Reusing behaviours that have been successful in the past (reinforcement learning) is intuitively
similar to the way selection increases the proportion of fit phenotypes in a population [15–18].

In fact, evolutionary processes and simple learning processes are formally equivalent. In
particular, learning can be implemented by incrementally adjusting a probability distribution
over behaviours [e.g., Bayesian learning (Bayesian updating)] or, if a behaviour is
represented by a vector of features or components, by adjusting the probability of using
each individual component in proportion to its average reward in past behaviours (e.g.,
Multiplicative Weights Update Algorithm, MWUA [19]). Harper [20] and Shalizi [21] showed
that the former is mathematically equivalent to soft selection on genotypes in asexual
populations, and Chastain et al. [19] have very recently shown that the latter is equivalent
to selection acting on individual alleles at linkage equilibrium in sexual populations [22,23].
Evolution thus acquires information from past selection in the same principled way that
simple learning systems acquire information from past experience (see also [24,25]). These
results can be seen within the integrative framework provided by Valiant, who shows how
formal limits on what can be learned can be transferred to characterise formal limits on what
can be evolved [26,27].

Can Evolutionary Systems ‘Anticipate’ Future Outcomes?
A key feature of learning systems that seems disanalogous to evolutionary systems is their ability
to anticipate actions that will confer future benefits. But learning systems, just like evolutionary
systems, are not really able to ‘see the future’ – they cannot learn from benefits that have not yet
occurred. Learning systems are, however, able to extrapolate or generalise from past experi-
ence. To move beyond repeating behaviours by rote, generalisation requires an appropriate
model – an indirect, usually compact, way of representing behaviours. Learning proceeds simply
by incrementally improving the fit of a model to past experience, and new behaviours can then be
generated from this model.

The clever part of learning methods concerns how behaviours are parameterised in this model
space. In a good model space, desirable future behaviours should be similar (nearby) to
behaviours that were useful in the past. For example, perhaps ‘eating apples’ should be close
to ‘eating pears’ but far from ‘eating red things’.
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organisations that change the
covariance of phenotypic traits
(analogue of correlation learning) [32].
Evo-eco: evolutionary ecology
[39,42,54,55]. Here, we are
particularly interested in the evolution
of ecological relationships that
change the co-selection of species
(analogue of unsupervised correlation
learning) [69].
Evo-ego: the evolution of Darwinian
individuality [70–74,83]. We propose
the term ‘evo-ego’ [34] to refer to the
evolution of organisations
(reproductive structures) that change
the evolutionary unit – i.e., the level of
biological organisation that exhibits
heritable variation in reproductive
success [40]. Here, we are
particularly interested in the evolution
of reproductive relationships that
change the coinheritance of fitness
differences [76]. This includes new
modes of reproduction modifying the
heritability of collectives [40,78] (e.g.,
vertical transmission of symbionts, as
in the origin of eukaryote organelles
[83,84]), the origin of chromosomes
(via physical linkage of previously
independently replicating genetic
material [85]), changing reproduction
from migrant pool reproduction to
group fissioning [71,76], or
encapsulation in compartments (e.g.,
cell membranes, as in evolutionary
transition from replicators on a
surface to replicators in
compartments) [72,84].
Evolutionary connectionism: a
developing theory for the evolution of
biological organisation based on the
hypothesis that the positive feedback
between network topology and
behaviour, well understood in neural
network models (e.g., Hebbian
learning), is common to the evolution
of developmental, ecological, and
reproductive organisations
[32,34,65,68,69,78].
Hebbian learning: learning that
occurs by altering the strength of
synaptic connections between
neurons [6,14,29]. For example,
‘neurons that fire together wire
together’ is a Hebbian learning
principle that strengthens the
connection between two neurons
when they are activated at the same
time or by the same stimulus.
Pavlicev et al. [33] showed that the
action of natural selection adheres to
Hebbian principles when acting on
heritable variation that affects
correlations (e.g., gene regulatory
connections [32]). Power et al. [69]

Box 1. Learning (and Evolution) as Model Fitting

Many learning methods operate by incrementally adjusting the parameters of a model to improve the fit with a set of
example data (training set) [14,26,29]. Consider a sample of points, for example, phenotypes, characterised by two
features or traits, some of which belong to a particular class (‘+’), for example, high-fitness phenotypes (Figure I). Learning
which feature values are fit on average implicitly represents the class by a region in this 2D space (i). This enables a limited
sense of generalisation: for example, novel combinations of fit features generate new points in the same region (e.g., new
combinations of fit alleles). However, such a model might be unable to represent the class accurately (underfitting), as
depicted (e.g., the large region includes many unfit points, and the small region excludes approximately half the fit points).
The quality of generalisation can be improved by representing the class in a parameter space or model space (�genotype
space) that is different from the feature space (�phenotype space). A basic spectrum of model types is depicted. (i)
Representing a class by an average value for each individual dimension or trait is a univariate model. (ii–iii) A bivariate or
associative model can represent pairwise positive or negative correlations among features. Evolutionarily, this can be
captured as developmental mapping between genotypes and phenotypes that introduces phenotypic correlations. (ii) A
linear correlation model (like linear genotype–phenotype mapping [33]), for example, representing that trait 1 works well
only when trait 2 has a similar value, can improve the fit to some extent. (iii) However, a nonlinear correlation model is the
simplest model capable of representing multimodal distributions [32], for example, representing that high fitness is
conferred only when the two traits are both high or both low. The latter is particularly important because a multivariate
model can be constructed by layering one nonlinear model onto the outputs of another (hence deep learning [30]). (iv) In
general, multivariate models can represent any data arbitrarily accurately [29]. However, fitting a multivariate model by
incremental improvement (learning or evolution) can be troublesome if it is unnecessarily complex. One fundamental
problem is overfitting, where fitting the idiosyncrasies of the training data results in a model that fails to generalise well,
excluding some potentially desirable points (triangle).

By separating model space from feature space, learned models can be used to generate or identify novel examples with
similar structural regularities, or (particularly relevant to evolution) to improve problem-solving or optimisation ability by
changing the representation of solutions or reducing the dimensionality of a problem [46,65,79].

(i) Univariate
models, too simple

(underfi�ng)

(ii) Linear correla�on
model, poor fit
(underfi�ng)

(iii) Nonlinear
correla�on model

(good fit)

(iv) Mul�variate
model, too complex

(overfi�ng)

Figure I. A Basic Spectrum of Model Types (i–iv).
In the asexual and sexual populations mentioned earlier, the implicit model space is simply a
point in genotype frequency space or allele frequency space, respectively. The latter is a
compact way of representing a distribution over genotypes at linkage equilibrium (a univariate
model, Box 1). This allows a limited sense of generalisation in that new combinations of alleles
can be generated from this distribution (i.e., by recombination). In fact, sexual reproduction
constitutes a surprisingly efficient trade-off between exploiting alleles that were fit on average in
past examples and sampling alleles in new combinations [19]. This simple type of generalisation
is ideal when alleles are actually independent (absent of epistasis) whereas asexual reproduction
is logical if genotypes cannot be decomposed into independently fit components. Although
assuming features are independent is often a pragmatic first approximation and, conversely,
assuming complete interdependence covers all eventualities, in most learning tasks neither of
these naive extremes is ideal.

For example, in a modular problem, where features in different modules are approximately
independent but features in the same module are not, then effective generalisation would be
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show Hebbian learning in the
evolution of ecological interactions.
Hopfield network: a simple type of
neural network model where each
neuron is (potentially) connected to
every other neuron bidirectionally
[6,31]. The Hopfield network has
been used as a mathematical model
for (non-neural) dynamical systems
and emergent collective behaviours in
many different domains including
gene regulation networks and
ecological networks.
Inductive bias: because, in principle,
there are many general concepts that
are consistent with a given set of
examples, learning from examples
always involves inductive bias (i.e.,
that a priori favours a given class of
generalisations). However, there are
generic inductive biases that,
although fallible in principle, prove
extremely effective in practise.
Occam's razor is one such bias –

favouring simple models over more
complex models that explain the
same data [14]. See also parsimony
pressure.
Major evolutionary transitions:
provided by new combinations of modules. Genetically, free recombination would disrupt
modules and asexual reproduction would fail to exploit the independence of one module from
another. An appropriate compromise is provided by an intermediate level of recombination, such
as when nucleotides within genes do not recombine, but genes do. Given intragenic epistasis
but not intergenic epistasis, the generalisation this provides explains a significant advantage for
sex [28]. However, this relies on an a priori correspondence between the physical linkage of
components and their epistatic dependencies [28].

Can Evolution Learn Like Neural Networks Learn?
More advanced learning requires more flexible model types (Box 1) that alleviate a dependence
on the original feature space; enabling items that appear to be different (far apart in feature
space) to be represented as nearby points in model space. A minimal example is a correlation
model – a simple way of representing interactions between features. The representation of
associations or correlations has the same fundamental relationship to learning as transistors
have to electronics or logic gates to computation (and synapses to neural networks). Although
mechanisms to learn a single correlation between two features can be trivial, these are also
sufficient, when built up in appropriate networks, to learn arbitrarily complex functions [29]. This
type of learning can be implemented by incrementally adjusting the parameters of a correlation
model in the direction that reduces error (supervised learning) or maximises reward (rein-
forcement learning) (Box 2, i). For example, this is the basis of neural network learning models
(operating by adjusting synaptic connection strengths, hence connectionist learning) which have
been extraordinarily successful in numerous learning applications [29–31], and provided a model
for complex adaptive systems in many domains [68].
evolutionary innovations that have
changed the evolutionary unit (the
level of biological organisation that
exhibits heritable variation in
reproductive success): from self-
replicating molecules, to
chromosomes, to simple cells, to
multiorganelle eukaryote cells, to
multicellular organisms, to social
groups [72,73] (see evo-ego).
Multivariate model: a model that
captures high-order correlations
(greater than pairwise interactions)
among features [29].
Overfitting: the tendency of a
learning algorithm to perform well on
the training set but poorly on the test
set resulting from fitting
idiosyncrasies of the training set.
Failure to generalise correctly [14].
Analogous to securing fitness
benefits in current selective
environment (robustness) at the
expense of potential fitness benefits
in future environments (evolvability).
Parsimony pressure: a technique
used in learning that penalises model
complexity to favour simple models
over complex ones. Simple models
often produce superior generalisation
by alleviating overfitting [14].
Reinforcement learning: trial and
error learning based on an evaluative
or reward signal, providing the learner
with a measure of the value or quality
of a given solution or behaviour, used

Box 2. Supervised and Unsupervised Correlation Learning and the Level of Selection

(i) The Delta rule is a supervised learning rule that modifies model parameters so as to improve the output (or reduce the
error between the current output and the ‘desired’ output)

DWij ¼ rdiX j

where Dwij is the change in the interaction coefficient between input j and output i, xj is the value of the input j, r is a
learning rate, and di is the desired change in the output (given by the error between the desired and actual outputs).
Intuitively, given heritable variation in correlations, natural selection for a target phenotype will evolve correlations in the
same direction as the Delta rule, that is, to improve the output [32].

(ii) Hebb's rule, often paraphrased as ‘neurons that fire together wire together’, is an unsupervised learning rule
(operating without an external ‘teacher’ to define desired outputs) that modifies model parameters in the direction that
amplifies the current output:

DWij ¼ rXiXj

where xi is the sign of the current output of unit i.

Whereas supervised correlation learning reinforces correlations that are good, unsupervised correlation learning merely
reinforces correlations that are frequent. Nonetheless, this is sufficient for interesting system-level behaviours, such as
forming an associative memory of past states [6] building low-dimensional models of high-dimensional data, and in
some cases, improving system-level optimisation despite the absence of a global reward function [46,65]. When the
current output has the same sign as the desired or locally optimal output (i.e., xi = di), Hebb's rule and the Delta rule
change interactions in the same direction and hence produce the same dynamical consequences for the behaviour of
the system [32]. In other cases, when the current output is not optimal, unsupervised learning reinforces the current
output regardless of its value. Selection for robustness, for example, might be analogous to unsupervised learning.

(iii) An interesting parallel exists between unsupervised learning and evolutionary selection on individuals within a
collective. Specifically, when individual-level selection causes individuals to adopt behaviours that do not maximise
collective fitness (as per any social dilemma), the effect of individual selection is not equivalent to supervised learning for
the collective (i.e., xi 6¼ di). Yet, if each individual has adopted a state that is locally fit for them, then individual selection on
interactions will act to stabilise that state [65] (like selection for robustness at the collective level). This reinforces the
current system configuration (without regard to its effect on collective welfare) as per the action of unsupervised
correlation learning [65]. Accordingly, even when the collective is not a unit of selection, such as an ecological
community, unsupervised learning behaviours can be produced at the system level [69].
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to amplify successful and reduce
unsuccessful behaviours [14].
Analogue of selection.
Supervised learning: learning that
changes parameters of a behaviour in
the direction that reduces the error (i.
e., error = desired output – actual
output). Sometimes implies an
external teacher that knows the
desired output – but in practice, it
usually means simply modifying
parameters by gradient descent on
an error function (rather than by trial
and error) [14]. The combination of
random variation and selection can
affect the same changes in a model
given the same gradient, and thus an
analogue of selection for a particular
target phenotype or phenotypes [32]
(see also selection in varying
environments or for a set of target
phenotypes [8,49]).
Test set: data used to test the
accuracy of a model once built
(future performance). To test
generalisation, the test set includes
points that were not presented during
training [14]. Analogue of future/novel
selective environments.
Training set: data used to build a
Again, mathematical equivalences with evolution have recently been shown [26,32]. For evo-
lution, learning of this type requires separating phenotypes from genotypes and evolving the
parameters of a mapping between them. When there is heritable variation in this mapping that
affects phenotypic correlations, natural selection inevitably favours changes that adhere to
correlation learning principles [26,32]. A minimal example is the evolution of a single ‘relational’
allele, causing subsequent mutations to produce correlated variation in two phenotypic traits
[33] (e.g., via pleiotropy). Pavlicev and colleagues showed that selection on relational alleles
increases phenotypic correlation if the traits are selected together and decreases it if they are
selected antagonistically (Hebbian learning) [32,33]. This simple step from evolving traits to
evolving correlations between traits is crucial; it moves the object of natural selection from fit
phenotypes (which ultimately removes phenotypic variability altogether) to the control of phe-
notypic variability [34].

In larger biological networks, this principle has the same effect as it does in larger neural
networks (hence evolutionary connectionism [34]). In the Hopfield network [6], for example,
this type of learning is sufficient for simple cognitive behaviours such as forming an associative
memory capable of storing and recalling multiple distinct activation patterns, and effective
generalisation in numerous recognition and classification tasks [32,35]. Watson et al. demon-
strated conditions where evolved gene regulation networks produce exactly the same behav-
iours [32], forming a distributed ‘developmental memory’ of multiple phenotypes selected in the
past, and generalising by producing new combinations of phenotypic modules (Figure 1).

These results, and others [26,34,36,37], demonstrate that evolution and learning are not merely
analogous processes but (different instantiations of) the same algorithmic principles. Transfer of
model (past experience) [14].
Analogue of past selective
environments.
Trial and error learning: learning by
trialling behaviours at random until a
solution is discovered. If each new
behaviour that is sampled is a small
random modification of the previous
behaviour, this becomes a form of
incremental adaptation.
Underfitting: the condition that a
learned model has failed to accurately
fit the training set. Contrast to
overfitting [14].
Univariate model: a model that
treats each parameter as
independent (unable to represent
correlations).
Unsupervised learning: learning
that aims to optimise a task-
independent criterion function based
on current output only (e.g., stability
or robustness of the output). Occurs
without knowledge of a desired
output function/external teacher, for
example, by reinforcing the current
output regardless of its quality. In
particular, unsupervised correlation
learning, where correlations that are
already frequent in the training data
are reinforced (rather than
correlations that are good with regard
to a task, as in reinforcement/
supervised correlation learning). The
aim of unsupervised learning is to

Target phenotypes  Random ini�al
gene expression levels 

Developmental �me Adult
phenotypes

(C)

(D)

(J)

(I)(F)

(G)

(E)

(H)

(A) (B)

Figure 1. A Recurrent Gene Regulation Network (GRN) Evolved in a Varying Environment Exhibits Associative
Learning Behaviours. See [32] for details. When a Hopfield network is trained on a set of patterns with Hebbian learning it
forms an associative memory of the patterns in the training set. When subsequently stimulated with random excitation
patterns, the activation dynamics of the trained network will spontaneously recall the patterns from the training set or
generate new patterns that are generalisations of the training patterns [6,31]. Here the evolution of connections in a GRN is
shown to follow such Hebbian learning principles. The evolved GRN thus forms an associative memory of phenotypes that
have been selected for in the past, spontaneously recreating these phenotypes as attractors of development with the GRN
and also producing new phenotypes that are generalisations of them. (A–D) A GRN is evolved to produce first one
phenotype and then another in an alternating manner [8,49]: A = Charles Darwin, B = Donald Hebb (who first described
Hebbian learning). The resulting phenotype is not merely an average of the two phenotypic patterns that were selected in the
past (as per a univariate model or free recombination of phenotype pixels). Rather, different embryonic phenotypes (e.g.,
random initial conditions C and D) developed into different adult phenotypes with this evolved GRN match either A or B (one
initial phenotype that falls into each developmental attractor is shown). These two phenotypes can be produced from
genotypes that are a single mutation apart [32]. (E–J) In a separate experiment, selection iterates over a set of target
phenotypes (E–H). In addition to developing phenotypes that match patterns selected in the past (e.g., I), this GRN also
generalises to produce new phenotypes that were not selected for in the past but belong to a structurally similar class, for
example, by creating novel combinations of evolved modules (e.g., developmental attractors exist for a phenotype with all
four ‘loops’ [32], J) – see also [8]. This demonstrates a capability for evolution to exhibit phenotypic novelty in exactly the
same sense that learning neural networks can generalise from past experience [32].
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discover categories, clusters, or
regularities inherent in the training
samples and hence reduce the
effective dimensionality of the data
[14] (Box 2).
specific models and results between these intellectual domains is already proving productive.
Whilst it is important to apply analogies critically, learning theory is not just one thing – the issue is
not so much to determine where the analogy breaks down, but to find the right type of learning
theory for each of the biological phenomena that are in need of explanation. Below we discuss
three examples where learning theory makes sense of biological ideas that are currently
confusing, suggesting predictions that arise by transferring well-known learning results.

Future Prospects: Understanding How Evolution Transforms Itself
Learning theory offers new concepts and theoretical tools for tackling several important puzzles
in contemporary evolutionary biology. We identify specific learning models that inspire new
approaches to key open questions in evolutionary developmental biology (evo-devo), evolu-
tionary ecology (evo-eco), and evolutionary transitions in individuality (or ‘evo-ego’ [34]) (see
Outstanding Questions). Each of these areas is challenging for evolutionary theory because they
involve feedbacks where the products of evolution modify the mechanisms of the evolutionary
process that created them (Figure 2, Key Figure) [33,38–42]. Although it is clear that the
processes of variation, selection, and reproduction underpinning evolutionary adaptation are
not constants in natural populations, theoretical treatments of ‘modifier alleles’ that enable
selection to act on these processes are currently very limited. There is growing recognition that
an integrated framework that puts such feedbacks front-and-centre is desirable [43–45,89].
Learning theory is precisely the study of processes that change over time as a function of past
experience [14,29,46]. It is thus ideally suited to describing, not just how variation, selection, and
inheritance adapt phenotypes, but how natural selection modifies variation, selection, and
inheritance over time. We note that feedbacks on these three processes result in correlations
or covariance between components that were previously independent [34] (Figure 2). Learning
theory has well-understood models for each case.

Evo-Devo: The Evolution of Evolvability and Correlation Learning
The evolution of developmental biases and constraints, accumulated over past selection, might
improve the distribution of phenotypes explored in the future [7,38,47,48]. But the core issue in
the evolution of evolvability [7,38,47,49,86–88] is that selection cannot favour traits for benefits
that have not yet been realised [9,50].

Learning theory offers a solution. First, a memory of phenotypes that have been selected in the
past (e.g., Figure 1) can facilitate faster adaptation whenever these phenotypes are selected
again in the future [8,33]. Second, and more importantly, because learned models can general-
ise (e.g., Figure 1J), an evolved memory can, as illustrated by Parter et al. [8], also facilitate faster
adaptation to new targets. In short, evolvability is to evolution as generalisation is to learning.

Whilst generalisation is not always easy, it does not require clairvoyance – it simply requires the
ability to find structural regularities that are deep enough to be invariant over time [26].
Accordingly, the possibility that evolution can learn from experience to favourably bias future
exploration need not be any more mysterious than the basic result that learning from a training
set can produce good generalisation on an unseen test set [51]. This also sheds light on the
tension between robustness and evolvability. Here the problem is that adapting variation
mechanisms so that they are less likely to produce deleterious variants (e.g., via canalisation)
is often more immediately advantageous than adapting them so that they are more likely to
produce adaptive variants [9,52]. Learning theory understands this tension extremely well.
Specifically, overfitting occurs when learning improves performance on training data but
worsens performance on test data. To avoid this, the complexity of a model can be limited
(e.g., by applying a parsimony pressure) to prevent memorisation of unnecessary details and
force solutions to capture deeper regularities (Box 1). This explains why a cost of connections
increases evolved modularity and improves evolvability [51,53].
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Key Figure

Challenges in Current Evolutionary Theory – Caused When the Products
of Evolution Modify the Mechanisms of Evolution

Distribu�on of
phenotypic

varia�on

Evolu�on of
ecological

rela�onships

Evolu�on of
reproduc�ve
organisa�on

evo
devo

Varia�on Selec�on
Evolu�on

of developmental
organisa�on

Structure of
ecological
selec�ve
pressures

Heritability of
evolu�onary

units/Darwinian
individuality

evo
eco

evo
ego
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Figure 2. Key components of evolution by natural selection – variation, selection, and inheritance [61] – are defined by
structures (boxed) that are themselves modified by products of the evolutionary process (broken arrows). Evo-devo: the
evolution of developmental interactions modifies the distribution of phenotypic variation. Evo-eco: the evolution of ecological
interactions modifies the structure of selective pressures. Evo-ego: the evolution of reproductive interactions (e.g., vertical
transmission of symbionts, or transition from replicators on a surface to replicators in compartments) that modify
evolutionary individuality by changing mechanisms of inheritance. These feedbacks are difficult to accommodate in
evolutionary theory but are well studied in learning systems. We note that each of these feedbacks results in correlations
or covariance between components that were previously independent: (i) the evolution of phenotypic correlations mean that
traits do not vary independently; (ii) the evolution of ecological dependencies mean that selection pressures on one species
are not independent of the selective pressures on another; and (iii) the evolution of new reproductive mechanisms mean that
evolutionary units are not inherited independently. But, in evo-devo, correlations evolve within a single evolutionary unit; in
evo-eco, correlations evolve between multiple evolutionary units, and; in evo-ego, correlations change the evolutionary unit
(such that multiple, previously separate units become a new single unit at a higher level of organisation) [34]. Learning theory
has models that correspond to each of these cases.
Using past experience to favourably direct future behaviour is a hallmark of intelligence. By
showing that incremental adjustment in the parameters of an appropriate model is sufficient to
achieve this, learning theory puts this behaviour within reach of evolution by natural selection,
and identifies conditions where it can learn to favourably direct future exploration (see Out-
standing Questions, prediction 1).

Evo-Eco: Ecological Organisation and Unsupervised Correlation Learning
Organisms can modify their biotic and abiotic environment and thereby alter the selective
pressures that act on themselves [39,41,44,54–57]. By modifying the network of ecological
dependencies with other species, this might result in ecological organisations that increase the
self-regulation of ecosystem variables, the resilience of ecological networks, or the efficiency of
resource utilisation [58–60]. But since ecosystems are not, in most cases, evolutionary units
[42,61], such feedbacks could also result in effects that are destructive in the long term, for
example, making an ecosystem more brittle or susceptible to catastrophic regime change,
decreasing total biomass, etc. At present, however, we have no general organising principles for
understanding how the structural organisation of ecological networks changes over evolutionary
time, nor how this affects ecological functions and dynamics [42,54,60,62–64].
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A different type of learning is relevant here. Unsupervised learning mechanisms do not
depend on an external reward signal. By reinforcing correlations that are frequent, regardless
of whether they are good, unsupervised correlation learning can produce system-level behav-
iours without system-level rewards (Box 2, ii). This can be implemented without centralised
learning mechanisms as in connectionist models of intelligence [6,29,34] or distributed multi-
agent systems [65] (simple forms of collective intelligence [65–68]).

Recent theoretical work shows that selection acting only to maximise individual growth rate,
when applied to interspecific competition coefficients within an ecological community, produces
unsupervised learning at the system level [69] (Box 2, iii). This is an exciting possibility because it
means that, despite not being a unit of selection, an ecological community might exhibit
organisations that confer coordinated collective behaviours, for example, a distributed ecologi-
cal memory that can recall multiple past ecological states [69].

Learning theory shows that incremental adjustment in the parameters of individual behaviours is
sufficient to achieve such collective behaviours [65], putting them within reach of individual-level
selection. Accordingly, learning theory describes conditions where individual-level natural selec-
tion might result in ecological organisation and collective behaviour (see Outstanding Questions,
prediction 2).

Evo-Ego: The Evolution of Individuality and Deep Correlation Learning
In major evolutionary transitions [40,70–72] ‘entities that were capable of independent
replication before the transition can replicate only as part of a larger whole after the transition’
[72,73]. These transitions in individuality [40,70,74] involve the evolution of new mechanisms of
inheritance or reproductive codispersal (e.g., vertical genetic transmission, compartmentalisa-
tion, reproductive linkage) [72,73,75,76] that create new evolutionary units. But there is a catch:
if individual and group interests are aligned then selection applied at the group level does not alter
evolutionary outcomes, and if individual and group interests are not aligned then individual-level
selection will oppose the creation and maintenance of adaptations that enforce selection at the
group level [40]. Given this, how can evolution at one level of biological organisation systemati-
cally create reproductive organisations that facilitate nontrivial adaptation at a higher level of
organisation before that level of adaptation exists?

In neural networks, deep learning [30] exploits correlation learning at multiple scales to build
multivariate models (Box 1). Deep belief nets [30], an exciting recent development igniting
renewed interest in neural networks, achieve this in a bottom-up manner, ‘freezing’ each layer
before adding the next. This creates the need to infer low-level representations that are useful for
learning higher-order representations before the higher level of representation exists. Unsuper-
vised learning provides a solution. By reducing the effective dimensionality of the data it ‘primes’
good performance at the next layer, even though it is not informed by what the data will be used
for at the next level [35]. In evolutionary systems, selection at one level of organisation can
operate like unsupervised learning at a higher level of organisation (Box 2, iii) [69]. Abstract
models incorporating these features show that individual-level selection can thus prime the
systematic formation of adaptive higher-level evolutionary units without presupposing selection
at the higher level [77,78]. New optimisation methods based on these principles demonstrate
problem-solving capabilities that cannot be achieved with single-level adaptation [77,79]. We
think this suggests that such ‘deep optimisation’ principles might explain how evolutionary
transitions facilitate ‘deep evolution’ y, that is, the evolution of adaptive biological complexity
yThanks to Seth Bullock for suggesting the term ‘deep evolution’.

154 Trends in Ecology & Evolution, February 2016, Vol. 31, No. 2



Outstanding Questions
Evo-Devo, Evo-Eco, and Evo-Ego
Research and Potential Impact of
Taking a Learning Theory Approach
(see Future Prospects)

1. Is evolvability evolvable?

Evolutionary problem: Developmen-
tal organisations change over evolu-
tionary time in response to the short-
term fitness benefits such as from phe-
notypic robustness. But: How could
the evolution of developmental organ-
isations favour variability that facilitates
long-term evolvability?

Learning theory insight: Learning
theory describes conditions where
incremental reward-based adaptation
can result in successful generalisation
to previously unseen situations.

Example prediction: Short-term
selection can increase long-term evolv-
ability if it benefits from an appropriate
inductive bias, for example, that the
genotype–phenotype map is complex
enough to represent structure (epistatic
interactions) in the selective environment
but simple enough to avoid overfitting
that structure [51,53] (Box 1).

2. Can ecosystem functions
be adapted without ecosystem
selection?

Evolutionary problem: The organisa-
tion of ecological relationships in an
ecosystem changes over evolutionary
time as a result of individual selection
within each component species. But:
Given that an ecological community is
not a Darwinian unit, how can ecologi-
cal organisations be anything other
than the arbitrary consequence of hap-
penstance contingencies?

Learning theory insight: Unsuper-
vised learning can be produced by very
simple component-level reinforcement
mechanisms (e.g. ‘neurons that fire
together wire together’) without a sys-
tem-level reward function but can
through successive levels of biological organisation [34,40,70–74] (see Outstanding Questions,
prediction 3).

Efficiently reducing a problem by rescaling a search process at a higher level of representation is
another hallmark of intelligent problem solving. Again, learning theory places this within reach of
evolution by showing how incremental adaptation, in the right model, can achieve this.

Taken together, correlation learning, unsupervised correlation learning, and deep correlation
learning thus provide a formal way to understand how variation, selection, and inheritance,
respectively, might be transformed over evolutionary time (Figure 2). We do not claim that
evolvability, ecosystem organisation, or the level of evolutionary unit will always increase – on the
contrary, we argue that learning theory can be used to characterise the conditions when it will
and when it will not.

Concluding Remarks
Learning and evolution share common underlying principles both conceptually and formally
[16,18–21,26,32,34,37,69]. This provides access to well-developed theoretical tools that have
not been fully exploited in evolutionary theory (and conversely suggests opportunities for
evolutionary theory to expand cognitive science [80,81]). Learning theory is not just a different
way of describing what we already knew about evolution. It expands what we think evolution is
capable of. In particular, it shows that via the incremental evolution of developmental, ecological,
or reproductive organisations natural selection is sufficient to produce significant features of
intelligent problem solving.

Without an appropriate theoretical framework to make sense of it, empirical evidence for
learning in evolutionary processes could be widespread but not recognised as such. Likewise,
theoretical tools relevant to problematic evolutionary questions may already be well-developed
but similarly unrecognised. By indicating the conceptual links between these domains we aim
to stimulate both theoretical development and future empirical studies. In current evolutionary
theory, it seems impossible that natural selection can anticipate what is needed in novel
selective environments, that ecological organisation can occur without community-level selec-
tion, or that new levels of individuality could emerge systematically from selection on lower-level
units. We argue that specific types of learning provide concrete models for such phenomena
and suggest predictions that might be tested. We think this offers the potential to better explain
how the process of random variation and selection results in the apparently intelligent designs it
produces.
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