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Understanding the mechanisms and patterns that govern the invasion of species is essential for coping with global change
of the biological world. A recent study highlights the possibility, based on data from a wide range of different taxa, that
the invasion speed of species could be governed by a regulatory process. In principle, it is possible that mechanisms such
as Allee effects could cause the invasion fronts to be regulated, such that the change in the rate of spread is negatively
related to the current rate. This is very similar to how some populations are regulated around an equilibrium size, and
finding the regulation structure if true, is of both pure and applied interest. However, here we will argue that the methods
used so far are incomplete, thus even though there is a theoretical possibility that the speed of species invasions are
regulated, more scrutiny is needed for its detection. Analysing changes of the ratio of current and past rate of spread
against current ratios may give the impression of regulation in null models that are in fact unregulated. In addition we
show that the apparent pattern is highly influenced by the spatial scale of investigation. Our results show that detecting
regulatory patterns in species invasions is similarly non-trivial as is detecting density-dependence per se, but necessary,

given the importance of this problem.

The impact of invasive species on natural ecosystems has
been recognized for decades (Elton 1958), including the
increasingly recognized possibility that invading species
form a leading cause of animal and plant extinctions
(Clavero and Garcia-Berthou 2005). It follows that ecolo-
gists need to understand the process of invasion, from first
colonization to widespread presence (Sakai et al. 2001). The
recent increase in the number of investigations of the
dynamics of non-native species (Puth and Post 2005) has
highlighted the need to disentangle the underlying processes
that govern the particular rate of spread of an invading
species (reviewed by Hastings et al. 2005). The standard
prediction of spread rates are that they are constant (Fisher
1937, Skellam 1951), and recently an empirical investiga-
tion (Arim et al. 2006) suggested that the spread dynamics
of invasive species might be a regulated process. Arim et al.
(2006) contrast an unregulated process (exponential
growth) with regulation, which they define as occurring if
the change in invasion speed is negatively related to the
current speed. They refer to change in per capita invasion
rate in relation to the current rate as the R-function. The
finding that the R-function has a negative slope appears to
be consistent across biomes, taxa and temporal scales (Arim
et al. 2006). The investigation was inspired by and utilized
similar methods as in investigations of the regulation of
population sizes (Berryman 1999, Berryman and Turchin
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2001). However, the biological mechanisms leading to the
regulation of invading fronts are stll obscure, though
speculations include competition for invadable areas
(Arim et al. 2006), reproductive delays (Davis et al. 2004),
Allee effects (Keitt et al. 2001, Tobin et al. 2007a), and
other unknown potential mechanisms.

Here we will argue that while such mechanisms are not
impossible (indeed, they may arise as emergent properties
from spatial models of population growth, Ovaskainen and
Cornell 2006), finding evidence for the regulation of
invasion fronts requires more careful analysis than fitting
an R-function to observed data on spread. Moving invasion
fronts are the results of individuals reproducing and
dispersing in space and the derivation of null expectations
should therefore also be done in a spatial context. We
construct two simple models of invasive species spread to
show that a fitted negative slope of the R-function is not
valid evidence that the invasion process is regulated, when
regulation is defined as a negative causal relationship
between current and future rate of spread. We will show
that statistical fitting easily produces negative slopes, even if
no regulation is inherent in the model. We also show that
the strength of the apparent regulation can be an artefact of
the spatial level of analysis. This highlights the importance
of applying null-models in ecological research.



Two stochastic models of spatial spread

We construct two stochastic models of spatial spread to
simulate an expanding population. We constructed two
different models that make use of different assumptions, to
increase the robustness of our results, and to highlight two
different important points regarding spatial spread: the
difficulty of separating apparent from real regulation, and
the importance of the spatial scale used in the investiga-
tions. The first model utilizes a lattice structure to explicitly
follow the dynamics of invadable sites, after which an
individual-based model is built to follow individual
reproduction and dispersal.

Lattice model

Consider a lattice of n X n cells, where each cell can be in
three different states; empty (denoted 0), recently occupied
(denoted 1) or occupied (2). There is no return from
invaded to unoccupied (i.e. no local extinctions). We
simulated a discrete-time invasion in this lattice, such that
each time step all occupied cells send propagules to all cells
within their neighbourhood. Each cell in the neighbour-
hood has a probability of being invaded given by p; or p,
from cells in state 1 or 2 respectively, and every cell in the
neighbourhood is evaluated independently (e.g. a cell with
two recently occupied neighbours stays empty with prob-
ability (1 —pl)z, and becomes occupied otherwise). We
varied the size of the diamond shaped neighbourhood by
using the 4, 12, 24 or 40 closest cells. A cell that was
‘recently occupied’ (state 1) at the start of the time-step
changes to state 2, and newly occupied cell is assigned state
1. Each time-step we recorded the number of cells that
changed state from 0 to 1. Every simulation started with
one cell in state 1, and the invasion never reached the end of
the lattice.

A top-down imposed regulation of spread in this model
is accomplished if a speedy invasion at one time step (which
generates many recently invaded cells) leads to slowing
down of new propagule formation. This is achieved by
setting p; <pa, which can represent a reproductive lag; a
recently invaded area has a lower probability of invading
other areas compared to an area where the invader has been
present for some time. The degree of imposed regulation is
denoted by K« =p,/p;, where 1 indicates no other regulation
than potential competition for invadable sites (below) while
K >1 indicates inherent regulation of spatial spread.

Individual-based model
The lattice model tracks the dynamics of habitat occupancy
but it does not consider individual-level reproduction with
subsequent dispersal of the offspring. Arguably, one can also
consider it an inappropriate null model in the sense that
vacant invadable sites can be in short supply if invasion of
sites has been particularly successful in the recent past.
Thus, although « >1 implies stronger regulation than « =
1, the absence of all regulation at kK =1 is debatable is
therefore desirable to increase the robustness of our findings
by considering a true null model where individuals truly do
not interact with each other when sending out propagules.
To achieve this, we utilized an individual based approach
under discrete time. In this model, an individual is

characterized by its position [x, y] in the Euclidian space,
and space is unbounded. Each time step, each individual
produces one offspring with probability p. This offspring
then disperses to a new location determined by the natal
dispersal distance d and an angle 0. The distance, d, is
drawn from a negative exponential probability distribution,
exp(—d), and the angle, 0, is drawn from a uniform
distribution [0 ...2 xm]. The position of an offspring
born of an individual at [x, y] is thus [x+d x cos(0), y+
d xsin(0)]. Time is updated after offspring production and
dispersal of offspring has been evaluated for every indivi-
dual. To gather data on invasion in a similar vein as done by
Arim et al. (2006), we superimposed a grid structure onto
the Euclidean space by dividing the area in which
individuals occur into square grids (cells), each side
measuring | units. The number of cells that are newly
invaded was then recorded, for every time-step t. Notice
that this grid structure does not influence the dynamics of
the population which occurs in continuous space, and it
exists only for the purpose of data collection. Also note that
this model is a pure null model in the sense that we do not
assume any population regulation. As before, we also ignore
local extinction as established individuals do not die.

Data collection procedures for both models

We followed the definition of per capita rate of spread used
N(t + 1)
ELNG)
number of newly invaded cells at time t. Note that this is
per capita rate and different from the usual use of rate as the
number of newly invaded sites at a given time. We
performed a N+ 1 — transformation (i.e. added 1 to each
entry) for all time series that included at least one zero entry
for N(t). We then performed a linear regression of

St+ 1)
S(t)
function R =0+ B xlog(S(t)) to observed values of R. The

least-squares values of o and B were recorded for every
simulation run.

in Arim et al. (2006), S(t) = , where N(t) is the

R =log against log (S(¢)), thus fitting the

Results
Null expectation in the models

Figure 1 shows examples of the regression of the change in
the log rate of spread plotted against the current rate of
spread (i.e. R(t) against log(S(t)), equivalent to Arim et al.
2006), developed from one simulation run without any
regulation of spread (k =1), and one with regulation (k =
4). Each simulation ran for 50 time steps. With a
reproductive lag imposed there is a strong linear negative
relationship between the current rate of spread and the
change in that rate, but this also appears in the case without
a reproductive lag.

It appears that a negative value of the slope B is a null
expectation in the lattice model, and a reproductive lag only
makes the slope steeper. To evaluate if this is true generally,
we performed extensive simulations. For every neighbour-
hood we varied p; from 0.1 to 0.9 with 0.1 intervals. For
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Fig. 1. Two examples of regressions of R against S in the lattice
model. In (a) there is no top-down regulation of the invasion,
whereas in (b) kK =4. Even without regulation a negative relation-
ship between current per capita rate of spread (ratio of newly
invaded sites to invaded sites the precious five time-steps) and the
change in that rate is expected.

each of these settings we also varied the degree of
reproductive lag (k=1, 4, 7, 10). All these parameter
settings yielded the same negative fit.

Figure 2 depicts the cumulative distribution of B with
(k >1) and without (k=1) top-down regulation in the
form of reproductive delay in the lattice model, for all four
different neighbourhoods (each distribution based on 250
independent simulation runs of 50 time steps). In addition
to larger neighbourhoods yielding less steep regression
coefficients, the impact of a reproductive lag was weaker,
the larger the neighbourhood. For the largest neighbour-
hood used, even fairly strong lag (k =7) was hard to
distinguish from the scenario with no regulation inherent.

Figure 3 presents the result of varying the size of the
grids in the individual-based model. We recorded the
number of newly invaded sites using two different grid
sizes, l; =1 unit and |, =4 units of length. The larger the
size of the superimposed grid, the stronger the signal of
apparent regulation. This indicates that if presence or
absence is measured at larger spatial scales, null models
with no regulation are more likely to yield a negative B, i.c.
the wrong conclusion of regulation arises more easily.
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Discussion

Intuitively, a negative relationship between the change of
per capita rate of spread, R(t), and the per capita rate of
spread, log(S(t)), observed immediately previously, appears
to suggest that some regulatory process is at work. With an
exception of very fine grids in the individual-based model,
all of our simulations showed that this negative relationship
is in fact the null expectation. Additionally, both models
also showed that the spatial scale of investigation is of great
importance. In the lattice model, the larger the neighbour-
hood, the harder it was to distinguish between the regulated
and non-regulated stochastic expansion of populations,
which also show the influence of competition for invadable
sites. With small neighbourhoods there is higher competi-
tion for empty sites to invade, one of the proposed
mechanisms creating the feedback structure. In fact the
stronger the competition for empty sites, the easier it is to
distinguish the invasions with a reproductive lag (k >1)
from the ones without a lag (x =1), The individual-based
model in turn shows that estimating spread rates from time
series of newly invaded areas incorrectly suggests regulation
most easily when the areas are large. This model constitutes
a diffusion process, thus there are no biological mechanisms
but only sampling effects creating this pattern.

The approach presented in Arim et al. (2006) is
analogous to detecting evidence of density-dependence in
time series of population data within a locality (Berryman
1999, Berryman et al. 2002). Detecting density dependent
population regulation is no easy task (Murdoch 1994,
Fowler et al. 2006, Freckleton et al. 2006), and only the
newest developments allow unambiguous detection of
density dependence in a large number of species (Brook
and Bradshaw 2006). One would not expect detection of
regulation to be any simpler in the context of spatial spread.
It is important to note that our results do not mean that the
regulatory process suggested by Arim et al. (2006) does not
exist; instead, we suggest that the matter deserves much
more sophisticated analysis, such as precise documentation
of how Allee effects operate during an ongoing invasion
(Johnson et al. 2006, Tobin et al. 2007b).

In the debate on the regulation structure of population
densities, regulation has by many been defined as done in
Arim et al. (2006). This approach assumes that a biological
variable can be treated as a dynamical one and that there are
negative feedbacks leading to the inverse proportionality of
the change of such a variable and its current or past states
(Berryman et al. 2002). In population dynamics the
potential negative feedbacks from current to future popula-
tion size are fairly intuitive. Because populations can only
persist for appreciable time when regulated, the regulation
structure of populations are often viewed as a fundamental
framework for research, rather than a hypothesis to be tested
(Turchin 1999). It is less clear if (and why) an invading
front should be regulated, and therefore it appears useful to
uncover the expected patterns when there is no regulation.

However, in this case it may be hard to agree on how to
construct and choose the appropriate null model. This is
most notably because the potential mechanisms leading to
regulation are unknown, and therefore they might be
difficult to completely leave out in a model generating the
null expectations. For instance, Arim et al. (20006) suggested
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Fig. 2. Cumulative distributions of regression coefficients for 250 simulation runs in the lattice model, for the case of no regulation (k =
1, solid line), and three different strengths of top-down regulation (k =4, dashed line, ¥ =7, dot-dash, and x =10, dotted line). Each
simulation ran for 50 time steps. The size of the neighbourhood was varied; (a) 4, (b) 12, (c) 24 and (d) 40 closest cells. Note the different
scales on the x-axis. Probability of invasion from an occupied cell (p,) was 0.5. Regressions of R against S were significant (p <0.05) in all

simulations.

that competition for empty sites to invade (on its own, or
together with a reproductive lag) can be a mechanism
leading to regulation. In our first model we let the
competition for invadable sites vary through different
choices for the sizes of the invasion neighbourhoods, and
we also varied the reproductive lag. This model cannot
completely remove the first mechanism because competi-
tion for invadable sites always applies in a lattice model. In
the second model, however, we modelled a diffusion process
which allowed us to completely exclude competition for
invadable sites as well as any reproductive lags. With all so
far proposed regulatory mechanisms excluded, this model
(and its relatives, Hastings et al. 2005) constitutes an
appropriate null model. This model, too, produces negative
slopes of the R-function.

It is also important to realize that regarding regulation of
population densities, the prerequisite of treating densities as
a dynamical variable is fairly straightforward; births and
deaths map current densities to future densities. The
premise that we can build a similar mapping function
from current to future per capita rates of spread is less easily
legitimized. Most models of invasive species predicts linear
rates of spread (Hastings et al. 2005), and if there is some
stochastic noise in these rates over time they will appear
bounded and high invasion rates will most likely be

followed by lower, due only to chance (Freckleton et al.
2006). The biological reality of treating these rates as a
dynamical variable should be a subject for future research.

The upside of the similarity of the problems inherent in
detecting local density dependence and regulated spread is
that many of the lessons learnt in the context of local
density-dependence can be applied in this new context. An
important insight from the literature on population regula-
tion relates to the spatial scale over which data are gathered
(Levin 1992, Ray and Hastings 1996, Freckleton et al.
2006). The choice of a proper spatial scale is probably even
more important in studies of invasive species since this is by
definition a spatial process and very different patterns can
emerge depending on which scale is used (Pysek and Hulme
2005). The appropriate level of spatial resolution will vary
between species and should be based on a biological
understanding of the population under investigation. In
our individual-based model, decreasing the size of the data
sampling units decreased the strength and significance of
the negative relationship between rates of spread and change
in rates of spread, thus larger spatial scales wrongly suggest
stronger regulation.

The different datasets presented by Arim et al. (2006)
varied in terms of the spatial scale, but most of them were at
the level of the county, which can be considered a rather
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35 generations each, with p =0.5. Larger grids produce stronger
apparent regulation.

large spatial scale. Artefactual patterns suggestive of regula-
tion might arise easily in such data. If a county or region of
substantial size was invaded recently, the invader will most
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likely spread within this area before invading the surround-
ing areas, yielding an apparent feedback between current
and future spread that, in fact, only reflects a sampling
effect. Another important aspect of the detection of
regulation of invasion fronts that has not been investigated
relates to the non-uniform distribution of detection errors
in species invasions (Costello and Solow 2003). This could
affect findings heavily, but again the problem of census-
errors has a cousin in the population regulation debate
(Freckleton et al. 2006) which might yield analogous
insights.

Here we have shown that the analysis of the potential
regulation of expanding populations is far from a trivial
issue, but has several complications, much akin to the
analogous debate in population regulation. Such regulation
of spatially expanding populations are, however, theoreti-
cally plausible, and more thorough analysis is obviously
needed, as links between individual movements and the
invasion process are still fairly badly understood (Facon et
al. 2006, Kokko and Lépez-Sepulcre 2006, Sax et al. 2007).
We also need a theoretical investigation of the impact of
Allee effects and reproductive lags and their potential for
giving rise to regulation of fronts. One approach to follow
would be to develop other ways of measuring the rate of
spread, for instance to also take the respective densities into
account, or try experimental methods for detecting regula-
tion.
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