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Abstract

Explaining nature’s biodiversity is a key challenge for science. To persist, populations must be
able to grow faster when rare, a feature called negative frequency dependence and quantified as
‘niche differences’ (N ) in modern coexistence theory. Here, we first show that available definitions
of N differ in how N link to species interactions, are difficult to interpret and often apply to
specific community types only. We then present a new definition of N that is intuitive and appli-
cable to a broader set of (modelled and empirical) communities than is currently the case, filling a
main gap in the literature. Given N , we also redefine fitness differences (F ) and illustrate how N
and F determine coexistence. Finally, we demonstrate how to apply our definitions to theoretical
models and experimental data, and provide ideas on how they can facilitate comparison and syn-
thesis in community ecology.
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INTRODUCTION

In order to persist through time, species must exhibit fre-
quency-dependent population growth. Natural communities
host a multitude of mechanisms that can lead to frequency
dependence. Well-known examples include resource partition-
ing (Adler et al. 2007; Levine & HilleRisLambers 2009), dif-
ferential vulnerability to predators (Carson & Root 2000;
Chesson & Kuang 2008; Allan et al. 2010), differential associ-
ations with mutualists (Siefert et al. 2018; Johnson & Bron-
stein 2019), phenological separation (Usinowicz et al. 2017) or
occupation of distinct microhabitats (Silvertown 2004). These
mechanisms have been collectively coined as stabilising mech-
anisms that increase ’niche differences’ (Chesson 2000;
HilleRisLambers et al. 2012; Letten et al. 2017).
In modern coexistence theory, one way of quantifying the

strength of niche differences is to compare observed popula-
tion growth with the population growth that is expected when
niche differences would be absent (Chesson 2000, 2003; Adler
et al. 2007, 2010). Without niche differences, one of the spe-
cies will eventually exclude all others, where the rate of exclu-
sion depends on the competitive advantage of the winner.
This competitive advantage is often called ’fitness difference’
(Barab�as et al. (2018); Chesson 2000, 2003; Hart et al. 2018).
A key question is if niche differences in natural systems are
sufficiently strong to overcome fitness differences and save
species from extinction (Hubell 2001; Angert et al. 2009; Nar-
wani et al. 2013; Connolly et al. 2017; Harris et al. 2017; Usi-
nowicz et al. 2017; Adler et al. 2018).
Niche and fitness differences formalise species persistence

in a way that is phenomenological. That is, one does not
need to specify the details of the community or its environ-
ment, but rather focuses on higher level processes, that is
how species grow under different circumstances. This feature

would in principle allow synthetic studies across different
community types and environmental conditions, with niche
and fitness differences acting as common currency that repre-
sent the net outcome of detailed ecological mechanisms. Such
studies are important because they foster a unified under-
standing of community composition (Adler et al. 2018) and
facilitate studying how environmental context and community
characteristics jointly influence species persistence, which can
help understanding global change effects (Grainger et al.
2019).
At present, however, the application of niche and fitness dif-

ferences is hampered by a lack of consensus on their mathe-
matical definition. Indeed, the operationalisation of these
concepts has been discussed for almost a century and new
methods are being constantly proposed (Renkonen 1938;
Morisita 1959; Hurlbert 1978; Chesson 1990, 2000, 2003; Car-
roll et al. 2011; Bimler et al. 2018), leading to a proliferation
of mathematical definitions of niche and fitness differences.
We identified 10 definitions available in the literature
(Appendix A) and found that every single existing definition
displays a number of features that limit its applicability. For
instance, most of the definitions only apply to communities
whose dynamics obey a specific mathematical model (Chesson
1990; Adler et al. 2007; Chesson & Kuang 2008; Godoy &
Levine 2014; Saavedra et al. 2017; Bimler et al. 2018). This
means that the applicability of these definitions is limited to
specific community types. In addition, several definitions can-
not be computed for communities with positive species inter-
actions and/or more than two species. Also, not all definitions
allow inference of coexistence or exclusion, that is, niche and
fitness differences do not predict whether species will persist
(Appendix A). Finally, different definitions imply different
ranges for niche and fitness differences. Hence, we cannot
readily compare results from different authors (Godoy &
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Levine 2014; Chu & Adler 2015; Grainger et al. 2019; Song
et al. 2019; Appendix A).
Here, we first show that available definitions of niche differ-

ences do not align with biological intuition and present a new
definition that does. We also derive the corresponding defini-
tion of fitness differences and coexistence conditions. An
important feature of these new definitions is that they apply
to any mathematical model or empirical system driven by any
mechanism, with the sole critical requirement that invasion
analysis correctly predicts coexistence. The flexibility of the
new definitions allows comparing different community types,
containing an arbitrary number of species and a variety of
species interactions, addressing a key limitation in theoretical
ecology. Finally, we illustrate theoretical and experimental
applications of the new definitions. To this end, we apply the
definitions to various models representing a suite of interac-
tion types. We also show how simple growth experiments suf-
fice to quantify niche and fitness differences, using an
empirical dataset of two picocyanobacteria competing for
light.

THEORY

A diversity of definitions

To facilitate interpretation and broad application, the defini-
tions for niche and fitness differences should align with bio-
logical intuition. Intuition dictates that niche differentiation
facilitates persistence (N increases as species persist more
easily). In addition, a definition of N that is consistent with
intuition must satisfy five constraints. First, when intra- and
interspecific interactions are of equal size (a ¼ �1in Fig. 1),
individuals of both species are interchangeable: the effect an
individual has on another individual does not depend on spe-
cies identity. Thus, N should equal 0 (black triangle in Fig. 1;
Chesson 1990). Second, when interspecific interactions are
absent (a ¼ 0 in Fig. 1), each species grows as if other species
are absent. Thus, N should be some predefined non-zero real
number that indicates complete niche differentiation, for
example 1 (black dot in Fig. 1; Godoy & Levine 2014). The
third point is the logical consequence of these first two points:
intermediate interspecific interaction strengths should result in
N between 0 and 1 (solid rectangle in Fig. 1). Fourth, when
interspecific interactions are more negative than intraspecific
interactions, persistence is ‘harder’ (N should be smaller) than
if species occupied exactly the same niche (N ¼ 0). Conse-
quently, N should be negative (dashed rectangle in Fig. 1), as
has been stated before (Mordecai 2011; Ke & Letten 2018).
Fifth, when interspecific interactions are positive, for example
because of facilitation, the presence of other species makes
persistence ‘easier’ (N should be greater) than if these other
species would have no effect on the focal species (i.e. inter-
specific interactions are absent, in which case N ¼ 1). Thus,
N should inevitably be greater than 1 (dotted rectangle in
Fig. 1) when species interactions are positive.
We found that available definitions of N are unlikely to ful-

fil the five requirements outlined here. To show this, we com-
puted N for the annual plant model, a workhorse of
theoretical ecology (Adler et al. 2007, 2010, 2012; Angert

et al. 2009; Levine & HilleRisLambers 2009; Godoy et al.
2014; Germain et al. 2016; Fig. 1), using eight of the 10 defini-
tions for niche and fitness differences. The two other defini-
tions cannot be applied to the annual plant model. All
definitions return greater N as species interactions shift from
strongly negative, over weakly negative, to positive. However,
different definitions for niche difference imply a variety of
niche difference responses to the strength and sign of species
interactions (Fig. 1). In addition, these definitions do not map
these species interactions to the intuitive niche difference val-
ues, as stated above (but see Chesson (1990); Chesson &
Kuang (2008); Godoy & Levine (2014)). We therefore intro-
duce, in the next section, a new definition that does align with
biological intuition.

Defining niche differences based on biological intuition

Here, we first construct a general definition for N that fulfils
the five requirements outlined in the previous section, and is
therefore based on biological intuition. To construct a

Figure 1 The modelled response of niche differences (N ) to the

interspecific interaction strength a between two annual plants differs

among available definitions. The black triangle indicates where inter- and

intraspecific interactions are equal (a ¼ �1), and so species occupy the

same niche, meaning that N should be 0. Communities with stronger

interspecific interactions must have N\0 (dashed rectangle). The black

dot indicates where species do not interact (a ¼ 0), and so species have

completely different niches, meaning N should be 1. Consequently,

communities in which interspecific interactions are positive (a [ 0)

should have N larger than 1 (dotted rectangle). Finally, for all

communities where �1� a� 0, N must have intermediate values

(0�N � 1, solid rectangle). The new definition proposed here (red),

which is applicable to a wide variety of models and experimental data (i.e.

not only the annual plant model), complies with this biological intuition.

Parameter values, a plot for the corresponding fitness differences (F ), and

mathematical expressions of the N and F definitions are in Appendix A.
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definition of N , we start by considering the per capita growth
of a species i

1

Ni

dNi

dt
¼ fi Ni;Nj

� � ð1Þ

where Ni;Nj are densities of species i and j (i 6¼ j) with which i
interacts. fi can be essentially any function that describes the
per capita growth rate of species i. A discrete system
Ni tþ 1ð Þ ¼ Ni tð Þfi Ni tð Þ;Nj tð Þ

� �
can be analysed as well, by

taking the natural logarithm that is f
0
i Ni;Nj

� � ¼ logðfi Ni;NjÞ
� �

(Chesson 1994, 2003). As done mostly in modern coexistence
theory (but see Schreiber et al. (2019)), we do not consider Allee
effects (positive density dependence), such that we can assume
fi 0; 0ð Þ [ fi Ni; 0ð Þ: a species grows faster when its density is
lower. While accounting for Allee effects is technically possible
with the definitions proposed here, interpretation of N will be
challenging (see below). Furthermore, we assume that each spe-
cies has a stable monoculture equilibrium denoted N�

i and that

the invasion growth rate fi 0;N�
j

� �
correctly predicts coexis-

tence. That is, the two species i and j coexist if and only if both

species have a positive ‘invasion growth rate’ (fi 0;N�
j

� �
[ 0).

The invasion growth rate is the growth rate of a species when it
is reduced to low density (� 0) and the other species is at its
monoculture equilibrium density. Examples where invasion
analysis does not predict coexistence are found in Barab�as et al.
(2018) and Schreiber et al. (2019). We only assume a fixed point
equilibrium for notational simplicity, but the definitions also
apply to a stationary distribution equilibrium.
When N ¼ 0, inter- and intraspecific interactions are equal.

Thus, the identity of the individual does not matter, such that,
in eqn 1, fi Ni;Nj

� �
is equivalent to writing fi Ni þ Nj; 0

� �
.

However, one cannot simply sum species densities. For exam-
ple, a large tree and a small forb may draw down the same
resource. However, they will most likely do so to a different
extent. Resource consumption of each individual tree may be
much greater than the resource consumption of each individ-
ual forb. Therefore, we introduce a conversion factor, cj, that
translates the density of a species into a density of the other
species, that would consume the same amount of resources.
No mechanistic understanding of the species interactions is
necessary to compute cj, and as we show below, it can be esti-
mated empirically. While the ecological interpretation of c is
discussed below (Applications), we already stress that these
are not the scaling factors known from modern coexistence
theory (Barab�as et al. 2018; Chesson 1994; Ellner et al. 2019).
Hence, the growth of species i can be written as:

N ¼ 0 ) fi Ni;Nj

� � ¼ fi Ni þ cjNj; 0
� � ð2Þ

When N ¼ 1, interspecific species interactions are absent.
Thus, species j has no effect on species i, and so species i
grows as if species j were absent, that is we can put the den-
sity of j to zero:

N ¼ 1 ) fi Ni;Nj

� � ¼ fi Ni; 0ð Þ ð3Þ
Equations 1–3 hold for all densities Ni, Nj. However, we

will now apply it to obtain species i’s invasion growth rate,
which allows interference about coexistence. This corresponds
to choosing Ni � 0 and Nj ¼ N�

j , which is j’s monoculture

equilibrium. In this scenario, eqns 2 and 3 become

N ¼ 0 ) fi 0;N�
j

� �
¼ fi cjN

�
j ; 0

� �
and N ¼ 1 ) fi 0;N�

j

� �
¼ fi 0; 0ð Þ. Here, fi 0; 0ð Þ is the intrinsic growth rate and

fi 0;N�
j

� �
is the invasion growth rate. For fi cjN

�
j ; 0

� �
, we

introduce the term no-niche growth rate of species i. This is
the growth rate of species i if there was no niche differentia-
tion, that is if N would be 0. Technically, the no-niche growth
rate of species i is the growth rate at the converted monocul-
ture density of its competitor (species j).
The main idea behind the new definitions is to let N fulfil

the requirements from the previous section. The simplest way
to do so is by writing N as a linear function that equates to 2
and 3 at the desired growth rates:

N i ¼
fi 0;N�

j

� �
� fi cjN

�
j ; 0

� �
fi 0; 0ð Þ � fi cjN

�
j ; 0

� � ð4Þ

This new definition by design fulfils the requirements, which
can be seen when applying it to the annual plant model
(Fig. 1). When species interact negatively and do so more
within than between species, N i is bounded in 0; 1½ � (solid
rectangle). When interspecific interactions are more negative
than intraspecific interactions, species grow slower when rare

(fi 0;N�
j

� �
\fi cjN

�
j ; 0

� �
) and N i will be negative (dashed rect-

angle). When interspecific effects are positive

(fi 0; 0ð Þ\fi 0;N�
j

� �
), N i is larger than 1 (dotted rectangle).

This new definition should be interpreted as follows. The
numerator of N i compares the growth of species i when only

interspecific interactions are present (fi 0;N�
j

� �
) with its growth

when only intraspecific interactions matter (fi cjN
�
j ; 0

� �
). Note

that in this last growth rate, cjN
�
j denotes a density of species i.

Both growth rates are evaluated at the same total converted
density, but at different frequencies of species i, being 0% in

fi 0;N�
j

� �
and 100% in fi cjN

�
j ; 0

� �
.The numerator of N i there-

fore effectively measures frequency dependence of species i
(Adler et al. 2007; Levine & HilleRisLambers 2009). The
denominator of N i, which is always positive and thus does not
influence the sign of N i, compares the growth of species i when
its density is � 0 with its growth when the density of species i is
at the converted equilibrium density of j (cjN

�
j ). Thus, the

denominator of N i measures the strength of species i’s density
dependence. N i therefore measures the strength of frequency
dependence, relative to that of density dependence. According
to this new definition, and unlike almost all other definitions
(but see Adler et al. (2007)), N i is species-specific and is there-
fore not a community characteristic. However, N i does depend
on species j as well, as species j will influence species i’s invasion
and no-niche growth rates (eqn 4). In what follows, we use the
subscript i (N i) only to distinguish between the niche differences
of the species, and useN to refer to niche differences in general.

Fitness differences and coexistence

The novel definition of N implies a new definition of the fit-
ness difference F . Verbally, F should represent the per capita
growth rate when both species occupy the same niche, that is

© 2020 John Wiley & Sons Ltd/CNRS
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when N ¼ 0 (Adler et al. 2010; Barab�as et al. 2018). Therefore

F i ¼
fi cjN

�
j ; 0

� �
fi 0; 0ð Þ ð5Þ

F i ranges from �1 to 1 (because we assume no Allee effects,

i.e. fi cjN
�
j ; 0

� �
\ fi 0; 0ð Þ) and measures how well species i

grows in the absence of frequency dependence (no-niche
growth rate, numerator; Adler et al. 2007, 2010), compared to
its intrinsic growth rate (denominator). When F i is 0, species i
is equally competitive as species j. Otherwise exactly one spe-
cies, the competitive dominant, has F i [ 0.
N and F both depend on the intrinsic and the no-niche

growth rate. The no-niche growth rate itself depends implicitly
on the invasion growth rate as well (see below eqn 9). In gen-
eral, changing any underlying parameter will affect both N
and F , that is. they are interdependent (Song et al. 2019).
Now that we have defined both N and F , we can evaluate

when species i can coexist with species j. Interestingly, normal-

ising the invasion growth rate by the intrinsic growth rate

yields
fi 0;N�

jð Þ
fi 0;0ð Þ ¼ N i þF i �N i � F i (Appendix B). Thus, i can

persist within the community when1:

�F i\
N i

1�N i
ð6Þ

This inequality formalises the idea that species persist, when
N ‘overcome’’ F . However, the inequality is only meaningful
if invasion growth rate correctly predicts coexistence. This
inequality yields a number of important insights. First, as for
N , also F is species specific. Taken together, this shows that
the above inequality should therefore be considered as the
condition for species i to persist. Only if all species from a
community fulfil this inequality, all species will coexist. Sec-
ond, the minus sign on the left-hand side of eqn 6 shows that
a high F i implies a competitive advantage for species i, which
is consistent with previous insights (Chesson 2000, 2003; Adler
et al. 2007). Third, completely different niches are sufficient to

overcome arbitrarily large F i (i.e. N ¼ 1 ) �F\ 1
1�1 ¼ 1).

Conversely, if species occupy the same niche (i.e.

N ¼ 0 ) �F\ 0
1�0 ¼ 0), coexistence is only possible under

neutrality (i.e. F i ¼ F j ¼ 0). Fourth, species with negative N
cannot coexist, as species’ growth is positively frequency
dependent: species grow faster when abundant (Mordecai
2011; Ke & Letten 2018; Schreiber et al. 2019).

Extension beyond species pairs

The definitions for N and F naturally extend to communities
composed of more than two species, hereafter ‘multispecies
communities’. To show this, we generalised the invasion
growth rate and the no-niche growth rate to the case of multi-
species communities (for technical details, see Appendix B):

N i ¼
fi 0;N

�i;�� �� fi
P

j6¼i cijN
�i;�
j ; 0

� �
fi 0; 0ð Þ � fi

P
j 6¼i cijN

�i;�
j ; 0

� � ð7Þ

F i ¼
fi
P

j6¼i cijN
�i;�
j ; 0

� �
fi 0; 0ð Þ ð8Þ

Here N�i;� is the vector of equilibrium densities in the
absence of species i, 0 denotes the absence of all species other
than i, and similar to the definition for species pairs (eqn 4),
cij converts densities of species j into i. These definitions mea-
sure the net effect of species interactions on N and F , that is
including direct, indirect (Godoy et al. 2017) and higher order
effects (Grilli et al. 2017). More specifically, the interpreta-
tions given for the two-species community still apply, that is a

species can persist if �F i\ N i

1�N i
and the multispecies case ful-

fils the five constraints outlined above (Appendix B). These
interpretations are valid when (1) invasion analysis is possible
and (2) correctly predicts coexistence, (Turelli 1978; Chesson
1994, 2000). In multispecies communities, but in some two-
species communities as well, (1) and (2) will sometimes not be
met (Barab�as et al. 2018; Saavedra et al. 2017).

APPLICATIONS

Application to community models

The new definitions of N and F are applicable across various
community types, driven by a variety of species interactions.
To demonstrate this, we apply the definitions to five classic
community types, and examine how the various growth rates
and resulting ci, cj, N and F change between these types.
Application to an empirical community, where species interac-
tions may or may not be known a priori, is illustrated in the
next section.
A first step in applying eqns 4 and 5 to a model is the quantifi-

cation of the factors ci and cj. The c convert species i to j and
vice-versa, and so logically cj � ci ¼ 1. For example, if one tree
influences resource levels 10 times more than a forb (ctree ¼ 10),
the forb influences resource levels 10 times less than the tree
(cforb ¼ 1=10). After conversion, both species thus have the same
total influence on the environment. In Fig. 2a, we provide an
example of two species consuming common resources. We con-
verted their consumption rates such that total consumption is
the same for both species (Fig. 2b): the white and the grey area
are equal. This example highlights two results. First, the c, by
equating the total influence on limiting factors, is needed to
correctly compute niche differences. That is, they remove any
effect fitness differences may have on niche overlap. Second,
after conversion (Fig. 2b), both species now also happen to
have the same proportion of shared limiting factors
(1�N i ¼ light grey region ¼ 1�N j). We can therefore find c
by solving the equations.

1�N i ¼ 1�N j ð9Þ
ci � cj ¼ 1 ð10Þ
In Box 1, we illustrate this first step, and the calculation of

N and F , for a MacArthur consumer-resource model. We
then convert this model into the well-known Lotka–Volterra
model to express N and F using interaction coefficients. This
exercise highlight the following results. First, while N and F
are species specific, they can be identical between species in1Assuming that N i\1
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species pairs competing for shared resources. Indeed, changing i
for j in eqn 19 shows that N i ¼ N j. However, they cease to be
identical when including more than two species, as can be seen
from Fig. 2c. Indeed, niche overlap, and therefore N , is species
specific in that case. Second, the new definitions of N and F ,
when applied to the Lotka–Volterra model, collapse to equiva-
lent definitions for N and F previously found for the same
model (Chesson 1990). This shows that these new definitions,
which apply to any model (for which invasion analysis is possi-
ble and useful) still agree with the definitions found for this par-
ticular model. Third, ci carries a biological interpretation: in the
MacArthur model, ci indeed increases with the total influence
on limiting factors (see eqn 14). This shows why the conversion
factors ci differs completely from the scaling factors used in
modern coexistence theory: the latter are weights used to parti-
tion invasion growth rates (Barab�as et al. 2018; Chesson 1994;
Ellner et al. 2019; Appendix C).
This last feature is independent of the specific model formu-

lation, that is, it extends beyond the McArthur resource
model to any model in which two species interact through
resource consumption, resource consumption stimulates
growth and species consume more of a resource when its
availability is higher. In Appendix D, we show a mathemati-
cal proof that in such a model, increasing the resource con-
sumption of species i will increase ci, that is, c is linked to the
total resource consumption of a species. Finding the c when
species have positive effects on each other (for example by
generating resources or by limiting the efficacy of a predator)
requires additional considerations, which are discussed in
Appendices B and D.
Finally, we apply eqns 4 and 5 to examine how the various

growth rates underlying N and F , as well as N and F itself,
change across community types (Fig. 3) modelled using
Lotka–Volterra equations (Appendix D). Priority effects occur

when interspecific interactions are stronger than intraspecific

interactions, that is (fi 0;N�
j

� �
\ fi cjN

�
j

� �
, Fig. 3 c and d).

Neutrality occurs when N ¼ F ¼ 0 (Adler et al. 2007).
Competitive exclusion represents the well-known case where
N are not large enough to compensate for F : only the com-
petitive dominant (species i) persists (Chesson 2013; Ke &
Letten 2018).
For the case of ‘mix of competition and facilitation’ (Zar-

netske et al. 2013; Adler et al. 2018) and mutualism, one or
both species have an invasion growth rate that is higher than
their intrinsic growth rate: these species profit from other spe-
cies and thus grow better together than alone. Therefore,

Box 1. N and F for the MacArthur and Lotka–Volterra model

Consider a community of two species whose dynamics fol-
low MacArthur 1970

1

Ni

dNi

dt
¼
Xm
l¼1

uilRl �mi ð11Þ

1

Rl

dRl

dt
¼ Kl � Rl �

X2
i¼1

uilNi ð12Þ

where uil is the rate at which species i consumes resource l,
Rl is the density of resource l, mi is the loss rate and Kl is
the resource’s carrying capacity. We assume that the
resource dynamics are faster than the dynamics of the con-
sumers, such that Rl is always at equilibrium. In that case,
the model simplifies to MacArthur 1970:

1

Ni

dNi

dt
¼
Xm
l¼1

uilKl �mi �
Xm
l¼1

uilujlNj �
Xm
l¼1

u2ilNi ð13Þ

Solving eqns 9 and 10 yields (Appendix C).

cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

l¼1 u
2
jlPm

l¼1 u
2
il

s
ð14Þ

Thus, c indeed captures the species’ total influence on
limiting factors. Replacing the c’s into the growth rates,
one obtains (Appendix D):

N�
j ¼

Pm
l¼1 ujlKl �mjPm

l¼1 u
2
jl

ð15Þ

fi 0; 0ð Þ ¼
Xm
l¼1

uilKl �mi ð16Þ

fi 0;N�
j

� �
¼
Xm
l¼1

uilKl �mi �
Xm
l¼1

uilujl

Pm
l¼1 ujlKl �mjPm

l¼1 u
2
jl

ð17Þ

fi cjN
�
j ; 0

� �
¼
Xm
l¼1

uilKl �mi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

l¼1 u
2
ilPm

l¼1 u
2
jl

s Xm
l¼1

ujlKl �mj

 !

ð18Þ
Finally, replacing these into eqns 4 and 5, one obtains

(Appendix D):

N i ¼ 1�
Pm

l¼1 uilujlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
l¼1 u

2
il

Pm
l¼1 u

2
jl

q ð19Þ

F i ¼ 1�
Pm

l¼1 ujlKl �mjPm
l¼1 uilKl �mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
l¼1 u

2
ilPm

l¼1 u
2
jl

s
ð20Þ

We now note that eqn 13 is equivalent to the Lotka–Vol-

terra model ( 1Ni

dNi

dt ¼ li � aiiNi � aijNj), where

li ¼
Pm

l¼1 uilKl �mi, aii ¼
Pm

l¼1 u
2
il and aij ¼

Pm
l¼1 uilujl are

the intrinsic growth rate, the intraspecific interaction
strength and interspecific interaction strength respectively.
Plugging these expressions in eqns 4 and 5 recovers equa-

tions for N and F that are equivalent to the earlier

versions of N and F in the Lotka–Volterra model (Ches-
son 1990, 2000, 2013):

N i ¼ 1�
ffiffiffiffiffiffiffiffiffi
aijaji
aiiajj

r
ð21Þ

F i ¼ 1� lj
li

ffiffiffiffiffiffiffiffiffi
ajiaii
ajjaij

r
ð22Þ
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these species have N [ 1. In these cases, F matter less for
persistence (they only indicate the winner when N ¼ 0).

Application to experiments

The applicability of the new N and F definitions extends
beyond models and can be used to analyse coexistence empiri-
cally. In these experiments, one needs to measure the various
growth rates from eqns 4 and 5 to quantify N and F (Fig. 4).
These experiments also allow estimating the factors ci and cj,
giving insight in the species’ total influence on limiting factors.
Importantly, the definitions can be computed directly from
the measured growth rates, without any assumption on the
species’’ ecology or the need to fit a model, in contrast to
many other definitions. This is particularly useful since natu-
ral communities are typically governed by a multitude of spe-
cies interactions, many of which will be unknown (Montoya
et al. 2006; Carrara et al. 2015).
To illustrate the application to experimental data, we per-

formed an experiment in which we measured growth of two
picocyanobacteria species competing for light (Fig. 4).
Detailed experimental methods can be found in the
Appendix E. The two picocyanobacteria species contain dif-
ferent pigments (phycocyanobilin and phycoerythrobilin),
which allow them to absorb different wavelengths of light
(Fig. 4c; Six et al. 2007). Because light colour usages of these
two species partly overlap, exactly as did resource usage in
the MacArthur model (Fig. 2), we expected that 0\N\1
(i.e. species compete). Experiments and field data have shown
that pigmentation differences among picocyanobacteria lead
to a resource (light) partitioning that is sufficiently strong to
allow coexistence (Stomp et al. 2004, 2007a,b). We therefore
also expected that �F\ N

1�N (i.e. coexistence).

Three growth curves per species suffice to quantify N and
F for a two-species community (Fig. 4). First (Fig. 4a and b,
triangles), we grew both species in a monoculture, starting
from low density to obtain the intrinsic growth rate. Second
(Fig. 4a and b, circles), we grew both species in a monocul-
ture starting from a density higher than their equilibrium den-
sity to obtain the no-niche growth rate. The growth rate at
which the density of the focal species reaches that of the con-
verted equilibrium density of its competitor (cjN

�
j ) is the no-

niche growth rate. In this particular case, the no-niche growth
rates proved very small because N�

i � cjN
�
j and N�

j � ciN
�
i . An

example where this is not the case can be found in Fig. 5.
Third (Fig. 4a and b, squares), we introduced each of both
species into a monoculture at equilibrium of its competitor to
obtain the invasion growth rates. More precisely, we intro-
duced 5% of the invading species’ equilibrium density (Nar-

wani et al. 2013; Gallego et al. 2019). We estimated all these

growth rates as fi Ni tð Þ; 0ð Þ � log Ni tþDtð Þ
Ni tð Þ

� �
=Dt with Dt ¼ 84 h.

We then fitted a univariate spline to estimate these growth
rates at the various densities. Finally, we were able to use the
measured growth rates to solve the eqn 9 and thus obtain ci
and cj, as well as N and F . Importantly, the converted equi-
librium density at which the no-niche growth rate is measured
is part of the solution to these equations.
The results of the experiment confirmed our expectations:

species compete for light (0\N\1 for both species) and
coexist (see triangle in Fig. 3). The estimated growth rates
show that both species can grow independently of each other
(positive intrinsic growth rate), and can invade each other’s
monoculture (positive invasion growth rate). Their no-niche
growth rate is much smaller than their corresponding intrinsic
growth rates, and slightly negative for species 1 but positive

(a) (b) (c)

Figure 2 Species-specific influences on limiting factors (here, resources) for a two (a and b)- and a three (c)-species community. In the two-species

community (a) the two species do not have the same total influence on the limiting factors, therefore the amount of shared resources is different

(1�N i ¼ light grey area
white area 6¼ light grey area

grey area ¼ 1�N j). The conversion factors ci ¼ whitearea
greyarea are chosen such that the two species have the same total effect on

limiting factors (b). Then, the two species also share an equal proportion of their resources. This is, however, not the case in a multispecies community (c)

(Adler et al. 2007), where the amount of shared resources is smaller for the black species than for the white species, even though all species consume the

same total amount of resources. We therefore expect N black 6¼ N white.
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for species 2. This shows that removing all niche differentia-
tion would lead to the exclusion of species 1, as is also seen
from these species’ fitness differences F (Fig. 3). Finally, we
found the conversion factors ci and cj to match the relative
total resource consumption (absorption) of the two species
(Fig. 4d). This finding aligns with the theoretical result that
the conversion factors link to the total influence on limiting
factors (available resources) and confirms that these species
compete for light. While this experimental procedure is
applied to fast-growing communities, this design can be
applied to communities with slow-growing species as well.
Any method that allows estimating per capita growth is suffi-
cient, but obviously these methods will vary with the consid-
ered community. For annual plants, for example, one may
sow different quantities of seeds, ranging from low to above
equilibrium density, in plots, and measure their growth.

DISCUSSION

In this article, we propose new definitions for N and F that
are biologically intuitive by design. The approach is similar to
Carroll et al. (2011) in that it allows computing N and F
from simulations or experimental data, without the knowledge

of the underlying mechanisms. When applied to the Lotka–
Volterra model for competing species, the definitions collapse
to equivalent mathematical expressions of N and F found
before (Chesson 1990, 2013), while still being applicable to a
large body of community models. This indicates that there is
a potential for these new definitions to unify existing defini-
tions (Barab�as et al. 2018; Chesson 2000; Carroll et al. 2011;
Godoy & Levine 2014), while enforcing the connection
between theory and biological intuition (Adler et al. 2007,
2010; HilleRisLambers et al. 2012).

Specificities and limitations

N and F , as defined in this paper, differ from other defini-
tions of niche and fitness differences. Most notably, the pro-
posed definitions are not based on specific mathematical
models, apply to communities with positive species interac-
tions and/or more than two species and allow inference of
coexistence or exclusion. Thus, the new definitions notably
extend modern coexistence theory based on invasion analyses.
The structural approach of Saavedra et al. (2017) is the only
definition for niche and fitness differences which can analyse
communities that are outside the scope of this new definition,

(a) (b)

(c) (d)

Figure 3 N and F applied to common two-species communities. Panels (a) and (b) show the distribution of N and F for species i and species j,

respectively, where colour codes refer to different communities (see legend). (a–e) are communities simulated with Lotka–Volterra models, while

‘experiment’ refers to the performed experiment (Fig. 4). Only species in the grey area have a positive invasion growth rate, that is only those persist

(Barab�as et al. 2018; Chesson 2000). Panels (c) and (d) compares the invasion and the no-niche growth rate to the intrinsic growth rate (=1; vertical full
line).
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as it does not depend on invasion analysis. They define N
and F for a community in which the equilibrium point of the
community can be described as r ¼ aN�, where a is a n by n
matrix containing the species interactions and r is a vector con-
taining the intrinsic growth rates (or equivalent), which may
be subject to additional constraints (Song et al. 2018). Finally,
there are still communities that are beyond the reach of all def-
initions for N and F , including the newly proposed defini-
tions: multispecies communities with nonlinear interspecific
species interactions (therefore excluding the approach of
Saavedra et al. (2017), but see Cenci & Saavedra 2018), and
not allowing invasion analysis (therefore excluding the
approaches of Carmel et al. (2017); Carroll et al. (2011); Ches-
son (2003) and the definitions proposed here).
The reliance on invasion analysis is a first limitation of the

proposed definitions, as it is for many other definitions (Ches-
son 2003; Carroll et al. 2011; Zhao et al. 2016; Carmel et al.
2017). This reliance means that one should be able to com-
pute the invasion growth rate for each species and that the
invasion growth rates correctly predict coexistence. This can

limit the applicability of the definitions in two ways. First,
there will be communities in which invasion analysis does not
correctly predict coexistence (Barab�as et al. 2018). An exam-
ple is the annual plant model combined with positive fre-
quency dependency proposed by Schreiber et al. (2019).
Second, invasion analysis requires that all species within each
S-1 subcommunity (the community without the invading spe-
cies) stably coexist. A well-known counter example is the
rock–paper–scissor community, in which the whole commu-
nity can coexist, while each two-species subcommunity is not
stable (Grilli et al. 2017). While these two assumptions will be
met for most two-species communities, we expect they will be
increasingly violated as communities contain more species
(Saavedra et al. 2017).
A second limitation of the new definitions is the difficulty of

interpretation that arises in communities with Allee effects.
The proof that the ci have a unique solution demands Allee
effects to be absent (see Appendix B). Consequently, Allee
effects imply that species may have multiple N and F . This
highlights the meaning of Allee effects: species change their

(a) (b)

(c) (d)

Figure 4 N and F applied to experimental data for two marine cyanobacteria species from the genus Synechococcus, sampled in the Baltic sea Stomp et al.

2004. (a and b) Population growth in the different experiments with different starting conditions. Fitted lines are obtained by interpolating growth rates.

Importantly, to compute N and F one does not have to fit a community model through the measured densities. The arrows indicate the growth rates we

measured to quantify N and F . Error bars (grey) show one standard deviation (three replicates). (c) The two species have different absorption spectra and

therefore partition light usage. A spectrum of the incoming light intensity can be found in Appendix E. (d) The experiment confirms that the species

compete and coexist, as the invasion growth rate is positive, but smaller than the intrinsic growth rate. The conversion factor c is very similar to the

relative total absorption of the two species, confirming its interpretation as a measure of total influence on the limiting factors (see eqn 14). An automated

code to compute N and F from such experimental data can be found on https://doi.org/10.6084/m9.figshare.12000840.v1.
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dependence on limiting factors with their density. While the
new definitions do allow computing these multiple N and F ,
it is at present not clear how to interpret them.

The need for new definitions

With already 10 definitions at hand, one may ask why we
need new definitions for niche and fitness differences. We
identify at least two reasons. A first reason deals with the
complexity of many community models. Many approaches to
compute niche and fitness differences first fit a community
model to empirical data and then perform maths to link the
model to N and F (Chesson 1990; Godoy & Levine 2014;
Saavedra et al. 2017; Bimler et al. 2018). One challenge is that
these maths are often non-trivial (e.g. Carmel et al. (2017);
Godoy & Levine (2014); Saavedra et al. (2017)) and one needs
to resort into simplifying the community model (Godoy &
Levine 2014; Letten et al. 2017). This may lead to the omis-
sion of mechanisms contributing to N (Chu & Adler 2015).
For example, niche partitioning could arise at different life
stages of a species (Moll & Brown 2008), or through its inter-
actions with resources (Chesson 1990), predators (Chesson &
Kuang 2008) or mutualists (Johnson & Bronstein 2019) and
will be affected by environmental change (Rey et al. 2017;
Wainwright et al. 2019). An important advantage of the new
definitions is that they do not require analytical solutions of a
community model or even a community model at all; one can
simply simulate or perform the experiments described in the
section ‘Application to experiments’ and measure the resulting
growth rates to compute N and F . Thus, the model or experi-
mental community can be used in its full complexity, captur-
ing all mechanisms potentially contributing to N and F .
A second reason is that the analysis of communities with

non-competitive interactions (e.g. mutualistic and facilitative;
Fig. 1) and multiple species (eqn 7) is urgently needed.
Indeed, such communities have often been analysed in a

suboptimal way. For example Narwani et al. (2017) tested
whether closely related freshwater green algae are more likely
to coexist due to higher niche differentiation. However, N
could not be computed when species interactions were posi-
tive. Similarly, in a meta-analysis on terrestrial plants, Adler
et al. (2018) were not able to compute N for one third of the
data, as they contained positive interactions. Chu & Adler
(2015) measured N and F in an age-structured model for
perennial plants fitted to long-term demographic data, Petry
et al. (2018) measured the effects of ant consumption on N
and F and Veresoglou et al. (2018) reanalysed data from the
‘BIODEPTH’ grassland biodiversity experiment. While these
studies do report computed N and F for multispecies
communities, the interpretation of these variables is difficult,
as they do not predict coexistence in multispecies communi-
ties.

New insights and outstanding questions

Historically, N measured the proportion of resources not
shared by two species (Hurlbert 1978). Being a proportion, N
was bound between 0 and 1 (Godoy & Levine 2014). Linking
a mechanistic (resource uptake) model to the Lotka–Volterra
model (MacArthur 1970; Chesson 1990) was a key step in
exploring N beyond the traditional range 0; 1½ �. Recent
research interpreted negative N as a sign that interspecific
interactions are stronger than intraspecific interactions, lead-
ing to priority effects (Ke & Letten 2018). The interpretation
that N greater than 1 imply positive interspecific interactions
is a logical next step. Our results show that this interpretation
is correct when both species have symmetric positive effects
on each other, but also that species benefiting from other spe-
cies (e.g. ‘mix of competition and facilitation’ in Fig. 3) would
have N [ 1.
The results suggest that N and F are species-specific prop-

erties. While this idea has already been introduced by Adler

(a) (b)

Figure 5 N and F applied to simulated experimental data using case c from Figure 3, where c1N
�
1 (c2N

�
2) and N�

2 (N�
1) differ substantially, unlike in

Figure 4. For the competitive inferior (species 2), we have c1N
�
1 [N�

2, while for the other species (species 1) we have, c2N
�
2\N�

1. For species 1 the second

experiment (dotted black line) proved not necessary to compute N and F , as the no-niche growth rate can be estimated from experiment 1 (dashed arrow,

dashed black line). However, in general one will not know in advance for which species experiment 2 is unnecessary.
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et al. (2007), virtually all other definitions consider N a com-
munity property. This likely stems from the fact that most
definitions focus on two-species communities with competitive
interactions, in which case niche differences are the proportion
of shared resources, which is the same for both species
(Fig. 2b, light grey area). Therefore, in this particular case,
the two species have the same N , leading to the impression
that N is a community property.
The results spur three outstanding questions on species

coexistence. A first question deals with the variable c, that
we found increases with the total influence on limiting fac-
tors, both for a class of resource competition models and
empirically. However, our mechanistic understanding of
these factors is absent for models beyond the ones consid-
ered here, notably in systems not driven by resource compe-
tition. Most notably, we do not know how c relates to the
presence of limiting factors with negative effects on per cap-
ita growth. A second outstanding question deals with the
location of species from complex communities on the N
and F planes from Fig. 3. While these positions may be
trivial in some two-species communities, they will not be in
large complex networks with a high number of indirect
effects, possibly leading to surprising conclusions regarding
the contribution of stabilising and equalising forces to per-
sistence. A third question deals with the extended applica-
bility the new definitions offer to modern coexistence
theory. This applicability would allow asking how N or F
compare across community types, mechanisms and environ-
ments. Thus, the new definitions enable cross-community
comparisons in a way that at present is not possible. One
could, for example, examine how species from different
community types position in Fig. 3, to ask if community
types that are thought to harbour a more diverse set of
mechanisms fostering coexistence (e.g. annual plants) distin-
guish from community types that appear to have little pos-
sibilities for niche differentiation (e.g. phytoplankton
(Hutchinson 1959)).
Within a community type (e.g. phytoplankton), one could

compare the stabilising effect of various mechanisms. For
example, we found N and F to indicate coexistence in a clas-
sic example of a community driven by partitioning of the light
spectrum through phenotypic differences (i.e. pigmentation,
see Fig. 4; Stomp et al. 2004). How does the stabilising
strength of these phenotypic differences (driving N ) compare
to the strength of other relevant mechanisms (e.g. competition
for mineral nutrients, allelopathy)? One could also examine
how environmental changes alter the sign of species interac-
tions (Baert et al. 2016; Olsen et al. 2016; Song et al. 2020)
impact the persistence, since the proposed definitions accom-
modate various interaction types.
In conclusion, our results offer a new perspective on two

concepts that underpin biodiversity science, and foster their
intuitive biological interpretation (Fig. 1). The developed
theory is applicable to a variety of ecological communities,
regardless of community complexity, and without the need
of mathematical skills (Ellner et al. 2019), for any system in
which invasion analysis is possible and correctly determines
coexistence. The fact that various communities can be anal-
ysed with one approach is a major step forward. Taken

together, the novel definitions of N and F promote concep-
tual unification and facilitate empirical research in commu-
nity ecology and biodiversity science.

ACKNOWLEDGEMENTS

We thank O. Godoy, G. Barabas and S. Ellner for comment-
ing on earlier versions of this manuscript. We thank J. Virgo
for conducting the experiment. F.D.L. received support from
grants of the University of Namur (FSR Impulsionnel
48454E1) and the Fund for Scientific Research, FNRS (PDR
T.0048.16).

AUTHORSHIP

J.W.S. and F.D.L. developed the ideas and wrote the manu-
script. J.W.S. developed and implemented the mathematical
theory.

DATA AVAILABILITY STATEMENT

The code to compute N and F as well as to produce all fig-
ures will be archived on Zenodo. Data obtained from the
experiment will be included in the repository (https://doi.org/
10.6084/m9.figshare.12000840.v1).

REFERENCES

Adler, P.B., HilleRislambers, J. & Levine, J.M. (2007). A niche for

neutrality. Ecol. Lett., 10, 95–104.
Adler, P.B., Ellner, S.P. & Levine, J.M. (2010). Coexistence of perennial

plants: An embarrassment of niches. Ecol. Lett., 13, 1019–1029.
Adler, P.B., Dalgleish, H.J. & Ellner, S.P. (2012). Forecasting plant

community impacts of climate variability and change: When do

competitive interactions matter? J. Ecol., 100, 478–487.
Adler, P.B., Smull, D., Beard, K.H., Choi, R.T., Furniss, T., Kulmatiski,

A. et al. (2018). Competition and coexistence in plant communities:

intraspecific competition is stronger than interspecific competition. Ecol.

Lett., 21, 1319–1329.
Allan, E., Van Ruijven, J. & Crawley, M.J. (2010). Foliar fungal

pathogens and grassland biodiversity Allan. Ecology, 91, 2572–2582.
Angert, A.L., Huxman, T.E., Chesson, P. & Venable, D.L. (2009).

Functional tradeoffs determine species coexistence via the storage

effect. Proc. Natl Acad. Sci., 106, 11641–11645.
Baert, J.M., Janssen, C.R., Sabbe, K. & De Laender, F. (2016). Per

capita interactions and stress tolerance drive stress-induced changes in

biodiversity effects on ecosystem functions. Nat. Commun., 7, 1–8.
Barab�as, G., D’Andrea, R. & Stump, S.M. (2018). Chesson’s coexistence

theory. Ecol. Monogr., 88, 277–303.
Bimler, M.D., Stouffer, D.B., Lai, H.R. & Mayfield, M.M. (2018).

Accurate predictions of coexistence in natural systems require the

inclusion of facilitative interactions and environmental dependency. J.

Ecol., 106, 1839–1852.
Carmel, Y., Cornell, S.J., Belmaker, J., Suprunenko, Y.F., Kent, R.,

Kunin, W.E. et al. (2017). Using exclusion rate to unify niche and

neutral perspectives on coexistence. Oikos, 126, 1451–1458.
Carrara, F., Giometto, A., Seymour, M., Rinaldo, A. & Altermatt, F.

(2015). Inferring species interactions in ecological communities: A

comparison of methods at different levels of complexity. Methods Ecol.

Evol., 6, 895–906.
Carroll, I.T., Cardinale, B.J. & Nisbet, R.M. (2011). Niche and fitness

differences relate the maintenance of diversity to ecosystem function.

Ecology, 92, 1157–1165.

© 2020 John Wiley & Sons Ltd/CNRS

10 J. W. Spaak and F. De Laender Letter



Carson, W.P. & Root, R.B. (2000). Herbivory and plant species

coexistence: Community regulation by an outbreaking phytophagous

insect. Ecol. Monogr., 70, 73–99.
Cenci, S. & Saavedra, S. (2018). Structural stability of nonlinear

population dynamics. Phys. Rev., E, 97.

Chesson, P. (1990). MacArthur’s consumer-resource model. Theor. Popul.

Biol., 37, 26–38.
Chesson, P. (1994). Multispecies competition in variable environments.

Theor. Popul. Biol., 45, 227–276.
Chesson, P. (2000). Mechanisms of maintenance of species diversity.

Annu. Rev. Ecol. Syst., 31(1), 343–366
Chesson, P. (2003). Quantifying and testing coexistence mechanisms

arising from recruitment fluctuations. Theor. Popul. Biol., 64, 345–357.
Chesson, P. (2013). Species Competition and Predation. In: Ecological

Systems: Selected Entries from the Encyclopedia of Sustainability

Science and Technology. (ed Leemans, R.) Springer, New York, NY,

pp. 223–256. https://doi.org/10.1007/978-1-4614-5755-8_13
Chesson, P. & Kuang, J.J. (2008). The interaction between predation and

competition. Nature, 456, 235–238.
Chu, C. & Adler, P.B. (2015). Large niche differences emerge at the

recruitment stage to stabilize grassland coexistence. Ecol. Monogr., 85,

373–392.
Connolly, S.R., Hughes, T.P. & Bellwood, D.R. (2017). A unified model

explains commonness and rarity on coral reefs. Ecol. Lett., 20, 477–
486.

Ellner, S.P., Snyder, R.E., Adler, P.B. & Hooker, G. (2019). An expanded

modern coexistence theory for empirical applications. Ecol. Lett. 22(1),

3–18.
Gallego, I., Venail, P. & Ibelings, B.W. (2019). Size differences predict

niche and relative fitness differences between phytoplankton species but

not their coexistence. ISME J., 13(5), 1133–1143.
Germain, R., Weir, J. & Gilbert, B. (2016). Species coexistence:

macroevolutionary patterns and the contingency of historical

interactions. PRSB, 283, 20160047.

Godoy, O. & Levine, J.M. (2014). Phenology effects on invasion success:

Insights from coupling field experiments to coexistence theory. Ecology,

95, 726–736.
Godoy, O., Kraft, N.J. & Levine, J.M. (2014). Phylogenetic relatedness

and the determinants of competitive outcomes. Ecol. Lett., 17, 836–844.
Godoy, O., Stouffer, D.B., Kraft, N.J. & Levine, J.M. (2017).

Intransitivity is infrequent and fails to promote annual plant

coexistence without pairwise niche differences. Ecology, 98, 1193–1200.
Grainger, T.N., Letten, A.D., Gilbert, B. & Fukami, T. (2019). Applying

modern coexistence theory to priority effects. Proc. Natl Acad. Sci.,

116, 6205–6210.
Grilli, J., Barab�as, G., Michalska-Smith, M.J. & Allesina, S. (2017).

Higher-order interactions stabilize dynamics in competitive network

models. Nature, 548, 210–213.
Harris, K., Parsons, T.L., Ijaz, U.Z., Lahti, L., Holmes, I. & Quince, C.

(2017). Linking Statistical and Ecological Theory: Hubbell’s Unified

Neutral Theory of Biodiversity as a Hierarchical Dirichlet Process: This

paper addresses the issue of a species occupying a specific ecological

niche by introducing a new algorithmic model that. In: Proceedings of

the IEEE.

Hart, S.P., Freckleton, R.P. & Levine, J.M. (2018). How to quantify

competitive ability. J. Ecol., 106, 1902–1909.
HilleRisLambers, J., Adler, P., Harpole, W., Levine, J. & Mayfield, M.

(2012). Rethinking community assembly through the lens of coexistence

theory. Annu. Rev. Ecol. Evol. Syst., 43, 227–248.
Hubell, S.P. (2001). The Unified Neutral Theory of Biodiversity and

Biogeography (MPB-32). Princeton University Press, Princeton, NJ.

Hurlbert, S.H. (1978). The measurement of niche overlap and some

relatives. Ecology, 59(1), 67–77
Hutchinson, G.E. (1959). Homage to Santa Rosalia or why are there so

many kinds of animals? Am. Nat., 93(870), 145–159.
Johnson, C.A. & Bronstein, J.L. (2019). Coexistence and competitive

exclusion in mutualism. Ecology, 100, e02708.

Ke, P.J. & Letten, A.D. (2018). Coexistence theory and the frequency-

dependence of priority effects. Nature Ecology and Evolution, 2, 1691–
1695.

Letten, A.D., Ke, P.J. & Fukami, T. (2017). Linking modern coexistence

theory and contemporary niche theory. Ecol. Monogr., 87, 161–177.
Levine, J.M. & HilleRisLambers, J. (2009). The importance of niches for

the maintenance of species diversity. Nature, 461, 254–257.
MacArthur, R. (1970). Species packing and competitive equilibrium for

many species. Theor. Popul. Biol., 1, 1–11.
Moll, J. & Brown, J. (2008). Competition and coexistence with multiple

Life-History Stages. Am. Nat., 171, 839–843.
Montoya, J.M., Pimm, S.L. & Sol�e, R.V. (2006). Ecological networks and

their fragility. Nature, 442, 259–264.
Mordecai, E.A. (2011). Pathogen impacts on plant communities: unifying

theory, concepts, and empirical work. Ecol. Monogr., 81, 429–441.
Morisita, M. (1959). Measuring of Interspecific Association and.

Similarity Between Communities.Memoirs of the Faculty of Science,

Kyushu University.

Narwani, A., Alexandrou, M.A., Oakley, T.H., Carroll, I.T. & Cardinale,

B.J. (2013). Experimental evidence that evolutionary relatedness does

not affect the ecological mechanisms of coexistence in freshwater green

algae. Ecol. Lett., 16, 1373–1381.
Narwani, A., Bentlage, B., Alexandrou, M.A., Fritschie, K.J., Delwiche,

C., Oakley, T.H. et al. (2017). Ecological interactions and coexistence

are predicted by gene expression similarity in freshwater green algae. J.

Ecol., 105, 580–591.
Olsen, S.L., T€opper, J.P., Skarpaas, O., Vandvik, V. & Klanderud, K.

(2016). From facilitation to competition: Temperature-driven shift in

dominant plant interactions affects population dynamics in seminatural

grasslands. Glob. Change Biol., 22, 1915–1926.
Petry, W.K., Kandlikar, G.S., Kraft, N.J., Godoy, O. & Levine, J.M.

(2018). A competition’defence trade-off both promotes and weakens

coexistence in an annual plant community. J. Ecol., 106, 1806–1818.
Renkonen, O. (1938). Statistisch-€okologische Untersuchungen €uber die

terrestrische K€aferwelt der finnischen Bruchmoore. Societas zoologica-

botanica. Fennica Vanamo.

Rey, P.J., Manzaneda, A.J. & Alc, J.M. (2017). The interplay between

aridity and competition determines colonization ability, exclusion and

ecological segregation in the heteroploid Brachypodium distachyon

species complex. pp. 85–96.
Saavedra, S., Rohr, R.P., Bascompte, J., Godoy, O., Kraft, N.J. &

Levine, J.M. (2017). A structural approach for understanding

multispecies coexistence. Ecol. Monogr., 87, 470–486.
Schreiber, S.J., Yamamichi, M. & Strauss, S.Y. (2019). When rarity has

costs: coexistence under positive frequency-dependence and

environmental stochasticity. Ecology, 100, 1–28.
Siefert, A., Zillig, K.W., Friesen, M.L. & Strauss, S.Y. (2018).

Mutualists stabilize the coexistence of congeneric legumes. Am. Nat.,

193, 200–212.
Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol.,

19, 605–611.
Six, C., Thomas, J.C., Garczarek, L., Ostrowski, M., Dufresne, A., Blot,

N. et al. (2007). Diversity and evolution of phycobilisomes in marine

Synechococcus spp.: A comparative genomics study. Genome Biol., 8,

R259.

Song, C., Rohr, R.P. & Saavedra, S. (2018). A guideline to study the

feasibility domain of multi-trophic and changing ecological

communities. J. Theor. Biol., 450, 30–36.
Song, C., Barab�as, G. & Saavedra, S. (2019). On the consequences of the

interdependence of stabilizing and equalizing mechanisms. Am. Nat.,

194(5), 627–639.
Song, C., Von Ahn, S., Rohr, R.P. & Saavedra, S. (2020). Towards a

probabilistic understanding about the context-dependency of species

interactions. Trends Ecol. & Evol., in press. https://doi.org/10.1016/j.

tree.2019.12.011

Stomp, M., Huisman, J., De Jongh, F., Veraart, A.J., Gerla, D.,

Rijkeboer, M. et al. (2004). Adaptive divergence in pigment

© 2020 John Wiley & Sons Ltd/CNRS

Letter Definitions for niche and fitness differences 11

https://doi.org/10.1007/978-1-4614-5755-8_13
https://doi.org/10.1016/j.tree.2019.12.011
https://doi.org/10.1016/j.tree.2019.12.011


composition promotes phytoplankton biodiversity. Nature, 432, 104–
107.

Stomp, M., Huisman, J., Stal, L.J. & Matthijs, H.C. (2007). Colorful

niches of phototrophic microorganisms shaped by vibrations of the

water molecule. ISME J., 1, 271–282.
Stomp, M., Huisman, J., V€or€os, L., Pick, F.R., Laamanen, M.,

Haverkamp, T. et al. (2007). Colourful coexistence of red and green

picocyanobacteria in lakes and seas. Ecol. Lett., 10, 290–298.
Turelli, M. (1978). Does environmental variability limit niche overlap?

Proc. Natl Acad. Sci., 75(10), 5085–5089.
Usinowicz, J., Chang-Yang, C.H., Chen, Y.Y., Clark, J.S., Fletcher, C.,

Garwood, N.C. et al. (2017). Temporal coexistence mechanisms

contribute to the latitudinal gradient in forest diversity. Nature, 550,

105–108.
Veresoglou, S.D., Rillig, M.C. & Johnson, D. (2018). Responsiveness of

plants to mycorrhiza regulates coexistence. J. Ecol., 106, 1864–1875.
Wainwright, C.E., HilleRisLambers, J., Lai, H.R., Loy, X. & Mayfield,

M.M. (2019). Distinct responses of niche and fitness differences to

water availability underlie variable coexistence outcomes in semi-arid

annual plant communities. J. Ecol., 107, 293–306.

Zarnetske, P.L., Gouhier, T.C., Hacker, S.D., Seabloom, E.W. & Bokil,

V.A. (2013). Indirect effects and facilitation among native and non-

native species promote invasion success along an environmental stress

gradient. J. Ecol., 101, 905–915.
Zhao, L., Zhang, Q.G. & Zhang, D.Y. (2016). Evolution alters ecological

mechanisms of coexistence in experimental microcosms. Funct. Ecol.,

30, 1440–1446.

SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Editor, Jessica Metcalf
Manuscript received 22 January 2020
First decision made 14 February 2020
Manuscript accepted 18 March 2020

© 2020 John Wiley & Sons Ltd/CNRS

12 J. W. Spaak and F. De Laender Letter


