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Summary

1. The rate at which a population grows and spreads can depend on individual behaviour

and interactions with others. In many species with two sexes, males and females differ in key

life-history traits (e.g. growth, survival and dispersal), which can scale up to affect population

rates of growth and spread. In sexually reproducing species, the mechanics of locating mates

and reproducing successfully introduce further complications for predicting the invasion speed

(spread rate), as both can change nonlinearly with density.

2. Most models of population spread are based on one sex, or include limited aspects of sex

differences. Here we ask whether and how the dynamics of finding mates interact with sex-

specific life-history traits to influence the rate of population spread.

3. We present a hybrid approach for modelling invasions of populations with two sexes that

links individual-level mating behaviour (in an individual-based model) to population-level

dynamics (in an integrodifference equation model).

4. We find that limiting the amount of time during which individuals can search for mates causes

a demographic Allee effect which can slow, delay, or even prevent an invasion. Furthermore, any

sex-based asymmetries in life history or behaviour (skewed sex ratio, sex-biased dispersal, and sex-

specific mating behaviours) amplify these effects. In contrast, allowing individuals to mate more

than once ameliorates these effects, enabling polygynandrous populations to invade under condi-

tions where monogamously mating populations would fail to establish.

5. We show that details of individuals’ mating behaviour can impact the rate of population

spread. Based on our results, we propose a stricter definition of a mate-finding Allee effect, which

is not met by the commonly used minimum mating function. Our modelling approach, which

links individual- and population-level dynamics in a single model, may be useful for exploring

other aspects of individual behaviour that are thought to impact the rate of population spread.

Key-words: integrodifference equations, invasion speed, mate-finding Allee effect, mating

functions, sex-biased dispersal, spatial spread

Introduction

The key characteristics of a potential invasion are whether

a population will be able to establish and, if it does, how

fast it will subsequently grow and spread. Often there is a

threshold size or density below which a population will be

unable to successfully establish (Volterra 1938; Tobin

et al. 2007). Early theoretical work predicted that, when

populations do establish, they should spread at a constant

rate, assuming identical individuals move diffusely in a

homogeneous environment (Skellam 1951). More recent

theory has explored how invasion speed can be influenced

by a variety of factors, including long-distance dispersal

(Kot, Lewis & van den Driessche 1996), population struc-

ture (Neubert & Caswell 2000), demographic stochasticity

(Kot et al. 2004), spatial heterogeneity (Li, Fagan &

Meyer 2015), environmental stochasticity (Lewis & Pacala

2000), temporal variability (Neubert, Kot & Lewis 2000;

Caswell, Neubert & Hunter 2011; Schreiber & Ryan

2011), and evolution (Kanarek & Webb 2010; Phillips,
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Brown & Shine 2010; Perkins et al. 2013). However, the

majority of these invasion models assume an asexual pop-

ulation and may fail to capture dynamics of spatial spread

in sexually reproducing species for two reasons.

First, individuals in sexually reproducing species must

locate at least one mate in order to reproduce success-

fully. These species may experience a mate-finding Allee

effect where an individual’s probability of finding mates

decreases with lower population density (Dennis 1989;

Wells et al. 1998). This so-called ‘component Allee effect’

(which impacts one ‘component’ of an individual’s fitness)

results in a demographic Allee effect if, over some range

of density, the overall population growth rate increases

with a (small) increase in population density (Stephens,

Sutherland & Freckleton 1999). As Allee effects tend to

have the strongest impact at low population sizes and

densities, they are especially likely to affect the viability of

endangered species, whose numbers have been reduced

(Courchamp, Berec & Gascoigne 2008), and the ability of

invasive species to establish and spread from an initially

low density at newly established sites (Keitt, Lewis & Holt

2001; Taylor & Hastings 2005).

Second, in many cases, males and females differ in key

life-history traits. Sex differences can occur in age of sex-

ual maturity, reproductive period length, and total life

span (Short & Balaban 1994; Fairbairn 2013). Males and

females can also differ in their tendency to disperse, and

total dispersal distance travelled (Greenwood 1980;

Clarke, Sæther & Røskaft 1997; Miller et al. 2011). As

the speed of an invasion depends on both demographic

and dispersal parameters (Skellam 1951; Neubert & Cas-

well 2000), sex-specific differences in any of these parame-

ters can potentially alter the rate of spread. While the

consequences of Allee effects for spatial spread has been

studied (Fife & McLeod 1977; Lewis & Van Den Driess-

che 1993; Kot, Lewis & van den Driessche 1996; South &

Kenward 2001; Taylor & Hastings 2005; Jerde, Bampfylde

& Lewis 2009), this is rarely done while simultaneously

taking into account sex differences in dispersal.

To overcome these limitations, we take advantage of

two approaches already developed that allow us to study

spatial spread in sex-structured populations. Miller et al.

(2011) developed an integrodifference equation model that

tracks male and female density separately, allowing the

exploration of how sex differences in dispersal and the

nature of the mating system jointly influence the spread

rate. Although this is a (relatively) mathematically tract-

able approach, it ignores nonlinearities in mating (intro-

duced by mate-finding difficulties) at low density. Shaw &

Kokko (2014, 2015) developed an individual-based simu-

lation model with male and female individuals, allowing

them to include a mechanistic mate-finding Allee effect by

explicitly modelling the mate finding process. Although

this approach allows for inclusion of more biological

detail than the approach of Miller et al. (2011), it is less

mathematically tractable and requires extensive simulation

time. These two approaches have each demonstrated that

sex-specific dynamics (sex-biased dispersal, mate finding)

can dramatically influence a population’s spread rate.

Here we present a hybrid approach that couples indi-

vidual-based simulation and integrodifference equa-

tion modelling methods. We model mating dynamics

using individual-based simulations from Shaw & Kokko

(2014) and then insert these into the integrodifference

equation framework from Miller et al. (2011) to describe

the growth and spatial spread of a population. We com-

pare our results using the simulated mating dynamics to

results using two different mathematical approximations

of the mating dynamics. We show that sex-specific mating

behaviour and sex differences in life history each affect

the population growth rate, probability of establishment,

and dynamics of spread, and furthermore that mating and

life-history effects are interactive. We expect that this

hybrid framework will be a useful tool for future studies

that aim to explore how other aspects of individual beha-

viour influence population outcomes, particularly in a

spreading context.

Materials and methods

Full model code is available from Dryad (Shaw, Kokko &

Neubert 2016).

mating dynamics

We start by describing the mating dynamics that occur locally

among f females and m males (Fig. 1). Let Bðf;mÞ be the total

number of matings that occur at a location, i.e. the mating func-

tion. We first consider a mating function derived explicitly from

individual-based simulations of the mate finding and mating pro-

cess. Then we consider two functions that are approximations of

the mating process: the mass action function and the H€older mat-

ing function. As we show below, as special cases these also pro-

duce simpler formulations such as the minimum mating function

(Bessa-Gomes, Legendre & Clobert 2010) where the number of

matings simply equals the number of individuals of the rarer sex.

Individual-based functions

The first mating function is based on the individual-based simula-

tion developed by Shaw & Kokko (2014, 2015). We determine the

number of monogamous mating pairs that form from f females and

m males as follows (we address the case of non-monogamy later).

We first randomly distributed f females and m males in patches

across a 10-by-10 square lattice with wrapping boundaries. Within

each time step (t = 1, . . ., s) that follows, each individual can make

one mate search decision, then form pairs (if possible). Once indi-

viduals are part of a pair, they do not search in subsequent time

steps. This searching-pairing process is repeated for s time steps,

after which the total number of formed pairs is recorded. Note that

each patch can contain any number of males and females (up to m

and f, respectively). In this part of the model, each individual’s

movement is governed by a mate search function. During the mate

search decision, each individual chooses to stay in their patch with

a probability that we model using a logistic function of the number

of females and males present,
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pf ¼ 1

1þ ð1=2Þe�aðRFS�fiÞ þ ð1=2ÞeaðRFO�miÞ eqn 1a

pm ¼ 1

1þ ð1=2ÞeaðRMO�fiÞ þ ð1=2Þe�aðRMS�miÞ eqn 1b

for females and males, respectively. Individuals choose to leave

their patch with probability 1�pf and 1�pm. Here, fi and mi are

the number of unpaired females and males in the ith patch, RFS

and RFO are fixed strategy parameters for a female’s response to

individuals of the same and opposite sex, RMS and RMO are fixed

strategy parameters for a male’s response to individuals of the

same and opposite sex, and a is the shape parameter of the strat-

egy as described in Shaw & Kokko (2014). For a > 0 (the only

case we consider), a female is more likely to stay in a patch that

has few females and many males, and a male is more likely to

stay in a patch that has many females and few males.

To minimize confusion later on, we refer to movement that

occurs during this mating process as ‘searching’ to distinguish it

from the ‘dispersal’ movement that we include in the full popula-

tion model below. Here, we consider three scenarios, distin-

guished by the values of the search strategy parameters: unbiased

searching (both males and females search for mates;

RFS = RFO = RMS = RMO = 1), male-biased searching (only

males search and females are stationary; RFS ! 1, RFO ! �1,

RMS = RMO = 1), and female-biased (only females search and

males are stationary; RFS = RFO = 1, RMS ! �1, RMO ! 1).

The parameter values RjS = RjO = 1 indicate that an individual of

sex j has a 50% probability of leaving a patch with one member

of the same sex and one member of the opposite sex, will be

more likely to leave patches with more members of the same sex,

and less likely to leave patches with more members of the

opposite sex. (See Shaw & Kokko (2014, 2015) for graphical

examples of these probability functions.)

Individuals search serially, in random order within each time

step t. If an individual chooses to leave its patch, it moves ran-

domly to one of the four patches adjacent to its current patch

(with wrapping boundaries across the lattice). After all individu-

als have made a mate search decision, pairs form. In each patch i

that contains both females and males, min(fi,mi) pairs are formed.

Note that once individuals are paired, they are ignored by non-

paired individuals; mate search decisions are only made based on

the densities of unpaired males and females.

For comparison, we also ran simulations allowing for multiple

matings (polygynandry). In these simulations, both males and

females searched for mates (RFS = RFO = RMS = RMO = 1). Here,

all mating pairs are temporary, and new pairs can potentially

form at every time step. All individuals (whether or not they

mated in the past) make a mate search decision at every time

step, according to eqn (1) which (for this set of simulations)

depended on the total number of males and females in the cur-

rent patch (regardless of mating history). At the end of these sim-

ulations, instead of calculating the number of pairs that formed,

we counted the number of females who had mated at least once.

We ran a total of 1 764 000 simulations. For each of the four

scenarios (unbiased, male-biased, female-biased, polygynandrous

matings), we ran simulations with all factorial combinations of

f = 1, 11, 21, . . ., 191, 200 females and m = 1, 11, 21, . . ., 191, 200

males for s = 1, 2, 3, . . ., 500 time steps, to generate four corre-

sponding mating functions (Bu, Bm, Bf and Bp) as a function of

the number of females (f), number of males (m), and mate search

time (s). We ran 1000 replicates for each combination of parame-

ters and then averaged across replicates.

Mass action function

Next, we consider a second mating function that is an approxi-

mation of the pair formation process. This approach is similar to

the one used by Veit & Lewis (1996). The change in the number

of females, males, and pairs as a function of search time can be

described by the set of equations

df

dŝ
¼ �Mð f;mÞ eqn 2a

dm

dŝ
¼ �Mð f;mÞ eqn 2b

dp

dŝ
¼ Mð f;mÞ eqn 2c

where M( f,m) is the rate of pair formation and 0 � ŝ � s. By

assuming random searching of males and females, we can model

the pair formation process with the law of mass action

Mð f;mÞ ¼ cfm ¼ cð f0 � pÞðm0 � pÞ eqn 3

where f0 and m0 are the initial number of males and females pre-

sent. After a fixed length of time s, the number of pairs that

formed is equal to

Ba ¼
f0m0f1�exp½ðm0�f0Þcs�g
f0�m0 exp½ðm0�f0Þcs� if f0 6¼ m0

n2
0

n0þð1=csÞ if f0 ¼ m0 ¼ n0

8<
: : eqn 4

Fig. 1. Schematic showing the two scales of our hybrid model.

Mating occurs between f females (black) and m males (grey) at a

local scale. A male and female in the same patch can pair (indi-

cated by a line) and mate. (Note that each patch may contain

more than one male and/or female.) The density of males and

females is tracked at the population scale (here shown as the den-

sity of individuals immediately after births occur). The dashed-

dotted line shows the initial population density distribution for

each simulation.
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As s?∞, all possible pairs form andBaðsÞ ¼ minðf0;m0Þ, i.e. the
minimum mating function. Similar to the individual-based mating

function above, we calculated the number of matings for each

f = 1, 11, 21, . . ., 191, 200 females and m = 1, 11, 21, . . ., 191, 200

males for s = 1, 2, 3, . . ., 500 time steps with c = 0�01(cs = 0�01,
0�02, 0�03, . . ., 5). The end result is the mating function Ba as a

function of the number of females ( f), number of males (m), and cs.

H€older mean function

Finally, we consider an approximation for the number of matings

without the pair formation dynamics. Here, the mating function

is given by

Bhð ft;mtÞ ¼ bf a
t þ ð1� bÞma

t

� �1=a
eqn 5

with shape parameter a < 0 and weight parameter 0 ≤ b ≤ 1, which

describes the relative weighting of females and males. This is a fam-

ily of weighted means (H€older means), first suggested to describe

mating dynamics by Hadeler (1989), and commonly used as a mat-

ing function (including by Miller et al. 2011). For different values

of the shape parameter a and the weight parameter b, this function
encompasses a number of commonly used mating functions. For

a = �∞ and b = 0�5 (the minimum mating function), we recover

the mass action mating function (eqn 4) with s?∞. Similar to the

mating functions above, we calculated the number of matings for

each f = 1, 11, 21, . . ., 191, 200 females and m = 1, 11, 21, . . .,

191, 200 males for a = 0, �0�5, �1, �10, �∞, and b = 0�5. The
end result is the mating function Bh as a function of the number of

females (f), number of males (m), and shape parameter a.

spatial spread framework

Next, to describe the growth and spatial spread of the population,

we use the two-sex integrodifference equation model developed by

Miller et al. (2011). We now track the densities of females and

males at location x and time t, given by ft(x) and mt(x), respec-

tively. Time is discrete (t is an integer) and space is continuous (x is

any real number). Although most organisms move in at least two

spatial dimensions of habitat (and indeed we simulate mating

dynamics in two dimensions as described above), here we simulate

spatial spread in a single dimension for simplicity.

Four processes (dispersal, mating, reproduction, and survival)

occur sequentially to determine the number of individuals at the

next time step (t+1). First, individuals disperse, with potentially

different dispersal kernels for females and males, given by kf (x,y)

and km(x,y), respectively. The dispersal kernel describes the prob-

ability of an individual from any given starting location y dis-

persing to any given ending location x. For the purposes of this

paper, we assume the dispersal kernels only depend on the abso-

lute distance travelled, so we may write the kernel as functions of

a single variable, i.e. kf (|x�y|) and km(|x�y|). Second, males and

females mate, and the total number of matings at each location x

is given by the mating function Bð f ðxÞ;mðxÞÞ (described in the

previous section). Note that mating occurs locally (Fig. 1). Third,

each mating produces / female and l male offspring. Finally,

only a fraction of offspring survive, given by the density-depen-

dent function g. Generally, we assume that g decreases with

increasing adult population size, so that

gð0; 0Þ ¼ 1 eqn 6a

@g

@f
� 0 eqn 6b

@g

@m
� 0 eqn 6c

for all f, m ≥ 0. These assumptions preclude Allee effects acting

through this component of the model. In our simulations, we use

the same density dependence function used by Miller et al.

(2011),

g ¼ b

bþmþ f
eqn 7

where b is the population density at which survival is reduced by

50% due to density dependence. Adults die after reproduction, so

generations are non-overlapping.

Bringing together all of these processes gives the full model

ftþ1ðxÞ ¼ /g kfðxÞ*ftðxÞ; kmðxÞ*mtðxÞ½ �B kfðxÞ*ftðxÞ; kmðxÞ*mtðxÞ½ �
eqn 8a

mtþ1ðxÞ ¼ lg kfðxÞ*ftðxÞ; kmðxÞ*mtðxÞ½ �B kfðxÞ*ftðxÞ; kmðxÞ*mtðxÞ½ �
eqn 8b

where ‘*’ denotes a convolution operator, defined as

kðxÞ*nðxÞ ¼
Z 1

�1
kðx� yÞnðxÞ dy: eqn 9

We numerically simulated model (8) with the different mating

functions (Bu, Bm, Bf, Bp, Ba, Bh) and examined the invasion

dynamics. To run a spatial simulation, we started with an initial

density of 0�5 for each sex for |x| < r and 0 elsewhere (dashed-

dotted line in Fig. 1). Here we used Gaussian dispersal kernels

with mean 0 and variance vf for females and vm for males, and

ran simulations for 100 generations. We defined the edge of the

population as the first location where the population density was

above the threshold value of 0�01. We then calculated the rate of

population spread as the difference between the location of the

edge of the population from one time step to the next.

For comparison, we also simulated a simplified version of

model (8) without dispersal or space, given by

ftþ1 ¼ /g ft;mt½ �B ft;mt½ � eqn 10a

mtþ1 ¼ lg ft;mt½ �B ft;mt½ �: eqn 10b

For these simulations, we calculated the per capita growth rate as

R ¼ ftþ1 þmtþ1 � ðft þmtÞ
ft þmt

eqn 11

in order to examine how the different mating functions affect

population growth, varying both the amounts of time allowed for

mate searching (s) in the mating functions, as well as the initial

population radius (r).

hybrid framework

Finally, we link the mating functions developed in the Mating

dynamics section (described in terms of discrete numbers of indi-

viduals and matings) with the spatial spread framework

© 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society, Journal of Animal Ecology
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developed in the Spatial spread framework section (described in

terms of continuous densities), into a hybrid framework. To do

so, we first divide each of the mating functions (which give the

number of matings as a function of the numbers of males and

females) by the area considered (100 patches of 1 unit area each)

to get the density of matings as a function of the densities of

males and females. Next, we use linear interpolation to generate

estimates of mating density for male and female densities that fall

between the values that we simulated. Finally, we generate esti-

mates of mating density for male and female densities that fall

outside the range of values that we simulated (below 0�01 or

above 2�0). Here we consider two different case: plateauing and

extrapolating.

As a default, we assume that the number of matings plateaus

at both low and high densities. When either the value of f or m

falls below the lowest value in the mating function (0�01) at a

location y, we assume that no matings occur at that location (i.e.

BðfðyÞ;mðyÞÞ ¼ 0). When both the values of f and m fall above 2

(the highest value in the mating function) at a location y, we

assume that the maximum number of matings found in the mat-

ing function occur (BðfðyÞ;mðyÞ ¼ maxf;mðBÞ). When just f > 2,

we determine matings based on the m value and f = 2. Similarly,

when just m > 2, we determine matings based on the f value and

m = 2. For comparison, we also considered the case where there

is no bound on the number of matings at either low or high den-

sity. When either the value of f or m falls below the lowest value

in the mating function, we use linear extrapolation with

Bð0;mÞ ¼ Bðf; 0Þ ¼ 0 to estimate the matings that occur. When

either the values of f or m fall above the highest value in the

mating function, we assume that min(f,m) matings occur.

Results

We first calculated the number of matings according to

each mating function, then we examined how each mating

function affects the population growth rate in a non-spa-

tial model, and finally we determined how each mating

function affects the establishment probability and the sub-

sequent rate of spread in the full spatial model.

mating dynamics

Intuitively, increasing the number of males, the number of

females, or the time allowed for pair formation increased

the number of mated pairs that formed. This was true for

mating function Bu (individual-based mating function

with equal searching by males and females), as well as the

sex-biased mate searching mating functions, Bf and Bm

(Figs 2 and S1a–c, Supporting Information). There was

also essentially no difference between the number of mat-

ings produced by Bf and Bm (Fig. S1b,c). Sex-biased

searching produced the same number of matings as unbi-

ased searching when the sex ratio was skewed, and fewer

matings when the sex ratio was close to even (Fig. S1d,e).

The mating function Bp (polygynandrous mating)

approaches f for large s (Fig. S2a). The mating function

Ba (mass action) produced essentially the same number of

matings as Bu (Fig. S2). Although the Bh (H€older means)

mating function does not include search time explicitly as

a parameter, shifting a more negative produces qualita-

tively similar results as increasing the search time s in the

individual-based mating function (Figs S1a and S2c). The

H€older means, however, overestimated the number of

mates at low densities and for short search times

(Fig. S2e).

Each mating function meets the criteria described by

Courchamp, Berec & Gascoigne (2008) for a mate-finding

Allee effect. That is, the female mating rate P( f,m) (or

fraction of females that are mated) satisfies the following

four properties:

1. ‘There is no mating if there are no males: P( f,0) = 0

for any f.

2. For a given number of females, a female’s probability

of mating (or mating rate) cannot decrease if the num-

ber of males increases: P( f,m) is a non-decreasing

function of m for any fixed f.

3. For a given number of males, a female’s probability of

mating (or mating rate) cannot increase if the number

of females increases: P( f,m) is a non-increasing func-

tion of f for any fixed m.

4. If males greatly outnumber females, mating is virtually

certain for females: P( f,m) approaches 1 for a suffi-

ciently large m/f ratio’.

Note, however, that most verbal definitions of a mate-

finding Allee effects describe it as a difficulty or failure to

find mates at low density, or a limited amount of time

available for mating (Dennis 1989; Stephens, Sutherland

& Freckleton 1999; Calabrese & Fagan 2004). Although

the criteria above describe how a female’s mating proba-

bility should change as the density of each males and

τ = 2
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Fig. 2. A contour plot of the number of pairs formed as a func-

tion of the number of females and males present, for the unbi-

ased mating function (Bu), for s = 2 and s = 200 (the number of

time steps allowed for pair formation). Mating functions were

calculated using the mate search shape parameter a = 5.
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females change separately, they do not provide a descrip-

tion of how mating probability changes with overall

changes in population density (with a fixed sex ratio).

Therefore, we recommend that a fifth criterion be added:

5. At low density, equally increasing the number of males

and females present should increase a female’s probabil-

ity of mating (or mating rate): P(af,am) > P( f,m) for

small f and m, and a > 1.

With this added criterion, the minimum mating function

(and the general H€older means mating function) does not

display a mate-finding Allee effect, as a female’s probabil-

ity of mating remains constant as male and female density

increase proportionally. Our classification of the minimum

mating function is in line with verbal statements of mate-

finding Allee effects, which typically require some form of

limitation (due to low population density or short mating

time) not present in the minimum mating function.

non-spatial dynamics

Simulations of the non-spatial model (10) show that for

short search times (low s), the unbiased individual-based

mating function exhibits a demographic Allee effect, i.e. the

per capita growth rate increases with population size, for

small populations (Fig. 3). This demographic Allee effect is

more pronounced for shorter mate search times (smaller s),
thus s is effectively an indicator of the Allee effect strength.

A population with very short search times (s = 1) does not

grow; the per capita growth is always negative. For very

long search times (s = 500), there is no demographic Allee

effect, i.e. the per capita growth decreases monotonically

with population size. The other individual-based mating

functions (male-biased, female-biased, and polygynan-

drous) all show qualitatively the same patterns as the unbi-

ased individual-based mating function. Similarly, the mass

action mating function contains a demographic Allee effect

for shorter search times (smaller cs), and no demographic

Allee effect for large search time.

establishment

In the spatial spread simulations, populations were only

able to establish if they had a sufficiently high initial den-

sity, and if individuals could search for sufficiently long

mate-search times (s). The effect of these two conditions

was interactive: for larger initial populations, a shorter

mate-search time was required for the population to

establish (Fig. 4a vs. b). This was true for each of the

individual-based mating functions (Figs 4 and S5). Below

a threshold mate-search time and/or initial density, the

population failed to establish and went extinct, indicating

a strong mate-finding Allee effect. The threshold mate-

search time, below which populations went extinct, was

higher in spatial simulations than non-spatial simulations.

Populations with polygynandrous mating were able to

establish under the broadest range of conditions, followed

by those with unbiased mating; male- and female-biased

mating populations established under the narrowest range

of parameter values. Populations with the mass action

mating function similarly had a threshold below which

they were not able to establish (Fig. S5). The mass action

establishment patterns most closely matched those of the

unbiased individual mating function. However, popula-

tions with the H€older means mating function were always

able to establish and spread, for the range of parameters
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Fig. 3. The per capita growth rate (eqn 11) as a function of pop-

ulation size, for simulations of the non-spatial model (eqn 10)

with b = 100, l = / = 4, m = f and the individual-based mating

function with unbiased searching (Bu) and different values of

search time, s.
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Fig. 4. The long-term invasion speed (averaged across genera-

tions 90–100) as a function of search time (s) for (a) initial popu-
lation radius of r = 0�15 and (b) r = 0�3, for each of the

individual-based mating functions: polygynandrous (Bp, stars),

unbiased (Bu, squares), female-biased (Bf, circles), and male-

based (Bm, triangles). Simulations were run with parameters

b = 1, vm = vf = 1 and l = / = 4.
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considered (Fig. S5). Extrapolating the number of matings

that occurred at low- and high-population densities (in-

stead of assuming that the number of matings plateaued)

increased the range of conditions where populations could

establish (Fig. S6 vs. S5).

rate of spread

For populations that did successfully establish, the initial

population density and mate-search time also affected the

spread dynamics. For simulations with the unbiased mat-

ing function, the population spread rate started high,

dropped to a lower speed, then accelerated to an interme-

diate rate of spread, which was maintained over time

(Fig. 5a). Generally, for larger s and larger initial densities,

both the very initial rate of spread and the lowest spread-

ing speed were higher (Figs S3 and S4). For larger s, the
transient acceleration period was shorter and the long-term

rate of spread was faster, whereas initial population den-

sity had little effect on the long-term spread rate (Fig. S5).

Simulations with the male- and female-biased mating func-

tions always spread slightly slower than unbiased mating

function simulations, for the same value of s (Fig. 4). In

contrast, simulations with the polygynandrous mating

functions always spread faster than those with the unbi-

ased mating function, for the same value of s. A number

of simulations (particularly for large s) had slight

fluctuations in invasion speed, even during the long-term

rate of spread (Fig. 5). Simulations with the mass action

mating function produced similar results, with populations

spreading slowly before switching to a faster rate of spread

(Fig. 5b). For longer mate-search times (cs), the period of

slow spread was shorter and the long-term rate of spread

was faster, and there were slight fluctuations in the long-

term spread rate. Simulations with the H€older means

mating function with a = �∞ and b = 0�5 (the minimum

mating function) produced dynamics similar to simulations

with the unbiased mating function and long mate-search

times (Fig. 5b). Simulations where the number of matings

was extrapolated at low- and high-population densities

spread slightly faster than those where the number of mat-

ings plateaued, and also did not have any fluctuations in

the long-term rate of spread (Fig. S7 vs. 5).

Finally, we considered how sex differences in life-his-

tory parameters influenced the invasion speed. Here we

considered both a skew in sex ratio and sex differences in

dispersal distance. A skewed sex ratio could be the result

either of sex ratio bias at birth, or (more likely) of mortal-

ity differences among juveniles. For all mating functions,

as skew in sex ratio at birth increased towards either male

or female (holding the total number of offspring produced

per female constant), the spread rate generally decreased,

with a threshold beyond which the invasion failed

(Fig. 6). As with earlier results for the individual-based

simulations, populations with the male-biased and female-

biased mating functions were able to establish under the

narrowest range of parameter values and spread the slow-

est, followed by unbiased mating functions, with polygy-

nandrous simulations able to spread across the broadest

range of conditions and producing the fastest rates of

spread (Fig. 6a).

Populations simulated with the mass action and H€older

means mating functions produced qualitatively similar

results as the unbiased individual-based mating function

(Fig. 6b). The polygynandrous mating function was the

only one that produced invasion speeds that were asymmet-

ric for male vs. female skew in the life-history parameters.

These simulations spread much faster for female-skewed

populations compared to male-skewed ones, presumably

because when individuals can mate multiply, sperm (or pol-

len) is not often limited, whereas the number of mated

females becomes the limiting factor for population growth

and spread.

Skewed sex bias in dispersal (holding the average dis-

persal distance in the population constant) resulted in

qualitatively similar patterns as skewed sex ratio

(Fig. S8). Although skewed sex ratio and sex bias in dis-

persal each alone reduced the rate of spread, combining

the two increased the invasion speed in some cases. This

occurred only when the skew for each was in opposite

directions (e.g. male-biased sex ratio coupled with female-

biased dispersal, or female-biased sex ratio coupled with

male-biased dispersal) and for very small degrees of bias

in each (Fig. S9).
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Discussion

Here we have developed a hybrid approach that links

individual mating behaviour to populations dynamics, in

a two-sex spreading population. This approach enables us

to include key aspects of two-sex populations: sex differ-

ences in demographic and dispersal parameters, and the

mechanics of locating mates. We modelled the mate-

search process assuming that only males, only females, or

both sexes searched for mates, and with monogamous

pairs or polygynandrous mating. We determined how

these different mating scenarios affected the number of

matings, the per capita growth rate, the ability of a popu-

lation to establish from low density, and the dynamics

and rate of population spread. Finally, we compared

results from the individual-based mating functions to

results from two mating function approximations.

Mate-search efficiency, which we here model as the

amount of time that individuals had to search for mates

(s) was a key parameter driving population-level out-

comes. For low values of s, there was a strong demo-

graphic Allee effect, where the population was not able to

grow from low densities. For slightly larger values of s, a
non-spatial population that grew without spreading was

able to establish, while adding spatial spread caused

establishment to fail. (Note that this is a typical result for

spatial spread with an Allee effect; Lewis & Kareiva 1993;

Goodsman & Lewis 2016.) For larger values of s, the

demographic Allee effect became weaker, and the popula-

tion was able to establish in both spatial and non-spatial

contexts, but went through a long transient phase of slow

spread before switching to a faster long-term spread rate.

For even larger values of s, the demographic Allee effect

vanished, the slow phase of population spread was quite

short, and the long-term rate of spread was quite fast.

These results held within each of the individual-based

mating functions considered: male- or female-biased mate

searching with monogamous pair formation, and unbiased

mate searching with monogamous pairs or polygynan-

drous mating. However, populations with sex-biased mate

searching were the least robust, failing to invade for con-

ditions under which unbiased mate searching populations

were successfully able to invade, and spreading at a

slower rate when they were able to invade. In contrast,

populations with polygynandrous mating were the most

robust, able to spread in conditions where populations

with each of the monogamous mating functions were not

able to establish. Initial population density had some

interactive effects with mate search time: populations that

started at too low a density failed to establish, and as ini-

tial population density increased the threshold mate

search time required for establishment decreased.

The dynamics were to some extent found to be different

between the individual-based model (IBM) mating func-

tions and the approximations. This is unsurprising per se,

as approximations do not perfectly capture the mating

dynamics in the IBM, but it is worthwhile to comment on

when precisely large failures were found. The mass action

mating function was a good proxy for the case of monoga-

mous mating if searching had no sex bias, but it performed

less well if searching was sex-biased or if matings were

polygynandrous. The H€older means mating function was

only a good proxy for the monogamous mating function

for very large search times (big s). Even though the effect

of the H€older means’ a parameter on the number of mat-

ings was qualitatively similar to increasing search time s in

the individual-based simulations, the H€older means mating

function did not display any of the Allee threshold beha-

viour that was characteristic of the dynamics of the indi-

vidual-based mating functions. The H€older means mating

function also shared the property of the mass action func-

tion that it did not form a good proxy when searching was

sex-biased or there was polygynandry. For these reasons,

some dynamic effects were only discoverable using the

IBM.

Some of our simulations showed fluctuations in the

long-term invasion speed, beyond the initial period of

slow spread. The fluctuations were only noticeable if we

assumed that the number of matings plateaued at low and
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high densities (rather than linearly extrapolating the num-

ber of matings at low and high densities). At low densi-

ties, this is the equivalent to imposing a strong mate-

finding Allee effect (a threshold density below which no

matings, and therefore no population growth, occurs).

However, a strong mate-finding Allee effect alone is not

sufficient to generate these oscillations. For comparison,

we ran simulations with a minimum mating function that

was calculated exactly at all densities (no interpolation)

but with a threshold density below which no matings

occurred. These simulations produced smaller oscillations

(Fig. S10), suggesting that oscillations are caused by some

combination of a strong mate-finding Allee effect and the

nonlinearities introduced by interpolating the mating

function at intermediate densities. Recent work on oscilla-

tions in invasion speed in one-sex models supports this

idea (L.L. Sullivan, B. Li, T.E.X. Miller, M.G. Neubert &

A.K. Shaw, unpublished).

Our findings broadly align with past empirical and the-

oretical work demonstrating that Allee effects can prevent

(Lewis & Van Den Driessche 1993; Goodsman & Lewis

2016), slow (Lewis & Kareiva 1993; Taylor & Hastings

2005; Tobin et al. 2007; Krko�sek et al. 2012) or delay

(Hopper & Roush 1993; Kot, Lewis & van den Driessche

1996; Veit & Lewis 1996) population spread. The novelty

of our study is showing how the details of individual

behaviour determines the impact of a mate-finding Allee

effect. Our work also builds on the models of Miller et al.

(2011) and Shaw & Kokko (2015), which separately exam-

ined the influence of sex-biased dispersal and of mating

dynamics, respectively. Here we have shown that sex-

specific life-history traits (like sex-biased dispersal) inter-

act with mating mechanics, typically resulting in both a

reduced invasion probability and a slower invasion speed.

The exception is when individuals can mate multiple times

and when life-history traits are skewed female (females

disperse farther or female-skewed sex ratio): with this

combination the population spreads faster than a popula-

tion with only one of these factors. We have also shown

that different sex-specific life-history traits have compen-

satory effects on invasion speed: skewed sex ratio and

sex-biased dispersal alone each slow an invasion, but a

male-skewed sex ratio combined with female-biased dis-

persal (and vice versa) can speed up an invasion.

Our model describes mate-finding difficulties by altering

the time, s, available for individuals to search before they

have to give up and remain unmated (for life, as ours is a

discrete generation model). The longer the time is, the

wider the area that the individuals can search, thus s in

our model can be interpreted in several possible ways,

broadening the scope of the model from the narrowest

interpretation that s must be measured in units of time.

Under a more general view, high s reflects mate-search

efficiency that can be brought about by efficient locomo-

tion and/or high sensory capacities to locate mates that

are relatively far away. For example, male Lymantria dis-

par (gypsy moths) find females that emit pheromones;

interestingly, despite mate searching therefore presumably

being relatively efficient, it still is not efficient enough to

avoid Allee effects at range boundaries (Contarini et al.

2009). Fish lice (parasites of fish) such as Lepeophtheirus

salmonis also appear to be intermediate cases: males dis-

perse among fish in search of mates, but again, this is not

efficient enough to avoid mate-finding Allee effects

(Krko�sek et al. 2012).

When do we expect s to be low enough in natural sys-

tems to cause mate-finding Allee effects? Our model is not

evolutionary (s does not evolve), but evolutionary ideas

can help elucidate when invasion speeds are likely to be

negatively impacted by mate availability. If females in the

core of their range do not remain unmated, s is ‘large

enough’ (i.e. leads to high female fertilization rate) under

these conditions. Newly established populations may then

‘use’ the same value for s even if it now leads to poorer

mating success — either because there is not sufficient

heritable variation present to lead to improved beha-

viours, or because of gene flow from the core range

importing behaviours that create a too low s for the local

conditions. We should note, however, that not all mar-

ginal populations necessarily experience mate-finding diffi-

culties (Fauvergue & Hopper 2009); a possible cause is

that range margins might maintain high local densities

despite being more fragmented (Gaston 2009, however

note that this paper is not focused on an explicit invasion

context).

Mate-finding Allee effects are typically defined as a

reduced ability, or failure, to find mates at low density

(Dennis 1989; Wells et al. 1998; Stephens, Sutherland &

Freckleton 1999). Although there is consensus on this

general definition, explicit criteria for determining whether

a system displays a mate-finding Allee effect are rarely

given. Courchamp, Berec & Gascoigne (2008) provide one

such set of criteria: the probability of mating per female

should increase (or be constant) as the number of males

increases, and should decrease (or be constant) as the

number of females increases. However, within this defini-

tion, the effect of an overall increase in density (with a

constant ratio of males to females) on probability of mat-

ing per female is not specified. To address this deficiency,

and to align the explicit criteria for mate-finding Allee

effects with the general definition, here we propose that

an additional criterion be included. Namely, we suggest

that at low density, increasing the population density

(while keeping the sex ratio constant) should increase a

female’s probability of mating. However, a number of

commonly used mating functions violate this criterion,

meaning they do not display a mate-finding Allee effect

under our revised definition. Specifically, within the

demography literature, a mathematically desirable (albeit

controversial; Iannelli, Martcheva & Milner 2005) prop-

erty of any mating function is that it should be homoge-

neous of degree one (Yellin & Samuelson 1974; Legendre

2004), that is, changing the population size (with a con-

stant ratio of males to females) changes the number of
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matings, proportionally. This is generally equivalent to

stating that a female’s probably of mating is independent

of population size, which conflicts with the above general

definition of a mate-finding Allee effect.

Future studies could expand on the methods we

develop here in order to explore how details of individual

behaviour influence population spread rates. First, a wider

range of individual mate finding behaviour could be

explored, such as using a deterministic (instead of proba-

bilistic) stopping rule or using signalling or homing to

locate mates (Vane-Wright & Boppre 1993). Second,

many organisms have other adaptations for alleviating

mate-finding Allee effects, such as moving more fre-

quently at low density (Kindvall et al. 1998), storing

sperm across mating seasons (Parker 1970), and context-

dependent sex determination (Becheikh et al. 1998).

Finally, a wider range of interactions between mating and

life-history characteristics could be considered – e.g.

although we explored the effects of polygynandrous mat-

ing and sex-biased searching, we did not explore the effect

of both factors combined. Each of these mechanisms

could be simulated to determine how they influence popu-

lation growth and spread rate.
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Fig. S1. The number of pairs formed as a function of the number of

females (x-axis) and males (y-axis) present, comparing across three

different individual-based simulations for different values of s (the
number of time steps allowed for pair formation).

Fig. S2. The number of pairs formed as a function of the number of

females (x-axis) and males (y-axis) present, comparing across

different mating functions.

Fig. S3. The initial invasion speed (generation 1) as a function of

search time (s) and the simulation initial population radius (r), for

each of the mating functions. White regions indicate a failed

invasion.

Fig. S4. The minimum invasion speed as a function of search time

(s) and the simulation initial population radius (r), for each of the

mating functions.

Fig. S5. The long-term invasion speed (averaged across generations

90–100) as a function of search time (s) and the simulation initial

population radius (r), for each of the mating functions. The number

of matings were assumed to plateau in the mating functions.

Fig. S6. The long-term invasion speed (averaged across generations

90–100) as a function of search time (s) and the simulation initial

population radius (r), for each of the mating functions. The number

of matings were extrapolated at high and low densities in the

mating functions.

Fig. S7. The invasion speed over time for simulations with (a) the

unbiased mating function, Bu, and (b) the H€older means (Bh) and
mass action (Ba) mating functions.

Fig. S8. The long-term invasion speed (averaged across generations

90–100) as a function of the degree of sex bias in dispersal.

Fig. S9. The long-term invasion speed (averaged across generations

90–100) as a function of the skew in sex ratio (x-axis) and the

degree of sex bias in dispersal (y-axis), calculated from simulations

with the unbiased individual-based mating function, Bu.

Fig. S10. The invasion speed over time for simulations with

different levels of interpolation/extrapolation.
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