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The Trivers–Willard theory1 proposes that the sex ratio of off-
spring should vary with maternal condition when it has sex-specific
influences on offspring fitness. In particular, mothers in good
condition in polygynous and dimorphic species are predicted to
produce an excess of sons, whereas mothers in poor condition
should do the opposite. Despite the elegance of the theory, support
for it has been limited2,3. Here we extend and generalize the
Trivers–Willard theory to explain the disparity between predic-
tions and observations of offspring sex ratio. In polygynous
species, males typically have higher mortality rates4, different
age-specific reproductive schedules and more risk-prone life his-
tory tactics than females; however, these differences are not cur-
rently incorporated into the Trivers–Willard theory. Using two-sex
models parameterized with data from free-living mammal popula-
tions with contrasting levels of sex differences in demography, we
demonstrate how sex differences in life history traits over the entire
lifespan can lead to a wide range of sex allocation tactics, and show
that correlations between maternal condition and offspring sex
ratio alone are insufficient to conclude that mothers adaptively
adjust offspring sex ratio.

Trivers and Willard1 proposed that when the fitness benefit to a
mother of producing sons increases faster with her own condition than
the benefit of producing a daughter, good-condition mothers should
produce more male than female offspring. Trivers and Willard
hypothesized that these fitness benefits should be observed when (1)
maternal condition determines offspring condition, (2) the condition
of offspring at independence correlates with condition at adulthood,
(3) good-condition males produce more offspring than poor-con-
dition ones, and (4) there is greater variation in lifetime reproductive
success among males than females1,2. The original theory focused on
monotocous species with non-overlapping generations, but has been
extended to polytocous populations5, and to overlapping generations6.
The theory has been investigated in a wide range of bird7 and mammal3

species, including humans8, but has received mixed support2,9, with
many species expected to adhere to Trivers and Willard’s predictions
often failing to do so2,9. The discrepancy between theoretical predic-
tions and empirical observations has led to much debate, with
explanations falling into three broad categories: first, it may be physio-
logically impossible for a female to determine the sex of her offspring5;
second, tests of the theory are often inadequate as systems have not
been shown to conform to the assumptions of the theory9,10; and third,
data quality is poor3. The consensus seems to be that adaptive sex ratio
production of offspring often does not occur when expected2,3.
Modelling work has been performed to examine why this is the case.
In a notable article, Leimar11 demonstrated that appropriate tests of the
Trivers–Willard theory1 require a comparison of the reproductive
values (RV) of sons and daughters rather than a comparison of lifetime
reproductive success, as reproductive value is the appropriate measure
of fitness11. The lifetime reproductive success of an individual

measures the number of offspring produced over its lifetime, whereas
RV describes the fraction of a future population that has descended
from it12. Leimar11 went on to show that if maternal condition influ-
ences the RV of offspring in one sex more than in the other, then life
histories in which good-condition mothers produce an excess of
daughters could be adaptive. However, to our knowledge, no one
has calculated the RV of females and males for naturally occurring
systems. Leimar’s model11 consequently remains an elegant, but
abstract, demonstration of theoretical scenarios where species, which
otherwise conform to Trivers and Willard’s assumptions, do not fol-
low the predicted sex allocation tactic. Here we extend and generalize
the insights of Leimar11 and demonstrate that, contrary to Fisher’s
theory of parental investment13, sex differences in life history at both
pre- and post-independence determine optimal offspring sex ratio as a
function of maternal condition, and apply this new approach to two
empirical data sets.

Where adaptive sex ratio variation has been expected, for instance in
polygynous and sexually dimorphic species, males often have higher
mortality rates than females at all stages of life4,14 as a consequence of
their more risk-prone life history tactic which, in many species,
involves reproducing at a later age and fighting more with conspecifics
than females15,16. Fisher’s theory13 of sex allocation predicts higher
investment in the rarer sex, or the sex experiencing higher mortality
during the period of dependency, such that the sex ratio at independ-
ence is unity. However, this conclusion holds at the population level
only under the assumption that all same-sex individuals have equal
chances of reproducing. Trivers and Willard1 refined Fisher’s theory13

by demonstrating that, for a given individual, it might be optimal to
invest more into the sex with higher fitness benefits if these vary with
maternal condition. Remarkably, Trivers and Willard did not expli-
citly list sex differences in mortality or growth between independence
and adulthood, or age differences in reproductive output as an adult,
when identifying conditions in which their predictions should be
observed. Sex differences in demographic rates have never been incor-
porated into models predicting the RV of female and male offspring of
mothers in varying conditions6,11,17. Although Fisher13 stated that the
period after offspring independence should not influence the optimal
sex ratio, the RV factors in information on mortality and reproductive
rates at all ages. This means that when examining the relative RV of
sons and daughters to a mother of a given condition, it is necessary to
consider offspring mortality rates both pre- and post-independence,
and reproductive rates at all ages.

Estimating RV from two-sex models is challenging as standard
approaches to estimate RV for one-sex models do not easily extend
to two sexes. Therefore, we first developed an approach to calculate RV
for realistic two-sex models (see Methods). Next, we incorporated sex-
specific mortality and other sex-specific life history traits into two-sex
integral projection models18 (IPMs) and explored how the RV of male
and female offspring born to mothers of a given condition vary as the
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level of sex differences in a life history trait is altered (see Methods).
Specifically, we took a published model for Columbian ground squir-
rels (Urocitellus columbianus)18, a system where we neither expect
nor observe females skewing offspring sex ratio as a function of
body weight19, and examined under what circumstances we could
generate optimal offspring sex ratios varying with maternal weight.
We next adapted a published two-sex IPM for bighorn sheep (Ovis
canadensis)20, a species where adaptive sex ratio variation is expected
but empirical evidence is inconclusive21–23, and predicted optimal off-
spring sex allocation.

Using an IPM to explore adaptive sex ratio variation allowed us to
alter a range of demographic rates in ways that are not possible in
naturally occurring systems. For instance, we altered the strength of
size selection in a mating system, differential male and female mortal-
ity schedules, assumptions about correlations between weight at inde-
pendence and at maturity, and between parental and offspring weight.
We calculated the expected RV of male and female offspring born to
mothers of a given weight (a surrogate for condition widely used in
empirical tests of the Trivers–Willard theory2,3,7,19,21,24,25; see Methods).
We then calculated the difference between the RV of male and female
offspring at each maternal weight and the slope of this difference in
relation to maternal weight (Fig. 1; Methods). A positive slope repre-
sents support for the prediction of Trivers and Willard1 that large
mothers should produce an excess of sons and small mothers an excess
of daughters; we call this a ‘Trivers –Willard effect’ (Fig. 1a). A negative
slope represents a reverse sex allocation tactic that we call a ‘reversed
Trivers–Willard effect’ because large females gain a fitness advantage by
producing daughters rather than sons (Fig. 1d). A slope not differing
from zero indicates that offspring of both sexes provide equivalent
fitness benefits to all mothers. We also identified two further sex alloca-
tion tactics in which the difference between male and female RV is
u-shaped or n-shaped. In the first of these tactics (a ‘Trivers–Willard
effect type 3’), mothers in poor or exceptional condition should produce
sons, while all others should produce daughters (Fig. 1e). Likewise, we
called the tactic in which only the lightest and heaviest mothers should
produce daughters the ‘Trivers –Willard effect type 4’ (Fig. 1f). Next, we
altered parameters in the model that determine the level of sex differ-
ences in life history traits and recalculated the slope. The difference
between the slopes from the perturbed and the unperturbed model
represents the sensitivity of adaptive sex ratio variation to altering
aspects of the survival, fertility, growth, inheritance and mating func-
tions that constitute the IPM. A positive value in the difference between
the slopes implies an increase in the strength of the Trivers–Willard
effect (Fig. 1b). A negative slope difference suggests a decrease in the
strength of the Trivers–Willard effect (Fig. 1c), leading to a possible
reversal of the prediction if the difference is sufficiently negative
(Fig. 1d). A parameter change can also cause the difference between
male and female RV to be u-shaped or n-shaped (Fig. 1e, f), which might
apply to systems with two alternative reproductive morphs (‘sneakers’
and ‘fighters’). Our framework allowed us to assess how changing the
level of sex differences in life history tactics, and consequently the level
of sex differences in demographic rates, affects the direction of selection
on sex ratio variation for a given maternal condition.

For this, we used a recently published two-sex IPM of Columbian
ground squirrels18—a species that is polytocous26, polygynandrous27,
and has greater variance in reproductive success among males than
females26. Differences in male and female mortality schedules are less
pronounced than in most species where Trivers–Willard effects are
expected28. We therefore treated their demographic rates as identical
(Supplementary Table 1). We predicted a small reversed Trivers–
Willard effect: a small deviation from a sex ratio of unity as maternal
weight increases (Fig. 2; solid black line). The difference in RV is small
because we assumed identical survival and growth rates for females
and males. The reason a reverse Trivers–Willard effect occurs is that,
although males and females have identical growth and survival rates in
our model, males need to reach a greater age before achieving good

chances of reproductive success compared to females because male
mating success is size-selective. Large females maximize their RV,
when litter size is fixed, by producing females that breed at a younger
age instead of producing males. We can see this by altering the mean
age of reproduction among females; as this increases, the reversed
Trivers–Willard effect is reduced until it eventually disappears com-
pletely (Extended Data Fig. 1a, b).

When we increased mortality of pre-reproductive males (that is,
squirrels below an estimated size threshold of 279 g) to be 3% greater
than female mortality, we predict that the reversed effect is replaced
with a Trivers–Willard effect (Fig. 2; dotted line). As male mortality
increases, fewer males make it to reproductive age, but those that do
(that is, those born to larger mothers) have increased reproductive
success. Mothers that can produce large males with a reasonable
chance of growing to reproductive age can gain substantial RV because
males are rare, even though males may have to wait longer to achieve
reproductive success. In other words, as we alter differential mortality
between the sexes and the variance in reproductive success amongst
males, we alter the optimal tactic that mothers of a given body size
should follow (Extended Data Fig. 2, solid line; see Extended Data
Fig. 3 for a trade-off between mortality and mating chances).
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Figure 1 | Female reproductive value (RV, red line) and male RV (blue)
depend on maternal condition. Differences between male and female RV are
shown as insets (black and grey lines). a, Trivers–Willard (TW) effect: for good-
condition mothers, sons have higher RV than daughters. For poor-condition
mothers, daughters have higher RV than sons. b–d, Changes in demographic
parameters can result in a more pronounced Trivers–Willard effect (b), a
smaller difference between female and male RV (c), or a reversal of a Trivers–
Willard effect (d). Original RV and difference in RV before demographic rates
have been changed are shown in light red (females), light blue (males) and grey
(difference in RV in insets) in b–d. e, f, The difference between male and female
RV can be u-shaped (type 3 Trivers–Willard effect) (e), or n-shaped (type 4
Trivers–Willard effect) (f).
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However, these results are context-dependent. In our initial model, the
population growth rate was greater than one and the population
increased in size with time. If we increased female mortality such that
the population growth rate fell below one, the advantage of repro-
ducing early disappeared, and females could gain reproductive value
by producing males that mate at a later age compared to females.

These results show that because RV is a complex function of con-
dition-dependent mortality and reproductive rates, and these rates
generate a growing or shrinking population, the optimal sex allocation
tactic can change over a relatively small range of parameter values.
Despite this, it is valuable to analyse our baseline model parameterized
for squirrels. As parameter values are altered, we find that those para-
meters generating a differential between male and female mortality
(survival function), and those that influence the correlation between
weight at independence and weight at adulthood (the growth function)
strongly influence the expected bias in offspring sex ratio for a given
maternal condition (Extended Data Figs 4 and 5). In contrast, altering
age-independent female reproductive success (fecundity function) and
the correlation between mean parental weight at time t and offspring
mass when they recruit to the population at t 1 1 (the inheritance
function) have relatively small effects on the direction or magnitude
of the Trivers–Willard effect (Extended Data Figs 4 and 5). However,
the results are surprisingly nuanced. We find that increasing male
mortality at all ages on the logit-scale by reducing the survival intercept
generates a type 3 Trivers–Willard effect. In contrast, if we reduce the
body-mass survival slope for males such that larger males have rates of
mortality that are elevated to a greater extent than those that are
smaller, we weaken the strength of the reversed Trivers–Willard effect.
Despite this complexity, we identified a general pattern that holds for
the first two types of sex allocation tactics (Trivers–Willard effect and
reversed Trivers–Willard effect): if a perturbation to a parameter
increases the variance in male RV at birth relative to the variance in
female RV at birth, the strength of the predicted Trivers-Willard effect
increases, and vice versa (Extended Data Fig. 5). This pattern holds for
the bighorn sheep model.

Bighorn sheep are a monotocous, polygynous species with strong
sexual size-dimorphism, and are expected to exhibit a Trivers-Willard

effect; empirically, however, they do not21,22. In contrast to Columbian
ground squirrels, female and male mortality schedules differ markedly
throughout life14. We used a two-sex IPM including age structure20 (see
parameters in Supplementary Tables 2 and 3) because demographic
rates depend on both weight and age in bighorn sheep29. For this
species, our model predicts a Trivers–Willard effect (Extended Data
Fig. 6). The overall size of the Trivers–Willard effect in sheep is larger
than for squirrels because there are marked sex differences in life
history at all ages. However, as with squirrels, sex differences in mor-
tality rates before age at first breeding had the same effects on the
predicted Trivers–Willard effect: increasing mortality rates of male
lambs and yearlings increased the strength of the Trivers–Willard
effect, and increasing male mortality and male growth rates had the
largest effects on the sex allocation tactic (Extended Data Fig. 7). In
addition, within each life stage, increasing mortality rates of small
males increased the strength of the Trivers–Willard effect, whereas
increasing mortality of large rams had the opposite effect (Fig. 3 and
Extended Data Fig. 8). This reveals that sex differences in size-specific
mortality can trade-off against one another at different ages to influ-
ence the optimal behaviour of a mother of a given size. In spite of the
similarities between squirrels and sheep, there are also differences. In
sheep, parameters of the inheritance functions (which determine the
correlation between parental and offspring size) also influence the
magnitude of the effect (Extended Data Fig. 7). Taken together, these
results reveal two things: first, there is a need to consider the entire life
history when assessing whether a mother in a specific condition should
produce male or female offspring; and second, sex differences in life
history traits, especially before the age at first breeding and often
beyond the age of dependency, can affect the RV of male and female
offspring of a mother in a given condition.

Our results show that in order to conclude that females are behaving
adaptively from a regression of maternal condition against offspring
sex ratio, it is necessary to show (1) that offspring sex ratio is equivalent
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Figure 3 | Size-specific sensitivity of the Trivers–Willard effect to a 1%
increase in male mortality in bighorn sheep lambs. The probability of
mortality has been independently increased by 1% in each size class and the
change of the slope of the Trivers–Willard effect plotted. The vertical dashed
line denotes mean male lamb weight. Increasing mortality for male lambs below
average weight strengthens the Trivers–Willard effect (bars are above zero),
whereas increasing mortality for male lambs of above average weight weakens
the Trivers–Willard effect (bars are predominantly below zero). Size-specific
sensitivities of all stages (lamb, yearling, adult, and senescent) are provided in
Extended Data Fig. 8. The y-axis plots hDva/hsi 3 sie, where hDva/hsi is the
sensitivity of difference between male and female reproductive value (Dva) to a
perturbation in parameter si by e (see Methods). The index a denotes age,
shown here at birth (that is, a 5 0); i denotes the parameter, running from 1–69
for the bighorn sheep model.
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daughters when male mating success increases with body weight. Solid line,
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to the ratio of male to female RV at birth, and (2) that the slope or
shape of the association between maternal condition and difference in
the RV of sons and daughters (Fig. 1) is of the same sign or form as the
slope or shape of the regression of maternal condition against birth sex
ratio. Offspring sex ratio alone may not be a good predictor of whether
females are behaving adaptively because it does not necessarily
strongly correlate with the relative RV of sons and daughters. This is
because the RV is a complex function of age- and condition-specific
survival, fertility, development trajectories and phenotypic inher-
itance. The calculation of RV for females and males is challenging
and we have been unable to identify shortcuts to its calculation.
Without this, it will be necessary to construct two-sex models of the
population dynamics of species of interest and calculate the RV of sons
and daughters born to mothers in different conditions. We are hopeful
that application of our approach to multiple systems will reveal a
shortcut to RV calculation. Until that time, we cannot conclude that
females are, or are not, behaving adaptively by correlating offspring sex
ratio with maternal condition alone.

We have extended Trivers and Willard’s original theory1 to incorp-
orate differential demographic rates between the sexes. We show that
currently the only way to examine how sex differences in mortality in a
specific system influence optimal sex allocation tactic as a function of
maternal condition is to calculate the RV for male and female offspring
born to mothers in different conditions, and we have provided a
method for doing so. As further research utilizing data to construct
two-sex IPMs for different systems is carried out, we expect to gain a
better understanding of the frequency with which females adaptively
adjust the sex ratio of their offspring. As it is currently difficult to
interpret the vast empirical literature testing this theory, calculating
the RV of males and females born to mothers in different conditions
for many systems will reveal whether Trivers and Willard’s important
insight that mothers should manipulate the sex ratio of their offspring
to maximise their fitness is supported or not. However, the context-
dependent nature of relative RV of sons and daughters to a mother
suggests that an appropriate empirical test of the Trivers–Willard
theory would be to observe mothers altering their sex allocation tactic
across a range of conditions that affect the optimal sex allocation tactic.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Data reporting. No statistical methods were used to predetermine sample size.
Summary. We use deterministic two-sex integral projection models (IPMs), that
is, stochastic effects are excluded, because demographic rates of males and females
typically fluctuate together with the environment. To calculate the RV for two
sexes in an age- and size-structured population model we construct a sex-, age-,
and size-structured generation/cohort projection matrix. The left eigenvector of
this generation matrix gives the RV at birth for females and males, vR(s0) and
v=(s0), as a function of birth weight s0. Maternal body weight is a cue for maternal
condition because it strongly affects survival30,31 and breeding success32,33. We
therefore weight the RV with the offspring distribution conditioned on maternal
weight and age to obtain the RV of daughters (d) and sons (s) to a mother of weight
sf and age a, vd

a(sf ) and vs
a(sf ). The difference between the RV of male and female

offspring is Dva(sf )~vs
a(sf ){vd

a(sf ); it is a function of maternal weight and age,
and if Dva(sf) is nearly linear then the slope determines whether there is a Trivers–
Willard effect (type 1, positive slope) or a reversed Trivers–Willard effect (type 2,
negative slope). In some instances, the association is nonlinear, leading us to
identify type-3 and -4 Trivers–Willard effects (see main text).
The Model. The integral projection model uses four functions: first, the age-
specific survival (superscript s) probability ps

a(s) as a function of weight s; second,
the age-specific probability distribution pg

a(s2js1) of weight at next time-step s2 as a
function of current weight s1 conditioned on survival (superscript g, growth);
third, the offspring number Ra(s) as a function of maternal age a and weight s;
and fourth, the offspring weight distribution f(sjsf, sm) as a function of maternal,
sf, and paternal weight sm at conception. Mating behaviour is described by the
set of mating probabilities between every parental weight and age combination
m(af, sf;amsm). We use models applied to Columbian ground squirrels18 and big-
horn sheep20. For both species, we assume that male mating probability increases
with male body weight; we assume, in contrast, that female mating probability is
independent of body weight once it is above a size (squirrels) or age (sheep)
threshold. For sheep, we assume that male mating probability is zero for rams
below 80 kg and then increases linearly with the weight of the ram. The population
level offspring sex ratio at birth is unity in both models (although the observed sex
ratio in the squirrel population is extremely flexible). The IPM projects a popu-
lation structured along a continuous trait (here, body weight) from one time-step
to the next. There are no stochastic or density effects, and the numerical iteration
of the projection converges quickly. Model outputs are the population growth rate
l and asymptotic age- and weight-distribution of the female and male components
of the population, nR(a, s) and n=(a, s).
Construction of a cohort projection matrix. Age-structured models readily
generalize to age- and stage-structured models34. We use the asymptotic popu-
lation distributions, nR(a, s) and n=(a, s), to calculate the age- and size-specific
fertility functions (MR

a (s) and M=
a (s)), the age- and size-specific inheritance func-

tions (DR
a(s0js) and D=

a (s0js)), and the age- and birth-size-specific survivorship
functions (LR

a(s, s0) and L=
a (s, s0)). The exact calculation of MR

a (s), M=
a (s),

DR
a(s0js), D=

a (s0js), LR
a(s,s0), and L=

a (s, s0) is given in detail below. Here we provide
definitions of these terms and outline how we use them to construct a generation
projection matrix.

The total number of offspring (both sexes) produced by a female (or male) of age
a and weight s is MR

a (s)(and M=
a (s) for males). The fraction of these offspring that

start life with birth weight s0 is given by DR
a(s0js) (and D=

a (s0js) for males). Among
the MR

a (s) offspring that a mother produces are MRR
a (s) daughters and M=R

a (s) sons.
Similarly, the daughters (MR=

a (s)) and sons (M==
a (s)) of a father sum to M=

a (s). We
assume that mothers and fathers produce sons and daughters at an even ratio,

therefore MRR
a (s)~M=R

a (s)~
1
2

MR
a (s) and MR=

a (s)~M==
a (s)~

1
2

M=
a (s). The prob-

ability that a newborn male (or female) of age 1 and birth weight s0 is alive with
weight s at age a is L=

a (s,s0) (and LR
a(s, s0) for females).

We assume that the inheritance of body weight is independent of offspring sex,
that is, DR

a(s0js)~D=R
a (s0js)~DRR

a (s0js) and D=
a (s0js)~D==

a (s0js)~DR=
a (s0js) With

r 5 ln l, the stable population growth rate, we define the operators:

A=R
r (s1,s0)~

X
a

ð
e{ra 1

2
DR

a(s1js)M=R
a (s)LR

a(s, s0)ds ð1Þ

ARR
r (s1,s0)~

X
a

ð
e{ra 1

2
DR

a(s1js)MRR
a (s)LR

a(s, s0)ds ð2Þ

A==
r (s1,s0)~

X
a

ð
e{ra 1

2
D=

a (s1js)M==
a (s)L=

a (s, s0)ds ð3Þ

AR=
r (s1,s0)~

X
a

ð
e{ra 1

2
D=

a (s1js)MR=
a (s)L=

a (s, s0)ds ð4Þ

where A=R
r (s1,s0), for example, gives the fraction of male progenies with birth

weight s1 that are produced by a female of birth weight s0 during the course of
her life. We construct the generation/cohort projection matrix A:

A~
ARR

r AR=
r

A=R
r A==

r

� �
ð5Þ

which projects one cohort to the next. Let uR(s0) be the female newborn distri-
bution and u=(s0) the male newborn distribution. Matrix A maps the cohort
distribution of newborns of generation t to the offspring distribution produced
by this cohort in generation t 1 1. That is for a population with growth rate r:

uR
tz1

u=
tz1

 !
~A

uR
t

u=
t

 !
ð6Þ

Matrix A has a dominant eigenvalue of unity, a right eigenvector that gives the
stable newborn distribution, that is, (uR, u=)T, and a left eigenvector that gives the
RV, that is, (vR, v=), of newborns of each size and sex.
Calculation of RV as a function of maternal weight. We are interested in
optimal sex allocation, an optimization task conducted by mothers. Males can
influence primary sex ratio, for instance, by transmitting an unequal share of male
or female gametes35, but the female is in principle able to render her partner’s
preference of offspring sex ineffective. She can do so by cryptic gamete choice or,
if females are the heterogametic sex, by producing more gametes of one sex than
the other.

We use the left eigenvector of matrix A which gives the female and male RV for
each birth weight, vR(s0) and v=(s0), and weight it with the offspring distribution of
a mother of age a and weight s, DR

a(s0js):

vs
a(sf )~

ð
v=(s0)DR

a(s0jsf )ds0 and vd
a(sf )~

ð
vR(s0)DR

a(s0jsf )ds0 ð7Þ

to obtain the RV of a son and a daughter as a function of maternal weight.
Trivers–Willard effect, reversed Trivers–Willard effect, and other sex alloca-
tion tactics. We study the difference between male and female RV as a function of
maternal weight: Dva(sf )~vs

a(sf ){vd
a (sf ), where sf is maternal weight. If Dva(s) is

approximately linear then the sign of the approximate slope of Dva(s) determines
whether the species is predicted to show a Trivers–Willard effect or a reversed
Trivers–Willard effect. Positive slope, that is, female RV exceeds male RV at low
maternal body weight and male RV exceeds female RV at high maternal body
weight, means there is a Trivers–Willard effect (Fig. 1a). A negative slope ofDva(s)
implies a reversed Trivers–Willard effect (Fig. 1d):

Dva(smax){Dva(smin)
w0 Trivers�Willard ef fect (type 1),

v0 reversed Trivers�Willard ef fect (type 2)

�
ð8Þ

where smax and smin denote the midpoint of the largest and smallest reproductive
weight-class, respectively.

If Dva(s) is strongly nonlinear such that a linear approximation would be inap-
propriate, then the shape of Dva(s) defines the optimal sex allocation tactic. For
example, a u-shape implies that intermediate-sized mothers should produce
daughters, while mothers at the extreme ends of the weight scale should produce
sons; we name this tactic a type 3 Trivers–Willard effect (Fig. 1e). An n-shape
implies that intermediate mothers should produce sons, while mothers at the
extreme ends of the weight scale should produce daughters; we name this tactic
a type 4 Trivers–Willard effect (Fig. 1f).
Sensitivity analysis. We approximate the sensitivity of Dva to an upward per-
turbation e of any parameter p by:

LDva

Lp
(s)<

Dva(s,p (1ze)){Dva(s,p)

pe
ð9Þ

We perturb survival parameters by 1% downwards and all other parameters by 1%
upwards, which means that any perturbation results in increased mortality,

growth, or inheritance probabilities. If Dva(s) and
LDva(s)

Lp
are reasonably linear

then a change in the slope implies either a strengthening or weakening effect. If
LDva(s)

Lp
has a steeper slope of the same positive (or negative) sign as Dva(s) then

we say that a parameter perturbation strengthens a Trivers–Willard effect (Fig. 1b;

or reversed Trivers–Willard effect). If the slope of
LDva(s)

Lp
is shallower than that of

Dva(s), then we speak of weakening the effect (Fig. 1c). If the slope of
LDva(s)

Lp
is

negative in contrast to a positive slope of Dva(s), then a Trivers–Willard effect has

been reversed (Fig. 1d). However, neither Dva(s) nor
LDva(s)

Lp
have to be linear.
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For example, when we perturb the male survival intercept in the squirrel model, a
reversed Trivers–Willard effect changes into a type 3 effect (u-shape). The results
of the sensitivity analyses for squirrels in are shown in Extended Data Figs 4 and 5,
and for sheep in Extended Data Figs 7 and 8.
Mean and variance in RV. To calculate the properties of the distribution of
offspring’s RV we use the stable population distribution nR(a,s) and n=(a,s) from
iterating the two-sex IPM. We denote the mean and variance of the RV distri-
bution with E(v) and Var(v) and calculate it by

E(vd
a)~

ð?
0

vd
a (s)nR(a, s)ds

ð?
0

nR(a,s)ds

and E(vs
a)~

ð?
0

vs
a(s)nR(a, s)ds

ð?
0

nR(a, s)ds

ð10Þ

Var(vd
a )~E((vd

a )2){(E(vd
a ))2 and Var(vs

a)~E((vs
a)2){(E(vs

a))2 ð11Þ

Calculation of Da. The term D=
a (s0js) (or DR

a(s0js)) denotes the probability that an
offspring produced by a father (or a mother, respectively) of age a and weight s is
born with birth weight s0. The terms D=

a (s0js) and DR
a(s0js) are conditional prob-

abilities, that is,
ð

D=
a (s0js)ds0~

ð
DR

a(s0js)ds0~1. They are calculated using the

mating function m(af, sf;amsm) and fertility function Raf (sf ) of the two-sex IPM, as
well as the stable female and male distributions nR(af, sf) and n=(am, sm), which are
obtained by iteration. The Da functions are calculated by:

DR
af

(s0jsf )~

X
am

ð
f (s0jsf , sm)m(af , sf ; amsm)Raf (sf )n

=(am, sm)dsmX
am

ð
m(af , sf ; amsm)Raf (sf )n

=(am, sm)dsm

if
X

am

ð
m(af , sf ; amsm)Raf (sf )n

=(am, sm)dsmw0

0 otherwise

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

D=
am

(s0jsm)~

X
af

ð
f (s0jsf , sm)m(af , sf ; amsm)Raf (sf )n

R(af , sf )dsfX
af

ð
m(af , sf ; amsm)Raf (sf )n

R(af , sf )dsf

if
X

af

ð
m(af , sf ; amsm)Raf (sf )n

R(af , sf )dsf w0

0 otherwise

8>>>>>>>>>><
>>>>>>>>>>:

ð13Þ

Calculation of Ma. The term MRR
a (s) denotes the total number of daughters

produced by a mother of weight s and age a. Similarly, M=R
a (s) gives the number

of sons to a mother, MR=
a (s) gives the number of daughters to a father, and M==

a (s)
gives the number of sons to a father of age a and weight s. The terms are calculated
using the mating function m(af, sf; amsm) and fertility function Raf (sf ) of the
two-sex IPM, as well as the stable female and male distributions nR(af, sf)

and n=(am, sm), which are obtained by iteration. The MR
a and M=

a functions are
calculated by:

MR
af

(sf )~C
X

am

ð
m(af ,sf ; amsm)Raf (sf )n

=(am,sm)dsm ð14Þ

MR
am

(sm)~C
X

af

ð
m(af ,sf ; amsm)Raf (sf )n

R(af ,sf )dsf ð15Þ

with the normalization constant

C~

X
af wamin

ð
smin

nR(af ,sf )dsf

X
af , am

ð
m(af ,sf ; amsm)nR(af ,sf )n

=(am,sm)dsf dsm

ð16Þ

where amin and smin are the minimum age and weight necessary to start repro-
ducing.
Calculation of La. The term LR

a(s,s0)(or L=
a (s,s0)) gives the probability that a

newborn female (or a newborn male, respectively) born with weight s0 will be
alive at age a and weigh s weight units. The La terms are calculated recursively
using the combined and age-specific survival and growth function psg

a (see refs 18
and 20 for more detail on psg

a ) by

LR
1(s,s0)~L=

1 (s,s0)~
1 if s~s0

0 otherwise

�
ð17Þ

LR
af

(s,s0)~

ð
psg,R

af {1(s,s1)LR
af {1(s1, s0)ds1 for af §2 ð18Þ

L=
am

(s,s0)~

ð
psg,=

am{1(s,s1)L=
am{1(s1,s0)ds1 for am§2 ð19Þ

where psg,R
a (s,s1) and psg, =

a (s,s1) give the probability of a female or male, respect-
ively, of age a and weight s1 to survive and attain weight s in the next time step.
Code availability. A Matlab script for calculating RV as left eigenvectors from the
cohort projection matrix is given in Supplementary Information, appendix B.
The script covers calculations in equations (1–5, 7, and 12–19) and does not
include the two IPM models described elsewhere18,20.

30. Neuhaus, P. Weight comparisons and litter size manipulation in Columbian
ground squirrels (Spermophilus columbianus) show evidence of costs of
reproduction. Behav. Ecol. Sociobiol. 48, 75–83 (2000).

31. Nussey,D. H.et al. Patterns of body mass senescence andselective disappearance
differ among three species of free-living ungulates. Ecology 92, 1936–1947
(2011).

32. Bronson, M. T. Altitudinal variation in the life history of the golden-mantled ground
squirrel (Spermophilus lateralis). Ecology 60, 272–279 (1979).

33. Festa-Bianchet, M., Gaillard, J. & Jorgenson, J. Mass- and density-dependent
reproductive success and reproductive costs in a capital breeder. Am. Nat. 152,
367–379 (1998).

34. Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate,
and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).

35. Edwards, A. M. & Cameron, E. Z. Forgotten fathers: paternal influences on
mammalian sex allocation. Trends Ecol. Evol. 29, 158–164 (2014).

36. McGraw, J. B. & Caswell, H. Estimation of individual fitness from life-history data.
Am. Nat. 147, 47–64 (1996).

RESEARCH LETTER

G2015 Macmillan Publishers Limited. All rights reserved



Extended Data Figure 1 | Mean female age at reproduction affects optimal
sex allocation. a, Slope of the difference between male and female RV as a
function of the size threshold above which females reproduce. The male size
threshold is fixed at 279 g. Negative values indicate a reversed Trivers–Willard
effect, positive values a Trivers–Willard effect. Dashed lines indicate a type 4
effect. When the population growth rate l is greater than 1 (growing
population), increasing female age at reproduction selects towards a Trivers–

Willard effect. In contrast, when the population is shrinking (l , 1),
reproducing at a later age increases fitness36 and selects towards a reversed
Trivers–Willard effect with increasing female age at reproduction. b, Mean
maternal (red) and paternal (blue) age at reproduction as a function of the size
threshold at which females reproduce. Dashed lines indicate the range of
size thresholds that cause a type 4 effect.
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Extended Data Figure 2 | Strength of Trivers–Willard and reversed
Trivers–Willard effects in squirrels as a function of the male to female
survival ratio. The x-axis plots the ratio of male to female survival rate
(independent of size and age) to the slope of the difference between male and
female reproductive value, Dva(s). Positive values indicate a Trivers–Willard
effect (grey background), negative values a reversed Trivers–Willard effect (red

background). The more positive (or negative) the slope of Dva(s) the more the
expected sex ratio in offspring to good-condition mothers is biased towards
males (or females). Solid line, no sex differences in mortality; dashed line,
strength of mate selection has been increased from r 5 0.1 to r 5 0.25
(see Supplementary Table 1). Points highlighted with arrows indicate the
settings that are used in Fig. 2 to plot Dva(s) against maternal size s.
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Extended Data Figure 3 | Trade-off between survival and reproduction in squirrels. a, Females (red) have higher survival rates than males (blue) at all ages.
b, Small females are expected to produce more offspring than small males, while large females produce less offspring than large males.
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Extended Data Figure 4 | Sensitivity of the reversed Trivers–Willard effect
to parameter perturbations in squirrels. When bars lie in the positive (or
negative) range, then a change in parameters works towards a Trivers–Willard
effect (or strengthening the reversed Trivers–Willard effect). The horizontal
dashed line shows the difference in slope needed to neutralise the reversed
Trivers–Willard effect. The bar above the dashed line indicates a Trivers–
Willard effect (black); bars below indicate a reversed Trivers–Willard effect
(red). Filled fractions of the bars indicate the contribution of change caused by
parameter perturbation owing to change of female RV, and, in the white
fractions, to change in male RV (see also Extended Data Fig. 5). Bars 1 to 4 show
the sensitivity of the Trivers–Willard effect in squirrels to perturbations of the
following parameters by 1% downwards (which corresponds to higher

mortality in the sex affected): (1) female survival intercept; (2) female survival
slope; (3) male survival intercept, parameter change resulted in curved Dva

which we indicate with ‘TW effect type 3’ and omit the bar; (4) male survival
slope. Bars from 5 to 14 show the sensitivity of the Trivers–Willard effect in
squirrels to perturbations of the following parameters by 1% upwards (which
corresponds to higher rates in the affected sex): (5) female growth (mean
intercept); (6) female growth (mean slope); (7) female growth variance; (8)
male growth (mean intercept); (9) male growth (mean slope); (10) male growth
variance; (11) inheritance (mean intercept); (12) inheritance (mean slope);
(13) inheritance variance; (14) expected offspring number. All parameters are
listed in Supplementary Table 1.
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Extended Data Figure 5 | Female (red) and male (blue) variance in RV in
original model (bar 0) and when parameters are perturbed (bars 1–14) in
squirrels. Number 1 above bars indicates a Trivers–Willard effect, number 2 a
reversed Trivers–Willard effect, and number 3 a type 3 Trivers–Willard effect.
Bars 1 to 4 show variances in RV when the survival parameters are perturbed
by 1% downwards (which corresponds to higher mortality in the affected sex):
(1) female survival intercept; (2) female survival slope; (3) male survival
intercept; and (4) male survival slope. Bars 5 to 14 show variances in RV when

the following parameters are perturbed by 1% upwards (which corresponds to
higher rates in the affected sex): (5) female growth (mean intercept); (6) female
growth (mean slope); (7) female growth variance; (8) male growth (mean
intercept); (9) male growth (mean slope); (10) male growth variance; (11)
inheritance (mean intercept); (12) inheritance (mean slope); (13) inheritance
variance; and (14) expected offspring number. All parameters are listed in
Supplementary Table 1.
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Extended Data Figure 6 | Reproductive value (RV) of female (solid line)
and male (dashed line) offspring in bighorn sheep. For small mothers,
daughters have higher RV than sons. For large mothers, sons have higher RV

than daughters. We scaled the RV of females and males such that the female RV
of the smallest reproductive size class is 1.
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Extended Data Figure 7 | Sensitivity of the Trivers–Willard effect to
parameter perturbations in sheep. Bars in the positive range indicate that the
Trivers–Willard effect is strengthened; bars in the negative range indicate a
weakened Trivers–Willard effect. The horizontal dotted line marks the
sensitivity needed to reverse the Trivers–Willard effect. The parameters are:
1–8 female survival (2 parameters each for the stages lamb, yearling, adult,

and senescent); 9–16 male survival (2 parameters for each stage); 17–36 female
growth (5 parameters for each stage); 37–56 male growth (5 parameters for
each stage); 57–60 female inheritance (inh) (2 intercepts for mean and variance,
2 slopes for female contribution to mean and variance); 61–62 male inheritance
(male contributions to mean and variance); and 63–68 fecundity (fecund).
All parameters are listed in Supplementary Tables 2 and 3.
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Extended Data Figure 8 | Sensitivity of Trivers–Willard effect to size-
specific male mortality increases of 1% in sheep. a–d, The survival probability
of each size class in each stage (lamb (a), yearling (b), adult (c), and senescent
(d)) has been independently lowered by 1%. The vertical dashed black line
denotes the mean body weight of male sheep in the corresponding stage. In
the early stages (a and b, lamb and yearling) we find that male-mortality

increases in small size classes strengthen the Trivers–Willard effect, whereas
male-mortality increases in heavy size classes weaken the Trivers–Willard
effect. In the later stages (c and d, adult and senescent), mortality increases
hardly affect the Trivers–Willard effect (note that adult rams usually weigh
above 60 kg).
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