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Abstract

Most organisms live in changing environments or do not use the same resources at

different stages of their lives or in different seasons. As a result, density dependence will

affect populations differently at different times. Such sequential density dependence

generates markedly different population responses compared to the unrealistic

assumption that all events occur simultaneously. Various field studies have also shown

that the conditions that individuals experience during one period can influence success

and per capita vital rates during the following period. These carry-over effects further

complicate any general principles and increase the diversity of possible population

dynamics. In this review, we describe how studies of sequential density dependence have

diverged in directions that are both taxon-specific and have non-overlapping

terminology, despite very similar underlying problems. By exploring and highlighting

these similarities, we aim to improve communication between fields, clarify common

misunderstandings, and provide a framework for improving conservation and

management practices, including sustainable harvesting theory.
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I N T R O D U C T I O N

Population regulation, the process whereby a population

shows a tendency to return to its equilibrium, is fundamental

to ecology and related fields such as conservation and

management. The negative feedback mechanisms that

characterize density dependence are essential for such

regulation. Density dependence, however, does not neces-

sarily always operate in its most simplistic form, where

individuals reside in just one environment. What happens if

individuals change environments, possibly repeatedly, dur-

ing their lives? Such changes can arise in different ways.

Environments may be physically distinct, as for migratory

species in which the breeding, wintering and migration

periods can all have regulatory effects on populations

(Webster et al. 2002). Species may have life histories that

include stages in different habitats, or animals may show

temporal variation in resource use, for example, due to

strong seasonality. Species with such spatial and temporal

variation in individual distribution and resource use are

likely to experience density dependence in more than one

location or time period. When this is the case, it is important

to consider the sequential nature of the regulating events.

Even though sequential density dependence occurs in

many different taxonomic groups, such as fish, amphibians,

insects and even plants, it is maybe easiest to envisage in

migrating birds, which often inhabit very different locations

in different seasons. Many migratory bird species have

recently declined in abundance, and it has been debated

whether conditions during winter, breeding or migration

seasons limit population sizes (Sherry & Holmes 1996;

Newton 2004, 2006; Mills 2006). However, this discussion
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has generally not included the knowledge obtained in more

theoretical treatments of sequential density dependence.

Ornithologists have, on the other hand, taught us much

about another, related phenomenon that occurs in seasonal

environments: that individual fitness in one stage may

depend on how well the individual did in the stages before

(carry-over effects), with potential impacts on population

size (Norris 2005; Runge & Marra 2005). Both carry-over

effects and sequential density dependence may result in

population dynamics that are very different from the

simplistic assumption that the lowest carrying capacity

should determine population size.

Sequential density dependence has been studied in

different contexts, in theory and empirically, but with

relatively little overlap between related fields or across

taxonomic borders. In addition to having been considered in

basic theoretical studies (Fretwell 1972; Kot & Schaffer 1984;

Åström et al. 1996), it has more recently also been applied to

management and harvest theory (Kokko & Lindström 1998;

Boyce et al. 1999). In this synthesis, our goal was not to

provide a complete review of these interrelated topics, but

rather to underline the importance of the different processes

involved through the seasons or stages, examine the

similarities between different systems through theory and

empirical examples, and guide further research. We will start

by examining the consequences of sequential density

dependence in general before we give some specific empirical

examples. We will also show how carry-over effects can be

incorporated into simple seasonal models, and consider the

management implications of these important complications.

T H E T H E O R E T I C A L B A C K G R O U N D

In this section, we focus on sequential density dependence

that results from the simple interaction between population

size and the environment, thus we ignore carry-over effects.

There are two general ways of modelling sequential density

dependence. The alternatives, differential equations with

periodic functions (e.g. Holt & Colvin 1997; Kokko &

Lindström 1998) and sequentially occurring discrete events of

density dependence (e.g. Fretwell 1972; Kot & Schaffer 1984;

Jonzén et al. 2002a), make use of continuous and discrete-time

models, respectively. Differential equation models can often

be considered more realistic simply because biologically

relevant events, in reality, overlap in time: mortality may occur

during the breeding season, for instance. Such models also

allow for the possibility that vital rates, such as mortalities or

birth rates, vary during a season as densities change, as is the

case for salmonids (e.g. Einum et al. 2006). Models with

discrete events, on the other hand, are intuitively easier to

grasp, and they may also be more appropriate, e.g. in cases of

two discrete habitats or in migratory species. In addition to

these population-level models, sequential density dependence

has also been investigated using individual-based models (e.g.

Pettifor et al. 2000).

A simple discrete model of sequential density dependence

Our basic example assumes two seasons, following Fretwell

(1972). Consider a population that consists of Na individuals

in the autumn, while the population size in spring before

breeding is Ns. We assume the breeding contributes bNs to

the population size, where b is the per capita reproductive

output. Assuming no mortality during the summer, the

autumn population size, Na, must be

Na ¼ Ns þ bNs: ð1Þ
Subsequently, we assume that all mortality occurs during

winter, so that the following spring population density is

Ns ¼ Na � mNa: ð2Þ
An equilibrium is found when the Na and Ns of eqns 1 and 2

coincide. To provide a simple example, we let both repro-

duction and mortality be linearly density-dependent:

b ¼ B � bNs ð3Þ
and

m ¼ M þ aNa: ð4Þ
Here, B is the maximum per capita birth rate (achieved in a

small summer population), M is the minimum per capita

death rate (achieved in a small wintering population), and a
and b determine the strength of density dependence in

mortality and reproduction, respectively. The annual

dynamics are depicted in Fig. 1. The equilibrium is found by

substituting the right-hand side of eqn 2 for Ns in eqn 1:

Na;tþ1 ¼ Na;t � mNa;t þ bðNa;t � mNa;tÞ; ð5Þ
where t denotes the year. This is achieved if m + b = bm.

For other and more elaborative examples of correct

sequential treatments, see e.g. Fretwell (1972), Kot &

Schaffer (1984), Rodriguez (1988) and Åström et al. (1996).

P R E D I C T I O N S A N D E M P I R I C A L R E S U L T S

Sequential density dependence often features compensation

(absence of compensation is described as additive mortality):

in the above example, additional mortality that decreased

the spring population size would be compensated by

higher than usual breeding output, likewise lower than

usual breeding success would find its compensation in

higher than usual survival in the subsequent season. In

the context of seasonal events this phenomenon has been

given the name �seasonal compensation� (Boyce et al.

1999; Norris 2005).

The simple definition of overcompensation, which we follow

here, is compensation that is so strong that an initial

removal of individuals leads to a higher population size
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(measured at some later stage) than would have otherwise

been reached. For example, experimental harvesting of soil

mite Sancassania berlesei eggs led to an increase in the number

of adult mites, indicative of overcompensation (while

harvesting adults led to the completely different result of

decreasing the later number of adults; Cameron & Benton

2004). Another example is found in a model (parameterized

with both field and laboratory data) of a system where

Bewick�s swans Cygnus columbianus bewickii graze on fennel

pondweed Potamogeton pectinatus tubers. This mortality is

seasonal because of the migratory habits of swans and, while

it decreases the density of Potamogeton ramets sprouting next

spring, the predicted density of tubers produced in the

following autumn is increased (Jonzén et al. 2002b).

Models of sequential density dependence show some

surprises regarding the strength of compensation. Over-

compensation is a common outcome particularly in discrete-

time models, which means that the equilibrium population

size can increase with additional mortality (Boyce et al.

1999). However, whether such strong responses actually

occur in natural populations has been the subject of a long

and intensive debate, in particular for game species for

which questions as to whether mortality is additive,

compensatory or overcompensatory have obvious manage-

ment implications (see section Harvesting and management

implications below).

For plant populations constrained by resources, compen-

sation can be absolute so that any loss in density at one time

(a)

(c)

(b)

Figure 1 Population size after 1 year is a product of processes in two seasons. (a) First mortality reduces population size from autumn to

spring (thick black line) according to Ns = Na ) mNa and m = M + aNa (all variables are explained in the main text; M = 0.1; a = 0.00025).

(b) Reproduction then increases population size from spring to autumn (thick black line) according to Na = Ns ) bNs and b = B ) bNs (all

variables explained in the main text; B = 2; b = 0.0005). (c) The equilibrium population size is found when population size is the same after

1 year (where the thick black line crosses the dotted line), i.e. when the absolute population increase in summer [found by following the

arrows in (a)] is the same as the absolute decrease in winter [found by following the arrows in (b)]. The thick grey line illustrates the equivalent

change in population size from one autumn to the next in a non-sequential scenario. The total change in population size is here calculated as

Nt = Nt ) 1 + bNt ) 1 ) mNt ) 1 (b and m defined as in the sequential density dependence scenario and the same values for M, a, B and b
were used for the purpose of comparison). In this non-sequential scenario equilibrium is found when b = m, i.e. when the per capita

productivity during the breeding season is the same as the per capita mortality in the winter. In this example per capita winter mortality stabilizes

at 0.616, while per capita net summer breeding output was 1.604 at equilibrium in the sequential density dependence scenario.
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will be completely compensated by growth in later stages.

This is the famous �self-thinning principle� (White 1981),

a rule that plant populations that use limiting resources

cannot increase the mean weight of individuals without

reducing the mean density. This �thinning line�, which is the

relationship between mean weight and mean density, then

constitutes an equivalent of a carrying capacity. A similar

approach has been adopted for the barnacle Semibalanus

balanoides and mussel Mytilus edulis where the same principles

of packing for space apply (Hughes & Griffiths 1988).

Application of this principle to the grasshopper Chorthippus

brunneus (Begon et al. 1986) and salmonid fishes is more

controversial (Armstrong 1997; Armstrong & Nislow 2006)

especially as the original constraint of physical packing no

longer applies. In salmonid populations there is a strong

pattern of reduced densities in later stages, and the additive

vs. compensatory debate from the harvesting literature has

been replaced by a contrast between self-thinning and the

�early critical period� (ECP) argument. The ECP argument

states that the high mortality during the transition from early

life stages to independent foraging (the ECP) is not

followed by any density-dependent survival, and thus the

ECP constitutes a population bottleneck (Armstrong &

Nislow 2006). The self-thinning principle, on the other

hand, would include compensatory mortality in later stages.

The timing of population limitation often implies

different responses to stochastic events. A model of two

seasons with nonlinear density dependence shows that

summer (rather than winter) limitation can reduce popula-

tion vulnerability to stochastic events (Payne & Wilson

1999). This applies particularly to long-lived species with

low breeding rates, because they take longer to recover from

short-term mortality events compared to events of repro-

ductive failure (Payne & Wilson 1999). Studies of small

rodent populations suggest that they are mostly winter

limited; however, the difference between the strength of

density dependence in summer and winter seems to be

greater in more northerly populations (Stenseth 1999).

Models also suggest that it is winter regulation that

leads to the multiannual cycles observed in some of these

species, through strong seasonal (and delayed) density

dependence (Hansen et al. 1999), although the drivers of

cycles as a whole are still debated and are probably varied

(Stenseth 1999; Turchin & Hanski 2001). A comparison

of a fluctuating Soay sheep Ovis aries population and a

stable population of red deer Cervus elaphus also suggests

that population cycles can be caused by sequential density

dependence (Clutton-Brock et al. 1997). The difference

between Soay sheep and red deer population dynamics is

most likely caused by differences in density dependency

of reproduction. Red deer reproduction is sensitive to

small increases in population size, whereas Soay sheep

reproduction is insensitive to all but extreme densities.

This results in very high population sizes in winter which

again leads to overcompensatory mortality (Clutton-Brock

et al. 1997).

Another good example of sequential density dependence is

found in black-tailed godwits Limosa limosa islandica. The

Icelandic godwit population is currently increasing in number

and range. This expansion has resulted in a density-dependent

process known as a buffer effect, in which an increasing

proportion of the population occupies poorer quality habitats.

This expansion into poorer quality sites has occurred in both

the non-breeding season (Gill et al. 2001) and the breeding

season (Gunnarsson et al. 2005a), thus the sequential density-

dependent mechanism currently influencing the godwit

population can be described as a double buffer effect,

operating in both summer and winter.

A particularly enlightening modelling exercise by Mou-

quet et al. (2005) includes spatial distribution of the large

blue butterfly Maculinea arion. This species has a complex life

cycle that includes strong contest competition between

caterpillars on plants and later severe scramble competition

within ants nests where the caterpillars eat ant larvae. While

strong density dependence can be destabilizing in the case of

scramble competition alone, a threshold strength is required

for a stable equilibrium population in this model. High rates

of fecundity are also destabilizing in this system, because of

the overcompensatory response in mortality within ant

nests. Simple dynamics generally emerged only when the

scramble competition within ant nests was less severe than

the contest competition when on plants.

For many species it is usual to consider two or three

seasons, and population sizes are measured whenever one

season turns into another. However, this assumes that

population size variation within a season is unimportant, but

such simplification does not always provide sufficient detail.

In other words, sequential density dependence is also

possible within one season (Åström et al. 1996). For

example, a season that consists of two temporally distinct

stages, each with compensatory mortality, can lead to

overcompensation as a whole. Alternatively, the season as a

whole may not feature any density-dependent effects on

per capita rates, because different density-dependent events

within the season may have cancelled each other out. For

example, Elmberg et al. (2005) give evidence for within-

season sequential density dependence in mallards Anas

platyrhynchos. Their introductions of extra mallards to

experimental lakes had a significant negative effect on the

number of broods hatched, but no effect on the number of

older ducklings. Assuming that this is not just a sample size

issue, such a pattern can only arise if there is compensation

operating between hatching and a time when the ducklings

are older. If survival from hatching to the old-duckling stage

is not density-dependent, then the negative effect of the

initial density on the numbers of hatching broods should be
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retained and repeat itself in the numbers of ducklings too.

As this was not found, there must have been two density-

dependent events following each other sequentially, which

can, overall, result in complete compensation, i.e. no

relationship between initial density and duckling numbers.

Similarly, a laboratory experiment conducted by Vanden-

bos et al. (2006) on fat-head minnows Pimephales promelas

showed that per capita production and survival of eggs were

negatively related to initial density of adults, but compen-

satory growth and survival of the high-density young yielded

similar abundance and mean size of all young at the end of

the season, irrespective of stocking density (a result

reminiscent of �self-thinning� in plants). There are important

practical applications of these studies, for example, stocking

of fish at higher densities may yield very little extra

economic benefit if fish �self-thin� in this way. However,

this study also found that lower initial densities did

eventually result in larger variation in size, which may affect

survival or productivity at later stages. This suggests that

carry-over effects, which we have ignored so far in this

review, should be included to predict recruitment patterns.

We will return to this after we have considered another

important issue: the order and duration of events.

Order and duration of events

Perhaps the most important lesson from sequential density

dependence modelling is that the order of the different

events matters (Fig. 3). This can be illustrated by adding a

third event, e.g. harvesting, to the simple model outlined

above. Following Jonzén & Lundberg (1999) we add

hunting mortality, h, such that the per capita mortality is

density-independent but can happen either before or after

winter mortality (a biologically relevant example is autumn

vs. spring hunting of waterfowl, Kokko et al. 1998). Thus,

the removed population is a fraction of either Ns or Na. For

the ease of presentation we now define Nh as the population

size after hunting. In the first case (autumn hunting), when

hunting occurs before winter mortality but after reproduc-

tion, Nh precedes Na, and Na is given by eqn 1,

Nh ¼ Na � hNa; ð6aÞ
and

Ns ¼ Nh � mNh: ð6bÞ
If hunting occurs after winter mortality but before

reproduction (spring hunting), Ns is given by eqn 2, and

Na ¼ Nh þ bNh; ð7aÞ
and

Nh ¼ Ns � hNs: ð7bÞ
As before, we assume that the per capita rates b and m are

density-dependent: b in eqn 6a is defined as in eqn 3 while

m = M + aNh in eqn 6b; correspondingly, in eqn 7a we

redefine b = B ) bNh while m in eqn 7b is defined as previ-

ously in eqn 4. The difference is best presented graphically

(Fig. 3). Autumn hunting is typically argued as preferable, as it

removes individuals who might have died anyway, and com-

pensatory mortality adds to this argument as the removal

improves survival of the remaining individuals (Boyce et al.

1999). The damaging impact of spring hunting, however, is

reduced if there is compensation in the summer, i.e. per capita

breeding success increases in a smaller population.

Other, more refined models of populations that undergo

three mortality ⁄ reproductive events in sequence give an

indication of the importance of order effects. The size and

dynamics of populations is affected by the order of density-

dependent events, whether they affect all stages (Åström

et al. 1996), two (Jonzén & Lundberg 1999; Hellriegel 2000)

or just one (Kokko & Lindström 1998; Hellriegel 2000).

Early theoretical work attempted to produce general rules,

e.g. suggesting that the strength of seasonality can be related

to its stabilizing or destabilizing effect on population

dynamics (Kot & Schaffer 1984). However, since then

theoreticians have examined a wider range of models, and

the most accurate summary of the results is that there is an

immense repertoire of potential outcomes of sequential

models (Åström et al. 1996). There may be several equilibria

depending on initial population density (Fretwell 1972;

Rodriguez 1988; Åström et al. 1996), and dynamics may be

stable, cyclic or chaotic (Kot & Schaffer 1984; Åström et al.

1996; Dugaw et al. 2004). It appears that there is no

shortcut: researchers will have to examine each system

carefully to derive appropriate predictions.

The duration of the mortality periods also determines

how the population responds (Kokko & Lindström 1998).

This is because different density-dependent processes are in

reality likely to overlap in time, and the amount of overlap

can affect the density that determines the later population

response. If a burst of mortality happens as a discrete event

in a period of density-dependent mortality (e.g. a very short

and intense harvesting season, or a few days of extreme

weather), the effect will depend largely on the timing of the

event (early vs. late). The earlier the event, the longer the

time for which resources are freed for the survivors to use,

and the stronger the resulting compensation. Similar

arguments apply for mortalities that occur throughout a

prolonged season; individuals that are removed late in the

winter (i.e. shortly prior to a new breeding season) are more

�additive� than those removed early. Kokko & Lindström

(1998) show how two standard models of density depen-

dence over an annual scale, the Beverton-Holt and Ricker

models, can be derived assuming continuous-time resource

use over a prolonged mortality period, followed by a birth

pulse. Ricker dynamics follows if mortality rates of all

individuals are determined by the state of the environment
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at the beginning of the overwintering season, while

Beverton-Holt can be derived if mortality decreases as

competitors die (see also Geritz & Kisdi 2004). Longer

harvesting seasons are thus more detrimental, in the sense

that the same number of hunted individuals decreases

equilibrium population sizes more if the season is long, and

the timing of harvesting matters more in latter case in which

mortality responds continuously to the number of compet-

itors (Kokko & Lindström 1998).

C A R R Y - O V E R E F F E C T S

Carry-over effects are non-fatal effects on individuals during

one period that influence success and per capita vital rates

during the following period (Webster et al. 2002; Runge &

Marra 2005). For example, brent geese with higher fat-loads

on the spring staging grounds produce more offspring after

migrating to the breeding grounds (Ebbinge & Spaans

1995). The concept also incorporates any delayed effect of

individual �state� such as parasite load, whether it carries a

disease, or the type of habitat the individual is constrained to

use (e.g. birds in poor condition that depart their wintering

grounds late may not be able to secure a high quality

breeding territory). One specific example of a carry-over

effect can be severe conditions during migration that will

lower individual condition and subsequently affect repro-

ductive output in the following breeding season. This effect

is independent of density during the migration and is

therefore labelled density-independent carry-over effect.

Density-independent carry-over effects can affect popula-

tion sizes (e.g. Norris 2005), but they cannot contribute to

population regulation. We will therefore focus on density-

dependent carry-over effects. Such carry-over effects repre-

sent changes in the states of individuals that are determined by

the population density in the season when the individuals

experienced changes in access to resources, but are expressed

in a later season. An example of a density-dependent carry-

over effect could be high number of individuals in winter

leading to more competition and hence a greater proportion

of lower quality individuals in the subsequent reproductive

season, which may lead to reduced reproductive output.

Reduced productivity will, however, lead to reduced compe-

tition in the following winter and thus higher reproductive

output in the subsequent breeding season.

A simple model of carry-over effects in a seasonal
environment

Density-dependent carry-over effects can be incorporated

into sequential density dependence models by allowing

functions that relate population sizes before and after a

season to depend not only on the density in beginning of the

relevant season, but also on that in the preceding season;

in other words the population model now features delayed

density dependence. We will provide an illustrative model by

expanding our two-season model of sequential density

dependence. Remember that population size in the autumn,

Na, is Ns + bNs after the increase from reproduction

(eqn 1), while the spring population size Ns is Na ) mNa

after the reduction caused by winter mortality (eqn 2). For

simplicity, we assume no carry-over effects from summer to

winter and that m is given by eqn 4, as before. We assume

density-dependent carry-over effects from winter to summer

though, and now b is still given by eqn 3, but B is now

dependent on Na:

B ¼ b0 � b1Na ð8Þ
Now all individuals reproduce poorly in the summer if the

population size in the previous autumn was high. The

equilibrium conditions can be found by equating the autumn

population sizes in the two following years (Fig. 4).

Population consequences of carry-over effects

A central feature of our review is that sequential events can

substantially increase the diversity of density-dependent

effects, and this diversity precludes the formulation of

simplistic general conclusions. Carry-over effects are no

exception; they can act either in conjunction with or in the

opposite direction of regulatory mechanisms (Norris 2005;

Norris & Taylor 2006). This is easiest to explain with an

example of seasonal environments. If higher densities

during winter imply that more individuals have to over-

winter in poor quality sites, then this may not only increase

winter mortality (within-season density dependence), but it

could potentially also reduce the reproductive output of the

surviving individuals, and therefore the total per capita

reproductive output in the breeding season (density-depen-

dent carry-over effect). In this example density dependence

and carry-over effects operate in the same direction, both

having a negative effect on population size. However,

if more individuals entering the winter season means that

the survivors are of higher quality (e.g. if high densities in

the beginning of the winter means that most individuals die

early in the winter, and the survivors get better access to

resources), this could increase per capita reproductive rates in

the following summer, and immediate density dependence

and density-dependent carry-over effects are now working

in opposite directions.

Not many models have attempted to incorporate carry-

over effects into a sequential density dependence frame-

work, and one of the exceptions (Norris & Taylor 2006) is

based on the problematic shortcut of constant overall

population size (see Box 1). This problem is avoided in a

study using matrix modelling that clearly shows the potential

of carry-over effects to decrease populations sizes (Runge &
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Box 1: When density dependence is considered

instantaneous

A widespread simplifying assumption that is present in

older (Williamson 1972; Sutherland 1996, 1998) as well as

more recent work (Norris & Taylor 2006) is that the

equilibrium population size is that at which the per capita

mortality rate equals the per capita net breeding output rate.

However, a per capita argument can be mathematically valid

only if mortality and breeding output depend on the same

population size. Yet population sizes cannot remain

constant throughout the year if mortality and breeding

are at least partially seasonally non-overlapping. To avoid

inconsistencies, the assumption of equal rates should

therefore not be made in models of two or more seasons.

A simple numerical example shows the effect of the

assumption of equal vital rates on population equilibrium.

Consider a population that comprises 1000 individuals in

the autumn, and 20% of individuals die in the winter

(mortality = 0.2). The spring population size is therefore

800 individuals. If per capita reproduction in the summer is

the same as per capita winter mortality (0.2), the autumn

population size is 960, i.e. less than the original 1000.

Despite the equal rates of birth and death, the population

is not at equilibrium. If, however, mortality and reproduc-

tion happened simultaneously, then they could both be

based on the same population size, and equal vital rates

would indicate population equilibrium. The effect can

more generally be shown in the simple discrete model of

sequential density dependence (eqns 1–5). In this model,

per capita breeding output (b) only equals per capita mortality

(m) when b = m = 0, which is biologically impossible in an

extant population. This argument also applies regardless of

scale, i.e. if one considers relative rather than absolute

population sizes.

There is some work acknowledging that b = m is not

generally true at equilibrium (Norris 2005), yet such work

and a subsequent review (Newton 2006) and textbooks

(Begon et al. 1996; Goss-Custard & Sutherland 1997) have

thereafter accepted the simplification b = m without assess-

ing the consequences. The difference between equilibrium

population sizes in a sequential density dependence frame-

work and an equal-rate framework is illustrated in Fig. 2.

In this example the equal-rate framework (non-sequential

density dependence) generally overestimates the equilibrium

population sizes as counted in autumn. With seasonality, the

density-dependent impacts in one season will be lower than

for equal rates as the population has already been reduced in

the other season. This effect is stronger when winter density

dependence is strong, or when both summer and winter

density dependencies are weak. Note that the stage at which

the population is censused can influence conclusions

regarding population size. If there is density dependence

in all periods, the effects of the last period before the census

may appear disproportionately important, as they will have

larger impact on the censused population size.

This highlights the problems that can arise if full

sequential dynamics with all relevant population sizes are

not properly characterized. We therefore conclude that the

simplifying assumption of equal rates should not be used

whenever models consider explicitly sequential events. In

addition to being mathematically inconsistent, the assump-

tion can lead to inflated estimates of population size (Fig. 2)

and oversimplified dynamics (see Åström et al. 1996), both

of which can have severe consequences for management

strategies.
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Figure 2 The equilibrium population size for a range of different density dependencies (a and b both range from 0.00005 to 0.0005) in

two sequential events in (a) a sequential density dependence framework (given by eqns 1–4 in the main text) and (b) a non-sequential

density dependence framework [population size at year t, Nt = Nt ) 1 + Nt) 1 (B ) bNt ) 1) ) Nt ) 1 (M + aNt ) 1)]. Generally, the non-

sequential density dependence framework overestimates the equilibrium population size, and this effect is larger when winter density

dependence is strong, or when both winter and summer density dependencies are weak. All equilibrium population sizes are calculated by

solving for Nt = Nt ) 1 (Na,t = Na,t ) 1 in the sequential density dependence framework). Other parameters are M = 0.1 and B = 2.
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Marra 2005). The carry-over effects in this model are,

however, very simple (indeed, the simulations replicate the

double buffer-effect closely), and changes in parameter

values were not explored to any extent. Modelling also

shows that the effect of density-independent carry-over

effects on population responses to habitat loss depends on

the quality of the habitat lost (Norris 2005). In this model,

carry-over effects can increase the population decline

because of the loss of high quality habitat, but when low

quality habitat is lost carry-over effects may actually buffer

the population decline (Norris 2005).

Evidence of carry-over effects in nature

A series of studies on American redstarts Setophaga ruticilla

show good evidence of carry-over effects from winter

habitat to summer breeding: birds that over-winter in good

habitat migrate earlier, arrive earlier, are in better condition

both before and after migration, and fledge more young

than birds over-wintering in poor habitat (Studds & Marra

2005 and references therein). There are also indications that

male American redstarts carry-over effects from parental

investment to location of moulting and feather colours,

which can affect access to good habitat and female mate

choice in subsequent seasons (Norris et al. 2004). Density-

independent carry-over effects have also been shown in pied

flycatchers Ficedula hypoleuca, where overall breeding success

was higher after favourable wintering weather conditions

(Laaksonen et al. 2006).

Carry-over effects can encompass processes ranging from

individuals being randomly distributed in a given season and

the quality of resources to which each is exposed

determining individual fitness in the subsequent season,

through to individuals consistently experiencing conditions

of similar rank quality in all seasons (termed seasonal matching

by Gunnarsson et al. 2005b). Seasonal matching of the

relative quality of sites used by individuals in different

seasons may have the most profound effects on population

dynamics, for example, by increasing fitness variance across

Figure 3 Equilibrium population size in a sequential system is

affected by the amount of additional density-independent mortality

(e.g. hunting). In this example, the population experiences two

seasons; winter mortality (with autumn hunting: eqn 6b in the main

text, or spring hunting: eqns 2 and 4 in the main text) and summer

reproduction (autumn hunting: eqns 1 and 3, or spring hunting:

eqn 7a). In addition, there is also density-independent hunting

mortality, h. The population size after given by eqn 6a or 7b for

autumn and spring hunting, respectively. The equilibrium popu-

lation size, N*, is found by solving for equal autumn population

size after all three events. When hunting is added before the winter

mortality (solid line) a small amount of additional density-

independent mortality can increase the equilibrium population size

(overcompensation). In this scenario the maximum equilibrium

population size is reached when h = 0.146. If hunting is added

after the winter mortality but before summer reproduction (dashed

line), any hunting will reduce the equilibrium population size.

Parameters in this example are set to M = 0.1, B = 2, a = 0.00025

and b = 0.0005.

Figure 4 Equilibrium population sizes in a population with carry-

over effects. Equilibrium population sizes decline when density

dependence increases, but this effects is more pronounced when

the maximum reproductive rates are high. Equilibrium population

sizes in this example are found by solving eqn 5 in the main text,

with B dependent on Na: B = b0 ) b1Na according to eqn 8 in the

main text. Strength of density dependence in the carry-over effect

varies between 0 and 0.00075, while the maximum reproductive

output varies between 2 and 5. Other parameters in this example

are the same as in the other figures: M = 0.1, a = 0.00025 and

b = 0.0005.
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a population and influencing effective population size

(Gunnarsson et al. 2005b). A long-term study of Icelandic

black-tailed godwits has provided empirical evidence for

seasonal matching by tracking marked individuals through-

out the year and at the population scale (Gunnarsson et al.

2005b). Individual godwits that occupy good quality

breeding habitats also tend to occupy good quality winter

locations, whereas individuals from poor quality breeding

habitat tend to occur in poor quality winter sites. This

seasonal matching has clear implications for population and

evolutionary processes, as some individuals consistently

benefit from breeding in higher quality sites and wintering in

areas where survival is higher.

The relatives of carry-over effects: delayed density
dependence and maternal effects

Beckerman et al. (2002) classified six ways in which an

environmental condition could lead to a population

response. The condition could be lethal or non-lethal

(e.g. a parasite infection that reduces fecundity, but does

not result in death), and the life-history response can be

immediate or delayed. If the life-history response is

immediate, the population response can be either imme-

diate or delayed. If, on the other hand, the life-history

response is delayed the population response must logically

be delayed as well. If we place carry-over effects in this

context, we can see that they are very similar to what

Beckerman et al. (2002) classified as non-lethal effects of

the environment with delayed life-history effects. Carry-

over effects will thus give rise to a delayed population

response, which is usually density-dependent. Note that

carry-over effects are normally defined as an effect from

one season to the next but, as in studies of delayed density

dependence, the time-scales involved matter less than the

general conclusion that delays can diversify the range of

population dynamics observed.

Even though there is a dearth of data and modelling

devoted to understanding population consequences of

carry-over effects, there are lessons to be learned from

similar phenomena. There is a huge literature on delayed

density dependence and, as we showed above, these are a

natural consequence of density-dependent carry-over

effects. Delayed density dependence at the population level

has been investigated much more thoroughly than carry-

over effects at the individual level (but see Beckerman et al.

2003; Benton et al. 2005). The importance of delayed density

dependence stems from its relevance to the debate of causes

of population cycles, particularly in rodents (Stenseth 1999),

and is also suggested as an explanation for population cycles

in other taxa such as insects (Rossiter 1991; Ginzburg &

Taneyhill 1994) and plants (Crone & Taylor 1996; Gonz-

alez-Andujar et al. 2006).

The difference between the two concepts is the level at

which they are defined. Carry-over effects are defined at the

individual level, but have implications for the population

level. Delayed density dependence, on the other hand,

is defined at the population level as an effect of density in a

previous period on population growth. The reason for this

difference in the level of definition may very well have its

roots in the different study traditions of fields in which these

terms have been invoked to explain patterns. In rodent

population studies, population dynamics has traditionally

been studied by tracking population sizes. Birds, for which

carry-over effects have been studied, are more often tracked

at an individual level, making it possible to include effects of

a previous season which cannot necessarily be detected at a

population level.

Models of delayed density dependence show what one

might intuitively expect: in contrast to direct density

dependence, delayed density dependence can destabilize

population dynamics and often leads to cycles (May 1981).

More specifically for rodents, delayed density dependence in

reproductive season length alone can lead to population

cycles (Smith et al. 2006). However, it is hard to draw more

specific knowledge of carry-over effects from the rodent-

cycle literature, since there is a difference of time-scales:

rodent cycles are typically analysed based on previous years�
densities (Stenseth 1999), but carry-over effects are often

documented as a response to density in the previous season

within the same annual cycle.

There is promise that different research traditions could

be merged, because the causes behind delayed (second-

order) dynamics at the population level have already been

much debated. In the rodent literature, three hypotheses

have been proposed as likely explanations for delayed

density dependence (Turchin & Hanski 2001): maternal

effects, food and predation. Food and predation are trophic

interactions that are common explanations for density

dependence in general, and could obviously also work as

causes of delayed density dependence provided there are

time lags (e.g. predator numbers take a while to increase or

decrease after changes in prey number). Of course, some

aspects of delays should not be equated with carry-over

effects: a change in the abundance of predators, for

instance, is perhaps more usefully classified as a change in

the environment rather than in a rodent�s own state.

Maternal effects as drivers of delayed life-history effects

share properties with carry-over effects. Maternal effects are

normally defined very broadly as any non-genetic similarities

between offspring of the same mother (Futuyma 1998).

As with carry-over effects, such maternal effects and the

related cohort-effects can be density-dependent or density-

independent, and they can affect individual performance at

later stages (Lindström 1999). Experimental studies of soil

mites provide good examples of these processes. Maternal
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investment in offspring often forms a trade-off between

number and quality, and this will again drive variation in the

competitive environment offspring face upon birth. Beck-

erman et al. (2006) provide evidence that the time to

hatching in soil mite eggs is a density-independent maternal

effect, while the proportion recruiting is mainly explained by

juvenile density, which is an effect of maternal investment.

An excellent example of a long lag in the effect of a maternal

effect is provided by another experiment on soil mites,

where grandmaternal effects on several fitness-related traits

could be both stronger and could even operate in the

opposite direction of maternal effects (Plaistow et al. 2006).

Similarly, clutch size manipulations in collared flycatchers

Ficedula albicollis influenced the recruitment of grandoff-

spring (Gustafsson & Sutherland 1988).

The clearest difference between carry-over effects and

maternal effects is the time-scale at which they are typically

applied. Maternal effects are acting from one ontogenetic

stage to any number of later stages, while carry-over

effects are usually considered to act from one season to

the next. However, there is nothing in the definition of

carry-over effects that prevents longer lasting influences.

The lessons to learn from the enormous literature

addressing maternal effects are that they can, just as any

other type of delayed density dependence, cause popula-

tion cycles (Ginzburg & Taneyhill 1994; Benton et al. 2001)

or even more complex dynamics (Benton et al. 2001),

much in line with our general conclusions regarding

sequential density dependence.

F U R T H E R C O M P L I C A T I O N S : I N T E R A C T I O N S

B E T W E E N S T A G E S

Animals that go through one or more ontogenetic changes,

often with a corresponding change in habitat, are excellent

systems in which to study density dependence, and they

include insects, amphibians, fish, marine invertebrates and

parasites. Density dependence can manifest itself in

different ways in different stages, e.g. hatchlings may be

affected by negative density-dependent survival, while

older individuals living in dense populations may have

reduced weight gain or increased dispersal rate (Einum

et al. 2006).

An important additional complication for those species

that have different stages coexisting is that effects of

different densities at different stages may interact. An

elegant experiment with soil mites showed that a reduction

in density of one developmental stage can have a range of

effects from negative to no effect and positive effects on

density in other stages (Cameron & Benton 2004). Possible

reasons for this include effects similar to those found in

trophic interactions: if stage 1 competes with stage 2 and

stage 2 with stage 3, then a large number of stage 3

individuals may reduce those found in the intermediate stage

2, which in turn makes life easier for stage 1 individuals.

Numerous other examples of density-dependent interac-

tions between different life-history stages exist, especially

from fish (e.g. Einum et al. 2006; Vandenbos et al. 2006), but

also from other taxa.

Cannibalism is often mentioned as a reason for such

density-dependent interactions between cohorts (e.g. Claes-

sen et al. 2004). In the snow crab Chionoecetes opilio, density-

dependent cannibalism between cohorts regulates growth

and mortalities in junior cohorts (Sainte-Marie & Lafrance

2002). In the Tribolium beetles between-stage cannibalism is

also an important regulating factor (Caswell 2001 and

references therein). Strong density-dependent intercohort

effects are also found in the salamander Salamandra

salamandra (Eitam et al. 2005). In that case the mechanism

is not clear but competition and cannibalism are suggested

as possibilities. Most such studies focus on the effect of one

cohort on another in isolation, and further studies on the

population consequences of such effects in combination

with intracohort sequential density dependence would be

both interesting and challenging.

H A R V E S T I N G A N D M A N A G E M E N T I M P L I C A T I O N S

An example of how a simple discrete model of sequential

density dependence can be used in practice is provided by

Ebbinge et al. (2002). They found that brent geese Branta

bernicla reproduction was density-dependent but adult

survival was not. By analysing their seasonal model with

the estimated vital rates they predicted that the equilibrium

maximum population size was already reached. The result is

particularly valuable for planning sufficient protection of

habitat and for farmers that do not have to fear a further

increase in population size and thus economic loss because

of agricultural damage.

Much of harvesting and management theory is concerned

with predicting population responses to the removal of

individuals, or the removal (or addition) of important

resources such as food or habitat. In light of the above

theory it is clear that sequential density dependence and

carry-over effects have the potential to dramatically change

population responses: the effects of removing individuals is

usually season-specific, and resources are typically needed at

specific periods of the year or by specific life-history stages.

The population-level effects of sequential density depen-

dence and carry-over effects are variable, but one recurring

theme is that these models often show diverse and complex

dynamics (e.g. Kot & Schaffer 1984; Rodriguez 1988;

Åström et al.1996). This is especially important for manag-

ing small populations, when population fluctuations can

make the population more prone to extinction by stochastic

events.
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Harvesting and pest control

Sustainable harvesting often appears to be trying to balance

two completely opposing targets: cause minimal damage to

populations while also maximizing yield. Sustainable har-

vesting is only possible when populations respond in

density-dependent ways, i.e. one or another vital rate

compensates for the increased mortality caused by human

action. Much ink has been spilled over whether hunting

mortality is compensatory or additive (Pöysä et al. 2004 and

references therein). While this is obviously important, it

should be kept in mind that the sustainability of both

compensatory and additive mortality scenarios are influ-

enced by whether breeding output compensates later for

reduced breeding populations. Harvesting theory, in other

words, should be strongly affected by the idea of sequential

density dependence.

Two important points emerge. Firstly, sequential density

dependence predicts that timing aspects, not just the total

number of individuals taken, are crucial, because the degree

of compensation is dependent on the timing and length of

the harvesting period (Kokko & Lindström 1998; Choisy &

Rohani 2006). Secondly, sequential density dependence can

lead to the counterintuitive scenario of overcompensation,

where it can be beneficial to a population (in terms of

equilibrium numbers) if it is subjected to a harvesting

pressure (e.g. Boyce et al. 1999).

Consider the first point, assuming that there is little

compensation during the breeding season. Harvesting

mortality generally has a tendency to turn from compensa-

tory towards additive as the non-breeding season progresses.

These shifts can be rapid, which means that simplistic

models with a pulse harvest immediately after breeding can

seriously overestimate the sustainability of a given harvest,

and lead to biased estimates of compensation itself, when in

reality individuals are not all taken that early (Kokko 2001).

An example of the sensitivity of populations to late losses is

seen in eiders Somateria mollissima, in which bycatch in fishing

gear can cause substantial population damage even if the

actual hunting season was scheduled for a sensible time of

the year (Merkel 2004).

The complications of timing aspects are also well illustrated

by the question of when to control European rabbits

Oryctolagus cuniculus or, conversely, how to hunt them

sustainably (Angulo & Villafuerte 2004; Calvete et al. 2005).

Control programmes are most efficient during a season with

declining rabbit numbers, i.e. prior to reproduction when

mortality behaves most additively (Angulo & Villafuerte 2004

and references therein). The opposite goal of conserving wild

rabbit populations, on the other hand, places emphasis on

hunting after the breeding season. In Spain, where rabbits

reproduce in the winter, the optimal harvest period for

sustainability may thus be in post-breeding spring popula-

tions, according to an initial analysis (Angulo & Villafuerte

2004). Calvete et al. (2005), however, point out complications

of the story: autumn hunting tends to be biased towards

individuals with minimal demographic value (juveniles

and males). This highlights that when the sex ratio fluctuates

over the course of the year – which can easily happen if sexes

differ in their mortality and if births are seasonal events – a

complete analysis may also require knowledge of sex-specific

responses to density (see Rankin & Kokko 2007), not just

�asexual� relations between vital rates and sequential density-

dependent events such as our models here.

Timing can also confound other factors in the estimation

of consequences of harvesting. This is demonstrated by

inclusion of a wildlife disease in a model of harvesting in a

seasonal environment. The model shows that harvest can

increase disease prevalence and mortality, and therefore

cause over-optimistic estimates of the response to hunting

(Choisy & Rohani 2006). Again, the timing of the harvest

season is crucial for the host population response, because it

strongly influences disease transmission. The scentless

chamomile Tripleurospermum perforatum is an invasive

weed in North America and provides another example of

the importance of timing. Models parameterized by

field data show that only additional late mortality (after

flowering) has substantial negative impacts on both number

of seeds and biomass at equilibrium (Buckley et al. 2001).

Moderate levels of additional early mortality or reduced

fecundity have low negative impact or can even have

positive impact on biomass (Buckley et al. 2001). It is

therefore crucial that the late stage is targeted for the

purpose of weed control.

Turning to overcompensation, our second point of

sequential density dependence impacts on harvesting, the

counterintuitive outcome (population sizes can be increased

by removing individuals) means that it is perhaps under-

studied. The topic is clearly important, as overcompensation

at work would be wonderful news, e.g. to programmes that

aim to protect endangered species by allowing limited

trophy hunting. It could also seriously compromise any

attempts to control pest species. The experiment on mites

by Cameron & Benton (2004), which we described

previously, finds sufficient evidence for indirect positive

population-level effects of harvesting that the authors

conclude that we should pay much more attention to them:

after all, they were first shown and discussed by Nicholson

(1957) in his classic blowfly study.

The possible destabilizing effects of sequential density

dependence can also increase the chance of eradicating

unwanted species. There are modelling results concluding

that seasonally variable density dependence in vector

populations strongly increases extinction risk in malaria

parasites Plasmodium sp. because it leads to higher fluctua-

tions in parasite prevalence (McKenzie et al. 2001). This, of
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course, also illustrates the possible danger of seasonality for

endangered species.

Habitat loss

Habitat loss is a severe threat to biodiversity. The

population dynamics of many endangered organisms is

evaluated as if density dependence was not important, which

may be an understandable first approximation when current

birth and death rates determine whether the immediate

population growth rate ensures persistence for the foresee-

able future. However, when habitat has been contracted or

compromised in terms of quality or spatial arrangement, the

remaining individuals may be concentrated into areas such

that local densities are high; in other words the density

dependence itself tightens as resources diminish (e.g.

Achord et al. 2003).

For species that inhabit multiple habitats, the population

response to habitat restoration by increasing any of the

available areas is highly dependent on the structure of the

density dependence in the population (Greene & Beechie

2004). When modelling population sizes of Chinook salmon

Onchorhynchus tshawytscha, Greene & Beechie (2004) tested

three different scenarios of density dependence (density-

dependent mortality for juveniles or adults and density-

dependent migration), and found that population sizes

differed markedly and the response to changes in habitat

size also varied between the different scenarios. In other

words, sequential density dependence is crucial for predict-

ing population response and recommending specific resto-

ration strategies.

The consequence of habitat loss or deterioration will of

course depend on the quality of the habitat that is lost (e.g.

Norris 2005). In addition, from a seasonal point of view, the

consequences are greatest for loss in the season in which

density dependence is strongest (Runge & Marra 2005), but

in many cases population size is determined by resources in

more than one season (e.g. Sutherland & Dolman 1994;

Runge & Marra 2005) and thus any habitat loss will affect

the population.

It seems that for conservation purposes some of the most

successful and accurate models of populations with sequen-

tial density dependence are behaviour-based models where

the sequential nature of density dependence is implicit

(Sutherland & Norris 2002). One example of such a model

supports the idea that the effect of habitat loss is dependent

on the relative strength of density dependence in different

seasons (Pettifor et al. 2000). In the case of the geese

modelled by Pettifor et al. (2000), removal of winter habitat

resulted in more severe reductions in population size for

brent geese Branta bernicla compared to barnacle geese

B. leucopsis. The same models point out one weakness of this

modelling approach: results were highly dependent on

accurate parameter estimation, which can be very difficult in

many systems. A better approach for these systems may be

population-level models, based on knowledge of spatial and

seasonal dynamics.

C O N C L U D I N G R E M A R K S A N D F U T U R E

D I R E C T I O N S

In this synthesis, we have highlighted the importance of the

sequential nature of density dependence in many, if not most,

taxa. Scientists working on different organisms have never-

theless branched off in different directions by focusing on

different aspects of very similar problems, and the associated

terminology has consequently diverged. We do not argue that

the terminology is superfluous, as the phenomena studied are

not exactly the same, but rather that communication between

fields would be facilitated by improving awareness of the

similarities between phenomena with very different names.

Despite these problems, sequential density dependence

and carry-over effects have been studied in a range of

different empirical systems and theory. A common lesson

from most of these studies is that we need to consider

sequential events sequentially and take lagged effects into

account to understand what is going on in the real world.

Short-term experiments may be insufficient for finding

population responses to changes in density and, while there

are many excellent studies of different aspects of density

dependence, we now need to take this one step further and

consider how these interact. The outcome of sequential

density dependence may also feature further complications

that we have not considered here, such as dispersal or

migratory connectivity between different subpopulations

(Goss-Custard & Durell 1990; Sutherland & Dolman 1994;

Holt & Colvin 1997; Hellriegel 2000) and stochasticity

(Jonzén et al. 2002a).

Future studies in which both within-season and between-

season (or stage) density dependence is investigated in the

same population are likely to be particularly illuminating to

the issues we have highlighted here. More studies on

invertebrates, tropical species and other species that live in

environments that are not obviously seasonal, would give

support to the generality of theory presented. There is also a

lack of good theoretical studies that explore the interactions

between density dependence within- and between-stages.

Finally, there is a clear need to quantify how carry-over

effects interact with seasonal density dependence, as this has

important implications for the management of populations

threatened by habitat loss or changes in resource availability.
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Åström, M., Lundberg, P. & Lundberg, S. (1996). Population

dynamics with sequential density-dependencies. Oikos, 75, 174–

181.

Beckerman, A., Benton, T.G., Ranta, E., Kaitala, V. & Lundberg,

P. (2002). Population dynamic consequences of delayed life-

history effects. Trends Ecol. Evol., 17, 263–269.

Beckerman, A.P., Benton, T.G., Lapsley, C.T. & Koesters, N.

(2003). Talkin� �bout my generation: environmental variability

and cohort effects. Am. Nat., 162, 754–767.

Beckerman, A., Benton, T.G., Lapsley, C.T. & Koesters, N. (2006).

How effective are maternal effects at having effects? Proc. R. Soc.

Lond., Biol. Sci., 273, 485–493.

Begon, M., Firbank, L. & Wall, R. (1986). Is there a self-thinning

rule for animal populations? Oikos, 46, 122–124.

Begon, M., Harper, J.L. & Townsend, C.R. (1996). Ecology:

Individuals, populations, and communities. 3rd edition. Blackwell

Scientific Publications, Oxford.

Benton, T.G., Ranta, E., Kaitala, V. & Beckerman, A.P. (2001).

Maternal effects and the stability of population dynamics in

noisy environments. J. Anim. Ecol., 70, 590–599.

Benton, T.G., Plaistow, S.J., Beckerman, A.P., Lapsley, C.T. &

Littlejohns, S. (2005). Changes in maternal investment in eggs

can affect population dynamics. Proc. R. Soc. Lond., Biol. Sci., 272,

1351–1356.

Boyce, M.S., Sinclair, A.R.E. & White, G.C. (1999). Seasonal

compensation of predation and harvesting. Oikos, 87, 419–426.

Buckley, Y.M., Hinz, H.L., Matthies, D. & Rees, M. (2001).

Interactions between density-dependent processes population

dynamics and control of an invasive plant species, Tripleuros-

permum perforatum (scentless chamomile). Ecol. Lett., 4, 551–558.

Calvete, C., Angulo, E. & Estrada, R. (2005). Conservation of

European wild rabbit populations when hunting is age and sex

selective. Biol. Conserv., 121, 623–634.

Cameron, T.C. & Benton, T.G. (2004). Stage-structured harvesting

and its effects: an empirical investigation using soil mites.

J. Anim. Ecol., 73, 996–1006.

Caswell, H. (2001). Matrix Population Models, 2nd edn. Sinauer

Associates Inc., Sunderland.

Choisy, M. & Rohani, P. (2006). Harvesting can increase severity of

wildlife disease epidemics. Proc. R. Soc. Lond., Biol. Sci., 273,

2025–2034.

Claessen, D., de Roos, A.M. & Persson, L. (2004). Population

dynamic theory of size-dependent cannibalism. Proc. R. Soc.

Lond., Biol. Sci., 271, 333–340.

Clutton-Brock, T.H., Illuis, A.W., Wilson, K., Grenfell, B.T.,

MacColl, A.D.C. & Albon, S.D. (1997). Stability and instability

on ungulate populations: an empirical analysis. Am. Nat., 149,

195–219.

Crone, E.E. & Taylor, D.R. (1996). Complex dynamics in experi-

mental populations of an annual plant, Cardamine Pensylvanica.

Ecology, 77, 289–299.

Dugaw, C.J., Hastings, A., Preisser, E.L. & Strong, D.R. (2004).

Seasonally limited host supply generates microparasite popula-

tion cycles. Bull. Math. Biol., 66, 583–594.

Ebbinge, B.S. & Spaans, B. (1995). The importance of body re-

serves accumulated in spring staging areas in the temperate zone

for breeding in dark-bellied brent geese Branta b. bernicla in the

high arctic. J. Avian Biol., 26, 105–113.

Ebbinge, B.S., Heesterbeek, H.J.A.P., Ens, B.J. & Goedhart, P.W.

(2002). Density dependent population limitation in dark-bellied

brent geese Branta b. bernicla. Avian Sci., 2, 63–75.

Einum, S., Keith, L.S.H. & Nislow, K.H. (2006). The partitioning

of density-dependent dispersal, growth and survival throughout

ontogeny in a highly fecund organism. Oikos, 113, 489–496.

Eitam, A., Blaustein, L. & Mangel, M. (2005). Density and int-

ercohort priority effects on larval Salamandra salamandra in tem-

porary pools. Oecologia, 146, 36–42.

Elmberg, J., Gunnarsson, G., Pöysä, H., Sjöberg, K. & Nummi, P.
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