Lo L

P

1\

=y

Supporting Information

Cant and Johnstone 10.1073/pnas.0711911105

Supporting Text

A Game-Theoretical Analysis of Reproductive Conflict Under Female-
Biased Dispersal. Suppose that two females of an older and a
younger generation are in competition over shared resources
that can support their reproductive efforts. We model this
competition using the “tug-of-war” game of Reeve et al. (1),
which is commonly used to analyze reproductive conflict in cases
where each party may exert partial control over the outcome (2,
3). Each female can invest in competitive acts to increase her
personal share of the communal resource but only at the cost of
depleting the total amount of resource to be shared. This cost
reflects the time and/or energy expended on selfish competition
that could otherwise be used in cooperative endeavor. Specifi-
cally, writing o and y for the competitive effort of the older and
younger female, respectively, we assume that total reproductive
success of the pair declines with total effort expended on selfish
behavior (o + y), whereas the shares of reproduction obtained
are o/(o + by) for the older female, and by/(o + by) for the
younger female, where b is a positive, non-zero constant that
reflects the relative competitive ability of the younger female; it
is likely that b = 1, implying that the older female obtains a larger
fraction of the resource for a given expenditure of effort, i.e., that
she is behaviorally dominant (although we allow for the possi-
bility of a dominant younger female).

In The Basic Model, we construct a basic model and present
analytical results for the simple case where all females disperse
from their natal group to breed and there is no extrapair
paternity. In Relaxing the Assumptions, we present the results of
an extended model in which these assumptions are relaxed.
The basic model. The inclusive fitness payoffs to the two females,
1, and I, assuming that both are unrelated themselves but that
the older female is related to the younger female’s children via
her son, are given by

o 1/ by
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Here, we show that, given the above payoffs, the older female
may be expected (regardless of her degree of behavioral dom-
inance, i.e., of the value of b) to refrain from reproduction. In
other words, she should commit to zero competitive effort,
allowing the younger female to claim all direct reproduction at
negligible cost. This is an example of an “endogenous” or
“natural” Stackelberg solution in which both players prefer to act
in sequence, and both agree on who should move first (3-5). The
key difference between a sequential and simultaneous game is
one of information: in a sequential game, the second mover can
observe the effort level of the first mover before deciding on its
response. In a simultaneous game, by contrast, both plays submit
blind “sealed bids,” i.e., they have no advance information of the
action of the other player. Endogenous Stackelberg equilibria
are interesting from a biological perspective because they can
explain the evolution of commitment strategies that are profit-
able precisely because they cannot credibly be changed (3, 6).
Thus, in the stable Stackelberg solution to the current model, the
older female’s first move of zero investment is advantageous only
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if it is perceived to be irreversible by the younger female. We note
that permanent sterility as a consequence of rapid reproductive
senescence is an effective way for an older female to commit
credibly to a first move of zero investment in reproduction.

If the older female commits to some competitive investment
o as a first move, the younger female’s optimal investment in
competition [found by maximization of I,(o,y)] is given by

1
$(0) = (No(o + (1 = 0)b) — o). [3]

From this we obtain the payoff to the older female, I,[0.y(0)] =
(1 — 0)/2, which reveals that she does best to commit to zero
competitive effort (regardless of the relative competitive ability
b of the younger female), allowing the younger female to claim
all available reproduction at negligible cost. This leads to a
payoff of 1 for the younger female, and % for the older female.
If both players make simultaneous sealed bids [as in the
analysis of Reeve et al. (1)], the stable levels of investment in
competition, o* and y*, each of which maximizes the relevant
player’s payoff given the other’s investment, are given by

., (2+b)\b@B+D)—b@B8+D)
B 2(8 = b(7 + b))

[4]
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The payoff to the younger female given these values, ,(0* y*),
is always less than 1, and the payoff to the older female, I,(0*y*),
is always less than one half. Thus, both players do worse than if
the older female moves first (as described above).

Finally, if the younger female commits to some competitive
investment y as a first move, the older female’s optimal invest-
ment in competition [found by maximization of I,(0,y)] is given

by
byl = (1 = b)) — by, fory < !
Sby(1 = (1 =bjy) —by, fory < ——
o) =1 V2 6]
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From this we obtain the payoff to the younger female,

1
\2by(1 — (1 = b)y) — by, fory <
) 1+b
L), y) = LI
11—y, fory =

Maximization of the above expression reveals that if the younger
female moves first she does best to commit to a level of effort

2 —b) — \b(2—b)
22 -bB b))
1

forb <1

[8]
forb =1

1+b°

This once again leads to a payoff for the younger female,
L[6(y1)y1] that is always less than 1, and a payoff for the older
female, I,[0(y1),v1] that is always less than ¥2. So once again, both
players do worse than if the older female moves first.

10f6


http://www.pnas.org/cgi/content/short/0711911105

Lo L

P

1\

BN AN PNAS D

Given the above results, it pays both players to allow the older
female to move first and commit to zero competitive effort,
following which the younger female will claim all direct repro-
duction at negligible cost. The equilibrium solution preferred by
both players, in other words, is for the older female to cede
reproductive status to the younger.

Relaxing the assumptions: An extended model. In this section, we
explore the consequences of relaxing the assumptions of zero
extrapair paternity and strict female dispersal. We solve for the
stable levels of competitive effort and examine the relative
stability of the sequential versus simultaneous forms of the game.

Let p denote the probability that a female’s offspring is
fathered by an extrapair male who is unrelated to any of the other
group members. With probability s females stay in their natal
group to breed: s is therefore the probability that the older
female is the mother of the younger female. We assume for
simplicity that the schedule of reproductive investment depends
on average sex-specific population rates of dispersal and is not
adjusted facultatively to the particular social environment in
which an individual finds itself. This is a common assumption in
patch-structured genetic models (7-9) and is reasonable in the
absence of evidence for facultative adjustment at an individual
level (although we do not rule out the possibility of such
adjustment).

Given these assumptions the inclusive fitness payoff to the
older female is

I(0,y) = (1 = $)I,(0,y) + sL,,(0,) [91

where I,(0,y) is the inclusive fitness payoff of an older female in
a group in which the younger female is an immigrant, and 1,,,(0,y)
is the inclusive fitness payoff to a mother in reproductive conflict
with her daughter. These two functions are given by

- 2 4)
Iu(o,y)fo_i_by(l—o—y)-i- > lo+py 1-0-y).
[10]
and
o 2 (545)
Im(O,Y)—O+by(1_0_Y)+2 0+by (1_0_)’)7 [11]

Averaging across social contexts in which an allele present in a
younger female might find itself, the inclusive fitness payoff to
the younger female is

I(0,y) = (1 = 5)I(0,y) + sl (0, ). [12]

where [,(0,y) is defined in Eq. 2, and /4(0.y) is the inclusive fitness
payoff to a daughter in reproductive conflict with her mother,
given by

ot -3 s)
oy = 5 gy 1m0+ (173) {5y mo =)

[13]

This formulation assumes that the rate of extrapair paternity is
the same for older and younger females and that philopatric
females mate with unrelated males from outside the group.
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The extended model does not yield simple analytical solutions,
so we solve using numerical methods and present graphical
results for illustrative cases. First, we calculate the equilibrium
values of o and y for three cases: (i) where the older female
commits to a first move; (if) where both females choose their
level of competitive effort simultaneously; and (iii) where the
younger female commits to a first move. We then calculate the
inclusive fitness payoff to both females for these three cases. If
both females prefer to act sequentially rather than simulta-
neously and both agree on the order of play, the outcome is a
natural Stackelberg equilibrium (as in the basic model above). If
one or both players prefer to act simultaneously or both prefer
to adopt the same role in a sequential game, the stable outcome
is the simultaneous sealed-bid equilibrium (3, 10).

The results of varying the rate of extrapair paternity on the
stable levels of effort are shown in SI Fig. S1. Assuming that all
females disperse to breed, we find that where p < 1, both players
still favor an equilibrium in which the older female commits to
a first move, but in this case her best effort is greater than zero.
Thus, for 0 < p < 0.5, the model predicts that the older female
should commit to low reproductive effort in the face of repro-
ductive competition from the younger female.

The effects of varying the rate of female philopatry (while
holding extrapair paternity at zero) are shown in SI Fig. S2.
Increasing s has a similar effect on the stable efforts invested in
reproduction as does increasing p. In the example shown,
however, there is a threshold level of female philopatry above
which the older female no longer prefers to commit to a first
move and instead gains a higher payoff in the simultaneous
game. In this region, the stable outcome is for both females to
submit simultaneous sealed bids (but note that even in this
region the younger female’s stable effort exceeds that of the
older female).

Finally, we explore the interaction between the effects of
variation in extrapair paternity and variation in female philo-
patry. In SI Fig. S3, we plot the location of the critical female
philopatry threshold sci; as a function of the level of extrapair
paternity p, for different values of the strength parameter b.
Below the plotted threshold, the stable outcome is for the older
female to commit to low reproductive effort as a first move;
above the threshold players revert to simultaneous bids. For b =
1 (i.e., where the younger female is at least as strong as the older
female), the natural Stackelberg solution in which the older
female commits to low reproductive effort as a first move holds
even when dispersal is only slightly female-biased. For lower
values of b, however, the region for which the natural Stackelberg
solution holds becomes progressively smaller. A combination of
relatively high s and low b can, therefore, render the sequential
equilibrium unstable given some degree of extrapair paternity.
However, provided that younger females are of comparable
competitive ability to older females, older females will commit
to low reproductive effort in the face of reproductive competi-
tion, even when dispersal is only mildly female-biased.

To summarize, a formal analysis suggests that a pattern of
female-biased dispersal gives females of a younger generation a
decisive advantage in reproductive conflict with older females.
For a large region of parameter space, the stable solution is for
older females to commit to zero or low reproductive effort when
females of the next generation start to breed. Reproductive
conflict under female-biased dispersal, therefore, is predicted to
lead to an evolutionary separation of reproductive generations
of the kind observed in humans.
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Fig. S1.
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Evolutionarily stable best efforts of an older and a younger female
in a stable sequential game as a function of the level of extrapair paternity p.
In the example shown, we assume that all females disperse (s = 0), and the
older female obtains a larger fraction of the resource for a given expenditure
of effort (specifically b = 0.9).
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Fig. S2. Stable best efforts of an older and a younger female as a function
of the female philopatry rate s. Above a threshold level of female philopatry
sqit, the sequential solution is unstable because the older female no longer
prefers to commit to a first move (other parameters: b = 0.9; P = 0).
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Fig.S3. Threshold level of female philopatry st below which the sequential
Stackelberg equilibrium is stable, as a function of extrapair paternity rate and
therelative competitive strength of the younger female. Above this threshold,
the stable solution to the game involves each player making simultaneous
sealed bids.
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