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Abstract

Most phenotypes, such as gene expression profiles, developmental trajectories, behavioural se-

quences or other reaction norms are function-valued traits, since they vary across an individual’s age

and in response to various internal and/or external factors (state variables). In turn, many individuals

live in populations subject to some limited genetic mixing and are thus likely to interact with their

relatives. We here formalise selection on function-valued traits when individuals interact in a group-

structured population, by deriving the marginal version of Hamilton’s rule for function-valued traits.

This rule simultaneously gives a condition for the invasion of an initially rare mutant function-valued

trait and its ultimate fixation in the population (invasion thus implies substitution). Hamilton’s rule

thus underlies the gradual evolution of function-valued traits and gives rise to necessary first-order

conditions for uninvadability (evolutionary stability). Using and extending results from optimal con-

trol theory and differential game theory, we characterise the first-order condition for time-dependent

traits (dynamic traits) in terms of dynamic constraints on state variables and their marginal effects

on reproductive value. Our results apply to both open-loop traits, which are function of time (or age)

only, and closed-loop (state-feedback) traits, which are function of both time and state. This allows

us to delineate role of state-dependence of trait expression and thus to other’s traits affects selection

on function-valued trait, which pertains to both life-history and social evolution.

Keywords: dynamic game theory; optimal control; dynamic programming; adaptive dynamics; life-

history evolution; kin selection; invasion implies substitution.
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1 Introduction

Any biological organism is an open system exchanging energy and information with its surrounding.

As such, most if not all traits of an organism may vary in response to changes of its internal factors

as well as to changes in its external biotic and abiotic environmental conditions. Examples include

gene expression profiles, physiological processes, developmental trajectories, morphological shapes, and

behavioural sequences, which we here refer collectively as function-valued traits and by which we mean

a phenotype whose expression level depends on some index variable describing the domain over which

the phenotype can vary (e.g., time, space, temperature, behaviour of others; and where traits that vary

with the environment are often collectively called reaction norms). The shapes of function-valued traits

are moulded by natural selection and therefore formalising how selection shapes these traits helps to

understand their evolution (Gomulkiewicz et al., 2018).

Selection on quantitative function-valued traits has been formalised using different theoretical ap-

proaches, which consider different perspectives on the evolution of these traits. First, the evolution of

life-history schedules has often been studied by applying Pontryagin’s maximum principle (e.g., León,

1976; Oster and Wilson, 1977; Schaffer, 1982; Iwasa and Roughgarden, 1984; Stearns, 1992; Perrin, 1992;

Bulmer, 1994; Irie and Iwasa, 2005; Metz et al., 2016). Here, a trait evolves to vary as a function of the

age or time of interaction of individuals, while individual fitness can be constrained by the dynamics of

“state variables”. These are observables describing internal condition(s) of the individual and/or that

of its environment, e.g., fat reserves, information, resource availability, behaviour of others, that in turn

depend on trait expression. This approach formalises so-called open-loop traits (Weber, 2011; Liberzon,

2011), which are only time- or age-dependent traits. Selection on open-loop traits has been formalised

to include interactions between relatives, which allows the assumption of limited dispersal or spatial or

family-structured populations (Day and Taylor, 1997, 1998, 2000; Wild, 2011). Second, in behavioural

ecology and evolutionary game theory, selection on function-valued traits has typically been studied by

using dynamic programming (see Houston et al., 1999; Mangel et al., 1988 for textbook treatments and

e.g. Leimar, 1997; Ewald et al., 2007; McNamara and Houston, 1987; Dechaume-Moncharmont et al.,

2005. Here, a trait evolves to vary as a function of (some relevant) state variables and time. This for-

malises so-called closed-loop strategies (Weber, 2011; Liberzon, 2011) as these involve a feedback between

current and future trait expression. Both Pontryagin’s maximum principle and dynamic programming are

optimal control theory approaches (e.g., Bryson and Ho, 1975; Kamien and Schwartz, 2012; Weber, 2011;

Liberzon, 2011), whose general aim is to identify a control variable over a period of time that maximises

(in the best response sense in the presence of interactions between individuals) an objective function

(fitness in biology) under the constraints of a dynamical system on state variables. Third, in quantitative
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genetics theory, a directional selection coefficient on function-valued has been derived (Gomulkiewicz and

Beder, 1996; Beder and Gomulkiewicz, 1998) (assuming no interactions between individuals), which can

be decomposed with component-wise selection coefficient describing how the mean of each component

of a function-valued trait evolves over short-time scales, i.e., the time scales of demographic changes

(Kirkpatrick and Heckman, 1989; Gomulkiewicz and Kirkpatrick, 1992; Gomulkiewicz and Beder, 1996).

Finally, the connected approach of invasion analysis has investigated long-term adaptive dynamics of

open-loop function-valued traits, which allows to focus on candidate endpoints of evolution (Dieckmann

et al., 2006; Parvinen et al., 2006, 2013).

What are the relationships between these different approaches? When do closed-loop traits and open-

loop traits lead to different evolutionary outcomes? How does the directional selection coefficient on

function-valued traits connect to gradual evolution and Hamilton’s rule in group-structured populations?

There are many open questions about the evolution of function-valued traits. By contrast, many general

principles have been proven to hold for scalar traits (e.g. body size at maturity, sex allocation throughout

life). In particular, for small trait deviations (weak selection), the selection coefficient on a scalar quan-

titative trait in a population subject to limited genetic mixing can be expressed as a marginal version of

Hamilton’s rule, where the direct and indirect fitness effects (the “cost” and “benefit”) are given by par-

tial derivatives of individual fitness (e.g., Taylor and Frank, 1996; Frank, 1998; Roze and Rousset, 2003;

Rousset, 2004; Lehmann and Rousset, 2014; Van Cleve, 2015). This provides two useful results about

gradual quantitative evolution. First, since the selection coefficient is independent of allele frequency

at all frequencies and is of constant sign (Roze and Rousset, 2003, 2004; Rousset, 2004; Lehmann and

Rousset, 2014), gradual evolution is vindicated even when the survival and reproduction of individuals

depend on the behaviour of others, such like under density- and frequency-dependent selection. Second,

when the selection gradient vanishes, Hamilton’s rule provides the necessary first-order condition for a

strategy to be locally uninvadable; that is, it allows to determine candidate evolutionary stable strategies,

which is central to the characterisation of long-term evolution (Geritz et al., 1998; Rousset, 2004) and

thus of adaption.

Our goal in this paper is twofold. First, it is to formalise the selection coefficient on quantitative

function-valued traits under weak selection and limited genetic mixing (taking panmictic population as

a special case into account) in order to characterise the gradual evolution of function-valued traits. Our

second aim is to understand the role of trait dependence to state variables for selection on function-

valued traits. To achieve these aims, the rest of this paper is organised as follows. (1) We derive the

selection coefficient acting on a mutant allele coding for a function-valued trait in the island model of

dispersal (group-structured population), which yields the marginal version of Hamilton’s rule for function-

valued traits. We deduce from Hamilton’s rule the necessary first-order condition for local uninvadability,
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which yields the candidate uninvadable function-valued traits and applies to both continuous and discrete

traits. (2) We apply these results to time-dependent function-valued traits (dynamic traits) by deriving

necessary conditions for uninvadability expressed in terms of dynamic constraints on state variables and

their (marginal) effects on the reproductive value. This allows to compare how selection acts on open-

loop versus closed-loop traits, specifying the role of trait responsiveness, and thus allows to establish the

connection between the dynamic programming and the maximum principle type of approaches in the

context of gradual phenotypic evolution. (3) We illustrate the different main concepts of our approach

by analysing the evolution of temporal common pool resource production within groups. (4) Finally, we

discuss the scope of our results.

2 Model

2.1 Biological scenario

Consider a haploid population subdivided into an infinite number of homogeneous groups (without divi-

sion into class structure) with a fixed number N of individuals, where censusing takes place at discrete

demographic time periods. All groups are subject to the same environmental conditions and are equally

connected to each other by random dispersal. A discrete demographic time period spans an entire life

cycle iteration where various events can occur (e.g. growth, reproduction, dispersal) to individuals. The

life cycle may allow for one, several, or all individuals per group to die (thus including whole group extinc-

tion through environmental stochasticity or warfare). Generations can thus overlap but when this occurs,

the parents are considered equal (in respect to their “demographic properties”) to their offspring in each

generation (since there is no within group class structure). Dispersal can occur before, during, or after

reproduction, and in groups, so that more than one offspring from the same natal group can establish

in a non-natal group (i.e., propagule dispersal). We refer to this group-structured population where all

individuals within groups are indistinguishable, as the homogeneous island population (i.e., broadly this

corresponds to the infinite island model of dispersal of Wright, 1931, used since at least Eshel, 1972 under

various versions to understand selection on social traits, e.g., Rousset, 2004, and where the specifics of

our demographic assumptions are equivalent to those considered in Mullon et al. 2016).

We assume that two alleles segregate in the homogeneous island population at a locus of interest: a

mutant allele with trait um ∈ U [T ] and a resident (wild-type) allele with trait u ∈ U [T ]. Here, U [T ]

is the set of feasible traits that individuals can potentially express and defined as the set of real-valued

functions with range U and domain T , where T is a space of some index variable(s) representing, for

instance, time, an environmental gradient or some cue. We assume here that T is a closed interval over
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some discrete or continuous index variable t. If t is discrete, then the element u ∈ U [T ] is a vector

and if t is continuous then the element u ∈ U [T ] is a piece-wise continuous function. Hence, we write

u = {u(t)}t∈T to emphasise that it consists of the (finite or infinite) collection of all point-wise values

u(t) of the trait. Namely, u can be thought of as a continuous or a discrete “path” (or a schedule, or a

trajectory) on the space T .

The crucial assumption of this paper is that the mutant trait um can be expressed in the following

form as a small deviation from the resident trait:

um = u+ εη (um(t) = u(t) + εη(t) point-wise for all t ∈ T ), (1)

where the phenotypic deviation function η = {η(t)}t∈T must satisfy u + εη ∈ U [T ] for sufficiently small

non-negative parameter ε. Because U [T ] may have a boundary, not all phenotypic deviations generate a

mutant strategy um that remains within the bounds of the feasible trait space um ∈ U [T ], independent

of the choice of ε (see also Section 2.3.2). Note that we are making a distinction between a phenotypic

deviation η and the effect size ε of that deviation (in the literature, a (scalar) mutant effect is often

modelled with the notation δ = ηε, e.g. Rousset, 2004). This distinction in the notation is necessary for

analysing selection on function-valued traits.

2.2 Allele frequency change and short-term evolution

Our first aim is to characterise the change in mutant allele frequency in the homogeneous island population

under weak selection (ε� 1). To that end, it is useful to follow the direct fitness approach (Taylor and

Frank, 1996; Rousset and Billiard, 2000; Rousset, 2004) and introduce the individual fitness function

w : U [T ]3 → R+ such that w(u•, u◦, u) gives the expected number of successful offspring produced over

one life cycle iteration by a focal individual (possibly including self through survival) with trait u•, when

its average neighbour in the focal group has trait u◦ and an average individual (from other groups) in

the population has trait u, which is taken here to be the resident trait. We note that any individual

in the population can be taken to be the focal individual (Rousset and Billiard, 2000; Rousset, 2004)

and that the fitness of this individual can always be expressed in terms of average phenotypes of other

individuals in different roles with respect to the focal (e.g., group neighbour, cousin, members of other

groups, etc.), whenever mutant and resident phenotypes are closely similar (see the argument in Appendix

A.2 for function-valued traits and a textbook argument for scalar traits e.g. Rousset, 2004, p. 95). These

individuals in different roles as well as the focal individual itself are actors on the fitness of the focal,

which will throughout be regarded as a focal recipient of the trait expressions of different categories of

actors (i.e., recipient-centred approach).
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In terms of this definition of individual fitness, we define the direct fitness effect of expressing the

mutant allele as

−cη(u) = ε× lim
ε→0

[
w(u+ εη, u, u)− w(u, u, u)

ε

]
, (2)

which is the effect that the focal individual has on its own fitness if it would switch from expressing the

resident to the mutant allele for a small allelic effect. Analogously, we define the indirect fitness effect of

expressing the mutant allele as

bη(u) = ε× lim
ε→0

[
w(u, u+ εη, u)− w(u, u, u)

ε

]
, (3)

which is the effect that the whole set of neighbours have on focal’s fitness if they were to all switch from

expressing the resident to the mutant allele. Finally, let us denote by r(u) the neutral relatedness between

two randomly sampled group neighbours (Michod and Hamilton, 1980; Frank, 1998) in the homogeneous

island population that is monomorphic for the resident; namely, r(u) is the probability that in a neutral

process (where all individuals are alike) the two homologous alleles of these individuals coalesce in the

same common ancestor (e.g. Roze and Rousset, 2003; Rousset, 2004; Lehmann and Rousset, 2014;

Van Cleve, 2015). Note that relatedness defined as such depends only on the resident trait. In Appendix

A, we show that the change ∆p in the frequency p of the mutant allele over one demographic time period

(one life cycle iteration) can be expressed in terms of these quantities as follows.

Invasion implies substitution-principle result. In the homogeneous island population with two al-

leles, the change in mutant allele frequency p in the population takes the form

∆p = p(1− p)sη(u) +O(ε2), (4)

where p(1− p) is the genetic variance at the locus of interest,

sη(u) = −cη(u) + r(u)bη(u) (5)

is a selection coefficient of order O(ε) that is independent of p, and O(ε2) is a remainder of all higher

order terms. This entails an “invasion implies substitution” property of the mutant allele, which says

that if sη(u) > 0, the mutant allele coding for a small function-valued deviation εη is selected for and not

only invades but substitutes the (ancestral) resident allele [since effects of order O(ε2) can be neglected in

eq. (4) whenever sη(u) is non-zero].

We have thus formalised an “invasion implies substitution”-principle (see Priklopil and Lehmann,
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2020 for a review) for function-valued traits in the homogeneous island population and which takes the

form of Hamilton’s rule: the mutant spreads if r(u)bη(u) − cη(u) > 0. This result is a generalisation

of previous analogous results for scalar traits (Roze and Rousset, 2003, 2004; Rousset, 2004; Lehmann

and Rousset, 2014). Owing to its simplicity, the function-valued trait nature of our result is perhaps yet

not fully apparent, but is made explicit on noting that the direct and indirect effects (eqs. 2–3) are both

formally Gâteaux derivatives, which are directional derivatives (see section A.1 in Appendix for a formal

definition and e.g., Troutman, 1991, p. 45–50, Luenberger, 1997, p. 171–178) and represent change in

fitness resulting from a sum of all weighted component-wise changes in trait expression (over the domain

T ) induced by the mutation function η. To outline the component-wise change in fitness, it is useful to

write the selection coefficient as

sη(u) = εη · s(u) = ε

∫
T
η(t)s(t, u)dt, (6)

where · is an inner product on functions (the generalisation of a dot product, and will be used as such

throughout), s(u) = {s(t, u)}t∈T is the selection gradient function, where the component s(t, u) gives the

selection gradient on component u(t) of the trait, i.e. the value of u at time t, holding other components

u(t′) (for all t′ 6= t ∈ T ) of the trait fixed. Each component of the selection gradient function is then

given by

s(t, u) = −c(t, u) + r(u)b(t, u), (7)

where

−c(t, u) =
∂w(u•, u◦, u)

∂u•(t)

∣∣∣∣
u•=u◦=u

and b(t, u) =
∂w(u•, u◦, u)

∂u◦(t)

∣∣∣∣
u•=u◦=u

, (8)

are, respectively, the effect on the focal’s own fitness from changing marginally component u•(t) of its

trait, while holding other trait components u•(t
′) (for t′ 6= t) fixed, while b(t, u) is the effect of all group

neighbours on the focal individuals fitness when changing marginally component u◦(t) of their traits,

while holding other components u◦(t
′) (for t′ 6= t) of their traits fixed. That is, the costs and benefits are

partial derivatives and s(t, u) is the inclusive fitness effect on a focal individual. When t is discrete and

T finite, eq. (7) corresponds to the trait specific inclusive fitness effect derived previously for a backdrop

monomorphic resident homogeneous island population (Mullon et al., 2016, eq. 12).

Eq. (6) shows that the selection coefficient is a weighted change of trait-specific changes. Note that

for continuous index variable t over the interval T , the partial derivatives −c(t, u) and b(t, u) in eq. (8)

are formally functional derivatives (e.g. Troutman, 1991, p. 45–50, Luenberger, 1997, p. 171–178). In the

7

.CC-BY 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted September 25, 2020. . https://doi.org/10.1101/2020.09.23.310532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310532
http://creativecommons.org/licenses/by/4.0/


absence of interactions between relatives s(t, u) reduces to β(y) in eq. 1 of Gomulkiewicz and Kirkpatrick

(1992) for y = t, G(a) in eq. 4 of Parvinen et al. (2006) for a = t, or g(a;u) in eq. 3 in Metz et al. (2016)

for a = t (but see ∆Wincl(t) in eq. 25 of Day and Taylor, 2000, which incorporates interactions between

relatives).

2.3 Necessary condition for local uninvadability and long-term evolution

It follows from Section 2.2 that a necessary first-order condition for a trait u∗ to be locally uninvadable

(resistant to invasion by any mutant in a small radius ε� 1) is that the selection coefficient is nonpositive

for all admissible mutants in the resident u∗ population, that is

sη(u∗) = εη · s(u∗) ≤ 0 ∀ um(= εη + u∗) ∈ U [T ]. (9)

Local resistance to invasion by sets of alternative mutants allows to characterise candidate long-term

evolutionary outcomes (Eshel and Feldman, 1984; Eshel, 1996; Eshel et al., 1998) and is a first-step (and

often the only accessible computational step) towards characterising uninvadable traits.

A crucial question is whether a locally uninvadable strategy u∗ will be approached by gradual evolution

from within its neighbourhood and thus be convergence stable (Eshel, 1983; Lessard, 1990; Geritz et al.,

1998; Rousset, 2004; Leimar, 2009). Because characterising convergence stability involves a second order

analysis of the selection coefficient, which is involved for multidimensional traits (Lessard, 1990; Leimar,

2009), it will not be investigated further in this paper. For the same reason, we will also not consider

sufficient conditions for local uninvadability. In the remainder of this section, we focus on characterising

in more detail the necessary condition of local univadability (eq. 9) in terms of the selection gradient

function s(u), which allows removing the considerations of mutational effect η.

2.3.1 Local uninvadability for scalar-valued traits

Let us first consider the case of scalar quantitative traits, where the trait of each individual is an element

belonging to a bounded subset U ⊂ R of a real line. That is, the resident and mutant traits stay within

the feasibility bounds umin ≤ u, um ≤ umax]). For this case, the index t in eq. (7) can be dropped and one

obtains the standard selection gradient on a scalar-valued trait for the homogeneous island population:

s(u) =
∂w(u•, u◦, u)

∂u•

∣∣∣∣
u•=u◦=u

+ r(u)
∂w(u•, u◦u)

∂u◦

∣∣∣∣
u•=u◦=u

, (10)

which is the standard selection gradient for scalar quantitative traits in the homogeneous island population

(Taylor and Frank, 1996; Frank, 1998; Roze and Rousset, 2003, 2004; Rousset, 2004; Lehmann and
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Rousset, 2014; Van Cleve, 2015).

Note that for u = umin an admissible phenotypic deviation η must be non-negative η ≥ 0 and

for u = umax it must be non-positive η ≤ 0 while for umin ≤ u ≤ umax the deviation η is unrestricted.

Substituting this into the first-order condition for uninvadability eq. (9) yields that the necessary condition

for uninvadability for scalar bounded traits can be expressed in the following form

u∗ = umin only if s(u∗) ≤ 0,

umin < u∗ < umax only if s(u∗) = 0,

u∗ = umax only if s(u∗) ≥ 0.

(11)

Note that if the set of admissible traits is unbounded (i.e. U = R), then the first-order necessary condition

for local uninvadability is given by the second line of eq. (11).

2.3.2 Local uninvadability for function-valued traits

Let us return to the general case where the trait of each individual is an element of U [T ], being either a

vector (T discrete) or a (bounded and piece-wise continuous) function (T continuous). More precisely, for

all t ∈ T the resident and mutant traits stay within the feasibility bounds umin(t) ≤ u(t), um(t) ≤ umax(t),

such that umin = {umin(t)}t∈T and umax = {umax(t)}t∈T . Now, an admissible deviation η = {η(t)}t∈T

must satisfy for all t ∈ T similar conditions as given for the scalar-traits in Section (2.3.1), that is, for

u(t) = umin(t) an admissible phenotypic deviation η must be non-negative η(t) ≥ 0 and for u(t) = umax(t)

it must be non-positive η(t) ≤ 0 while for umin(t) ≤ u(t) ≤ umax(t) the deviation η(t) is unrestricted.

Substituting the admissible deviations into eq. (9) yields that a candidate uninvadable strategy u∗ =

{u∗(t)}t∈T ∈ U [T ] satisfies for all t ∈ T :

u∗(t) = umin(t) only if s(t, u∗) ≤ 0

umin(t) < u∗(t) < umax(t) only if s(t, u∗) = 0

u∗(t) = umax(t) only if s(t, u∗) ≥ 0,

(12)

which is thus equivalent to eq. (11) in a point-wise way.

3 From the selection gradient to candidate optimal controls

The point-wise description of the candidate uninvadable trait u∗ given by eq. (12) is unlikely to be di-

rectly useful in solving for u∗ in concrete applications because factors characterising the organism and

its environment change over time (e.g. organisms can grow and the resources in the environment can
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get depleted). Hence, solving u∗ from eq. (12) would entail simultaneously solving a large number of

equations, while tracking the changes in the relevant time-dependent factors. A more useful character-

isation of u∗ can be achieved with the use of the mathematical framework of optimal control theory,

most notably dynamic programming and Pontryagin’s maximum principle, both of which have been used

abundantly in evolutionary biology (e.g., León, 1976; Iwasa and Roughgarden, 1984; Mangel et al., 1988;

Houston et al., 1999; Stearns, 1992; Perrin, 1992; Koz lowski, 1992; Day and Taylor, 1997, 2000; Cichon

and Kozlowski, 2000; Irie and Iwasa, 2005; Parvinen et al., 2006, 2013; Priklopil et al., 2015; Metz et al.,

2016; Avila et al., 2019). Yet these previous models often do not discuss and integrate the various modes

of trait expression, in particular the open-loop and closed-loop strategies (see e.g. p. 225-226 in Basar and

Olsder, 1999 for a discussion in the game theory literature). In this section, we connect our analysis to

optimal control theory and in so doing, we develop an integrative approach to the functional dependence

of trait evolution.

3.1 Key concepts

3.1.1 Concept of control and state variables

For space reasons, we focus on a continuous time formulation (but parallel developments apply to discrete

time), and assume that a demographic time period is characterised by the time interval T = [0, tf ]

during which the trait expression is observed. This time interval can be thought of as the length of the

reproductive season or the time during which behavioural interaction occur between individuals, which

eventually leads to reproduction. More specifically, we now assume that the fitness of the focal individual

can be written in the form

w(u•, u◦, u) =

∫ tf

0

f(u•(t),x•(t))dt+ Φ(x•(tf)), (13)

where f(u•(t),x•(t)) is the rate of increase of individual fitness at time t and Φ(x•(tf)) is the contribution

to individual fitness at the final time t = tf (formally f : U3 × R3 → R+ and Φ : R3 → R+). Here,

u•(t) = (u•(t), u◦(t), u(t)) , and x•(t) = (x•(t), x◦(t), x(t)) (14)

collect, respectively, the trait expression levels u•(t), u◦(t), and u(t) at time t of the focal individual,

that of an average neighbour, and an average individual from the population, and the state variables

x•(t), x◦(t), and x(t) of these respective individuals. State variables describe some measurable condition

of an individual, e.g. size, stored energy, hunting skill, or that of its environment, e.g. amount of resource

patches, environmental toxicity (note that the “•” in the subscript of u• and x• emphasises that these
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controls and state variables are those of all actors on a focal recipient). The defining feature of a state

variable in our model is that its time dynamics depends on the evolving trait of one or more individuals

in interaction and we will henceforth from now on call the elements of u•(t) the control variables, which

is customary for these type of models in the evolutionary literature (e.g., Perrin, 1992; Day and Taylor,

2000).

Because models with both control and state variables become rapidly notationally complex, we assume

that both the controls and the state variables are one-dimensional real numbers. The state of every

individual is assumed to change according to the function g : U3 × R3 → R, such that

dx•(t)

dt
= g((u•(t), u◦(t), u(t))︸ ︷︷ ︸

u•(t)

, (x•(t), x◦(t), x(t))︸ ︷︷ ︸
x•(t)

) (15)

with initial condition (“i.c.”) x•(0) = xinit and which is the rate of change of the state of a focal individual

with control u•(t) in state x•(t), when its neighbours have average control u◦(t) and average state x◦(t)

in a population where the average control (in other groups) is u(t) and the average state is x(t). Similarly,

we can also express the rate of change of the state of an average neighbour of the focal and an average

individual in the rest of the population, respectively, as

dx◦(t)

dt
= g(u◦(t),x◦(t)),

dx(t)

dt
= g(u(t),x(t)), (16)

where the vectors

u◦(t) = (u◦(t), un(t), u(t)), x◦(t) = (x◦(t), xn(t), x(t)),

u(t) = (u(t), u(t), u(t)), x(t) = (x(t), x(t), x(t))

(17)

collect the (average) controls and states of actors on the state variables of an average neighbour of the

focal individual (first line), and on an average individual in the population (second line), respectively

(here and throughout all vectors are defined by default as being column vectors). These actors are thus

second-order level actors on the focal recipient since they affect the state variables of actors affecting the

focal’s fitness. Note that the subscript of the control vectors (u◦(t) and x◦(t)) and state vectors (u(t)

and x(t)) emphasise the individual (actor) from who’s perspective the second-order actors’ control and

variables are collected. Accordingly, the vectors in eq. (17) contain elements

un(t) =
1

N − 1
u•(t) +

(
N − 2

N − 1

)
u◦(t), xn(t) =

1

N − 1
x•(t) +

(
N − 2

N − 1

)
x◦(t), (18)

which are, for an average neighbour of the focal, the control and state expressions of average neighbours

11

.CC-BY 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted September 25, 2020. . https://doi.org/10.1101/2020.09.23.310532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310532
http://creativecommons.org/licenses/by/4.0/


viewed as actors on the focal individual. While we have so far explicitly distinguished between the states

of different individuals, which is required if state represents some property of individual’s condition (e.g.

body size or individual knowledge), nothing prevents the individual state to represent some environmental

condition common to the group or population and which can be influenced by individual behaviour (e.g.

local amount of resources in the group, in which case x•(t) = x◦(t), see concrete example in section 4).

Note that while tracking the dynamics of three state variables (eqs. 15–18) may appear complicated, it

is much simpler than tracking the state of all individuals in a group separately (which would require as

many equations as there are individuals in the group and is the approach taken in Day and Taylor, 1997,

2000).

We now make a couple of remarks about the properties of the fitness function w(u•, u◦, u) (eq. 13) and

its dynamic constraints (eqs. 15–16), which is a special case of a fitness function w(u•, u◦, u) considered

in section 2. The fitness function (13) depends on the full trajectories of the control u• = {u•(t)}t∈T

and state x• = {x•(t)}t∈T variables, but since the state variables are fully determined by the controls

(by way of eqs. 15–16) and the initial condition xinit (which we assume here to be fixed), then fitness

is determined by the controls. In particular, if fitness depends only on the state of the system at the

final time tf (w(u•, u◦, u) = Φ(x•(tf))), then fitness still depends critically on the control variables. We

assumed in section 2 that the fitness w(u•, u◦, u) is Gâteaux differentiable (eqs. 2 and 3), which means

here that functions f , Φ and g are smooth enough with respect to its arguments (see e.g. section 3 of

Liberzon, 2011 for textbook treatment of assumptions and Clarke, 1976 for minimal assumptions needed).

We finally note that in the homogeneous island population, individual fitness may depend in a non-linear

way on various vital rates (e.g, Roze and Rousset, 2003, eq. 35, Akçay and Van Cleve, 2012, eq. A12,

Van Cleve, 2015, eq. 38, Mullon et al., 2016, eq. box 1a), which themselves may depend on integrals

depending on the control schedules of the individuals in interaction. Such situations can be analysed

either by defining state variables whose integrated values represent the integral, and are covered by

the scrap value Φ(x•(tf)) in eq. (13), or by noting that to the first-order, functions of integrals can be

replaced by integrals of first-order Taylor series of fitness and hence the f(u•(t),x•(t)) fitness component

in eq. (13) may be evaluated as a first-order Taylor expansion of fitness in its vital rates (e.g., Van Cleve,

2015, eq. 39).

3.1.2 Concept of neutral reproductive and shadow value

A central role in our analysis will be played by the (neutral) reproductive value

v(t,x(t);u) =

∫ tf

t

f (u(τ),x(τ)) dτ + Φ(x(tf)) (19)
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of an individual at time t in a resident population, which gives the total contribution to fitness from time t

onward of a (recipient) individual when the current state variables of the actors on its fitness is x(t). The

argument u has been separated with the semicolon in order to emphasise that the reproductive value is

evaluated assuming a fixed control trajectory where u is treated as a parameter. Hence, the reproductive

value is formally a function of current time t and state x(t) (v : T × R3 → R+). In Appendix B.1, we

show that the reproductive value satisfies the following partial differential equation (PDE)

−∂v(t,x(t);u)

∂t
= f(u(t),x(t)) + g(u(t),x(t))

(
1 · λ(t,x(t);u)

)
(20)

with final condition (“f.c.”) v(tf ,x(tf);u) = Φ(x(tf)), where 1 = (1, 1, 1) and the vector

λ(t,x(t);u) = ∇v(t,x(t);u) =

(
∂v(t,x•(t);u)

∂x•(t)
,
∂v(t,x•(t);u)

∂x◦(t)
,
∂v(t,x•(t);u)

∂x(t)

)∣∣∣∣
x•(t)=x(t)

, (21)

is the gradient of the reproductive value with respect to the changes in the state variables of each

individual affecting the focal’s fitness (and associated with fixed resident control path u). Note that we

use the vector x•(t) as an argument of v when expressing the partial derivatives to emphasise who’s

actor state we are varying, even though we are here considering only a resident population where all

actors on a focal recipient have the same controls. The “-” sign on the left-hand-side of eq. (20) indicates

that the reproductive value of an individual is growing when looking backwards in time. Hence, it grows

according to the current rate f(u(t),x(t)) of fitness increase and the sum 1 ·λ(t,x(t);u) of the effects of

the current state change of each type of actor on the future fitness of the focal individual, weighted by the

change g(u(t),x(t)) of state of the actors that are all the same in a resident population. The elements of

the gradient λ(t,x(t);u) are called the shadow values of the states in the optimal control literature (see

e.g. Dorfman, 1969; Caputo and Caputo, 2005), since by changing state, there is no immediate effect on

fitness, but only future fitness effects.

3.1.3 Concept of open and closed-loop controls

Because the internal and external conditions of organisms vary, trait expression can evolve to be func-

tionally dependent on these conditions (Sibly and McFarland, 1976; McFarland, 1977; McFarland and

Houston, 1981; Houston et al., 1999). Hence, trait expression may not only depend on time but also on

state variables. Focusing on the resident trait u(t), we can conceptualise trait expression in (at least) two

different ways that are relevant to evolutionary biology. Namely,

u(t) =

 d(t,x(t)) closed-loop (feedback) control

d(t) open-loop control,
(22)
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where the function d : T ×R3 → U is the trait expression rule (or decision rule for short) in the so-called

closed-loop (or feedback or Markovian) form of the control variable (Basar and Olsder, 1999, p. 221,

Dockner et al., 2000, p. 59). A closed-loop (feedback) control can be thought of as a contingency plan,

which specifies a trait expression rule according to both the state and age (or time during interaction

phase T ) of the individual. An open-loop control and can be thought of as an entirely fixed course of

trait expression from birth to death of an individual (trait expression happens “by the clock”). Note that

closed-loop (feedback) control is the general characterisation that subsumes open-loop control.

Closed-loop traits are biologically more general and certainly relevant to life-history, since trait ex-

pressions is more likely to depend on individual state that on chronological age. Yet, in many life-history

evolution models, mostly open-loop control traits have been assumed (e.g., Macevicz and Oster, 1976;

Schaffer, 1983; Bulmer, 1983; Iwasa and Roughgarden, 1984; Sibly et al., 1985; Stearns, 1992; Perrin,

1992; Koz lowski, 1992; Perrin et al., 1993; Day and Taylor, 1997, 1998, 2000; Irie and Iwasa, 2005; Parvi-

nen et al., 2006; Metz et al., 2016). We know from the literature of dynamic game theory that if there

are no interactions between individuals, the open- and closed-loop (feedback) representations of control

lead to the same uninvadable control paths (see e.g. Basar and Olsder, 1999, chapter 5.6, Dockner et al.,

2000, chapter 3.5 for optimal-control textbook treatment), thus circumventing the need to distinguish

between them. This means that the use of closed-loop controls appearing in life-history models without

interactions between individuals (e.g., Houston et al., 1999) do not lead to different results if instead

an open-loop representation of traits would have been used. In the presence of interactions between

individuals, however, open-loop and closed-loop controls can lead to substantially different uninvadable

control paths and it becomes crucial to distinguish between them (Basar and Olsder, 1999, chapter 5.6,

Dockner et al., 2000, chapter 3.5). In light of these results from game theory, we now proceed to analyse

candidate uninvadable open- and closed-loop controls.

3.2 First-order condition for closed-loop controls

3.2.1 The first-order condition in terms of dynamic constraints

Let us now evaluate the point-wise fitness effects of Hamilton’s marginal rule (7) by substituting the

fitness function eq. (13) into eq. (8) and taking the derivative with respect to u•(t) and u◦(t). Calculations

displayed in Appendix B (in particular eqs. B.16–B.28) then show that the direct effect is

−c(t, u) =
∂f(u•(t),x(t))

∂u•(t)

∣∣∣∣
u•(t)=u(t)︸ ︷︷ ︸

effect on current fitness

+
∂g(u•(t),x(t))

∂u•(t)

∣∣∣∣
u•(t)=u(t)︸ ︷︷ ︸

effect on current state change

· λ(t,x(t);u)︸ ︷︷ ︸
state change effect
on future fitness

(23)

14

.CC-BY 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted September 25, 2020. . https://doi.org/10.1101/2020.09.23.310532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310532
http://creativecommons.org/licenses/by/4.0/


and the indirect effect is

b(t, u) =
∂f(u•(t),x(t))

∂u◦(t)

∣∣∣∣
u•(t)=u(t)︸ ︷︷ ︸

effect on current fitness

+
∂g(u•(t),x(t))

∂u◦(t)

∣∣∣∣
u•(t)=u(t)︸ ︷︷ ︸

effect on current state change

· λ(t,x(t);u)︸ ︷︷ ︸
state change effect
on future fitness

.
(24)

The derivatives are evaluated at u = d(x) = {d(t,x(t))}t∈[0,tf ] for closed-loop controls and at u =

d = {d(t)}t∈[0,tf ] for open-loop controls, where d(t,x(t)) = (d(t,x(t)), d(t,x(t)), d(t,x(t))) and d(t) =

(d(t), d(t), d(t)) are vectors of closed-loop and open-loop trait expression rules, respectively, evaluated in

a resident population. Hence, the direct effect −c(t, u) and the indirect effect b(t, u) are given in terms of

the effect on the Hamiltonian (the rate of change of the reproductive value) of the infinitesimal variations

(perturbations) of current trait components u•(t) and u◦(t).

We now make two observations about the direct and indirect effects. First, the perturbations of the

change of the state variables (∂g/∂u• and ∂g/∂u◦) have cascading downstream effects on fitness growth

rate f(u•(t),x•(t)), but since under a first-order analysis everything else than the original perturbation

needs to be held constant, the downstream effects are accounted for by the shadow values λ(t,x(t);u)

evaluated in the resident population. Second, the state dynamics of an average individual in the popu-

lation is not affected from variations in u• and u◦ (∂g(u(t),x(t))/∂u• = ∂g(u(t),x(t))/∂u◦ = 0, by way

of eq. 16).

In order to obtain a full characterisation of the first-order condition taking into account the dynamic

constraints brought by the shadow value, it is useful to introduce the Hamiltonian function

H
(
u•(t),x•(t),λ(t,x(t);u)

)
= f(u•(t),x•(t)) + g(u•(t),x•(t)) · λ(t,x(t);u). (25)

This can be thought of as the contribution to individual fitness of all current “activities” (Dorfman,

1969, p. 822); namely, the (phenotypic) expressions u•(t) of all individuals currently in state x•(t) at t,

holding everything else fixed in a resident population. It is thus the sum of the current rate of fitness

contribution f(u•(t),x•(t)) and the changes in current states g(u•(t),x•(t)) resulting from the activities

weighted by λ(t,x(t);u) evaluated in the resident population, since the shadow values do not directly

depend on the activities at time t. Our next result (proved in Appendices B.1 and B.2) establishes the

necessary condition for uninvadability for closed-loop control paths as follows.

Candidate uninvadable closed-loop control result. Let u∗ = d∗(x∗) = {d∗(t,x∗(t))}t∈T be a can-

didate uninvadable closed-loop (feedback) control path with associated state path x∗ = {x∗(t)}t∈T , where

x∗(t) = (x∗(t), x∗(t), x∗(t)) and shadow value λ∗(t,x∗(t)) = λ(t,x∗(t);u∗). The candidate uninvadable

control path d∗(x∗) has to necessarily satisfy eq. (12), where the point-wise selection coefficient s(t, u∗)
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on control component u∗(t) = d∗(t, x∗(t)) can be written for all t ∈ T as

s(t, u∗) =

∂H
(
u•(t),x

∗(t),λ∗(t,x∗(t))
)

∂u•(t)
+ r(u∗)

∂H
(
u•(t),x

∗(t),λ∗(t,x∗(t))
)

∂u◦(t)


u•(t)=d∗(t,x∗(t))

, (26)

where d∗(t,x∗(t)) = (d∗(t,x∗(t)), d∗(t,x∗(t)), d∗(t,x∗(t))), the state variable satisfies

dx∗(t)

dt
= g(d∗(t,x∗(t)),x∗(t)) with i.c. x∗(0) = xinit, (27)

and the shadow value function λ∗(t,x∗(t)) = ∇v∗(t,x∗(t)) is obtained from the reproductive value function

v∗(t,x∗(t)) = v(t,x∗(t);u∗) satisfying

−∂v
∗(t,x∗(t))

∂t
= H

(
u∗(t),x∗(t),λ∗(t,x∗(t))

)
with f.c. v∗(tf ,x

∗(tf)) = Φ(x∗(tf)). (28)

Hence, all quantities are evaluated on the resident control u∗ = d∗(x∗) and state x∗ paths.

We now emphasise two points about this result. First, the dynamic constraints entail solving forward

in time eq. (27), which is an ODE (ordinary differential equation), and solving backwards in time eq. (28),

which is a PDE (partial differential equation). Thus, the Hamiltonian can be thought as the growth rate

of the reproductive value (when looking backwards in time). For a reader familiar with the dynamic

programming literature, the reproductive value v∗(t,x∗(t)) is not the so-called value function of the

model and hence eq. (20) (even when evaluated along the candidate uninvadable control path u• = u∗) is

not the eponymous Hamilton-Jacobi-Bellman equation (e.g., Bryson and Ho, 1975; Kamien and Schwartz,

2012; Basar and Olsder, 1999; Dockner et al., 2000; Liberzon, 2011; Weber, 2011). This means that the

above result says nothing about the sufficiency of uninvadability, like any standard first-order selection

analysis. In this regard, our result provides a weaker, yet simpler and novel condition to characterise

closed-loop controls compared to the standard approach in the optimal control theory literature.

Second, by substituting eq. (25) into (26) yields that any interior candidate uninvadable strategy

satisfying s(t, u∗) = 0 (recall 12) must satisfy

−
[
∂f(u•(t),x

∗(t))

∂u•(t)
+ r(u∗)

∂f(u•(t),x
∗(t))

∂u◦(t)

]
u•(t)=d∗(t,x∗(t))︸ ︷︷ ︸

current fitness effect

=

[
∂g(u•(t),x

∗(t))

∂u•(t)
+ r(u∗)

∂g(u•(t),x
∗(t))

∂u◦(t)

]
u•(t)=d∗(t,x∗(t))

· λ∗(t,x∗(t))︸ ︷︷ ︸
state-modulated future fitness effect

, (29)

This fundamental balance condition says that the current fitness effect (on the focal individual) is traded-
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off (hence the negative sign) by the state-modulated future fitness effect resulting from the change in state

variables. This trade-off is instrumental in allowing to characterise the candidate uninvadable control

u∗(t) = d∗(t,x∗(t)), which can be typically done in two steps. The first step is to determine d∗(t,x∗(t))

satisfying (29), while treating the system state x∗(t) and its shadow value λ∗(t,x∗(t)) as parameters,

yielding the implicit expression

d∗(t,x∗(t)) = D(t,x∗(t),λ∗(t,x∗(t))), (30)

in terms of some function D (that satisfies eq. 29). Essentially, this step is akin to solving a static (one-

dimensional) first-order condition (and which can in principle also be used whenever s(t, u∗) 6= 0, Dockner

et al., 2000, p. 97). We will refer to this first-step characterisation as the static characterisation, since it

allows to characterise the general nature of the solution in terms of x∗(t) and λ∗(t,x∗(t)) independently

of their explicit values. The second step entails solving for the trajectories of x∗(t) and v∗(t,x∗(t))

generated by eqs. (27) and (28) under eq. (30) and then taking the gradient of ∇v∗(t,x∗(t)) to obtain

λ∗(t,x∗(t)). Finally, after solving for trajectories x∗(t) and λ∗(t,x∗(t)) we can explicitly characterise

the candidate uninvadable control by substituting the these solutions into eq. (30). Solving eq. (28) for

v∗(t,x∗(t)) is the main technical challenge in finding the candidate uninvadable traits.

It is also often the case in biological models that the Hamiltonian is affine in the control variables

so that fitness depends linearly on the evolving traits (e.g. Macevicz and Oster, 1976; Perrin et al.,

1993; Irie and Iwasa, 2005; Avila et al., 2019). In such cases, controls do not appear in the selection

gradient (26) and hence, one can not directly determine from it the static characterisation (30). These

types of controls are known to be singular arcs (see Kelley, 1964; Kopp and Moyer, 1965; Goh, 1966

for classic developments and see e.g. Sethi and Thompson, 2006; Bryson and Ho, 1975 for textbook

treatments). In order to characterise the candidate uninvadable singular arc, we can take the total time

derivative of the selection gradient s(t, u∗), which (potentially) provides an additional algebraic equation

in the variables (u∗, x∗, λ∗) that can contain the control(s) with a non-zero coefficient. In case it does

not, another time derivative can be taken until expression for u∗ can be obtained. Hence, for singular

arcs, we can obtain the static characterisation (30) by applying

(
d

dt

)i
s(t, u∗) = 0 ∀i ∈ {1, 2, ...}, (31)

until u∗ can be obtained. Note that for a candidate uninvadable control to be a singular arc, eq. (31)

has to hold for a finite interval. If eq. (31) does not hold over a finite interval, then u∗ is known to be

a bang-bang control (see e.g. Sethi and Thompson, 2006; Bryson and Ho, 1975), meaning that u∗ takes
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the values only on its boundaries (u∗(t) = umax(t) or u∗(t) = umin(t), owing to eq. 12).

3.2.2 Shadow value dynamics and state feedback in a resident population

From the static (first-step) characterisation of d∗(t,x∗(t)) (eq. 30), we observe that the candidate un-

invadable trait is at most a function of λ∗(t,x∗(t)), but does not directly depend on the reproductive

value v∗ itself. Furthermore, taking the partial derivative of eq. (28) with respect to x∗(t) and using the

definition of the Hamiltonian (25) and re-arranging (see sections B.1.2 and B.3 in Appendix) yields

− dλ∗(t,x∗(t))

dt
= ∇H

(
d(t,x(t)),x(t),λ∗(t,x∗(t))

)∣∣∣ x(t)=x∗(t)
d(t,x(t))=d∗(t,x∗(t))

=

∂H
(
d(t,x•(t)),x•(t),λ

∗(t,x∗(t))
)

∂x•(t)
,
∂H
(
d(t,x•(t)),x•(t),λ

∗(t,x∗(t))
)

∂x◦(t)
,

∂H
(
d(t,x•(t)),x•(t),λ

∗(t,x∗(t))
)

∂x(t)


x(t)=x∗(t)

d(t,x•(t))=d∗(t,x∗(t))

(32)

with f.c. λ∗(tf ,x
∗(tf)) = ∇Φ(x∗(tf)) and where d(t,x•(t)) = (d(t,x•(t)), d(t,x◦(t), d(t,x(t)). The

dynamics of the shadow value, given by eq. (32), may at first glance appear to be an ODE (and therefore

easier to solve than eq. 28, which is clearly a PDE for the reproductive value v∗). This may lead one

to hope that it is possible to circumvent from explicitly determining v∗, by simply solving eq. (32) to

directly obtain λ∗. But this hope is crushed by the trait dependence on state, which entails that eq. (32)

depends on the derivatives of the elements of d(t,x•(t)) with respect to state, which in turn depends on

higher-order derivatives of v(t,x∗(t);u∗). This can be seen by using eq. (30), whereby

∂d(t,x•(t))

∂x•(t)

∣∣∣∣
x•(t)=x∗(t)

=
∂D(t,x•,λ(t,x•(t);u

∗))

∂x•(t)

∣∣∣∣
x•(t)=x∗(t)

, (33)

which unveils that eq. (32) is actually not an ODE. This means that in general it is not possible to

determine the candidate uninvadable trait from using eq. (32), which has been repeatedly stressed in

optimal control theory (e.g. Starr and Ho, 1969b,a; Başar, 1977). However, the analysis of the components

of eq. (32) has less been stressed, but turns out to be informative in highlighting the main similarities

and differences between selection on closed-loop and open-loop controls.

Lets now decompose eq. (32) for the component λ∗•(t,x
∗(t)) = ∂v(t,x•(t);u)/∂x•(t)|x•(t)=x(t) (similar
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results hold for the other shadow values (see Appendix B.3) and write

− dλ∗•(t,x
∗(t))

dt
=
∂H
(
d(t,x•(t)),x•(t),λ

∗(t,x∗(t))
)

∂x•(t)

∣∣∣∣∣∣ x•(t)=x∗(t)
d(t,x•(t))=d∗(t,x∗(t))

=
∂H(u∗(t),x•(t),λ

∗(t,x∗(t)))

∂x•(t)

∣∣∣∣
x•(t)=x∗(t)︸ ︷︷ ︸

direct effect of state change

+

∂H(d(t,x•(t)),x
∗(t),λ∗(t,x∗(t)))

∂x•(t)

∣∣∣∣
d(t,x•(t))=d∗(t,x∗(t))︸ ︷︷ ︸

feedback effect of state change

, (34)

with f.c. λ∗•(tf ,x
∗(t)) = ∂Φ(x•(tf))/∂x•(tf)|x•(tf )=x∗(tf ). This says that the rate of change of the shadow

value is given by a direct effect of state change on the Hamiltonian (current fitness effect and state-

modulated fitness effect) and a feedback effect on the Hamiltonian, which arises since closed-loop traits

react to changes in the state. Using the expression for the Hamiltonian in eq. (25), the expressions for

direct and indirect effects in eq. (23)–(24), and noting that ∂d(t,x(t))/∂x•(t) = 0, the trait feedback

effect can be further expanded as

∂H(d(t,x•(t)),x
∗(t),λ∗(t,x∗(t)))

∂x•(t)

∣∣∣∣
x•(t)=x∗(t)

= −c(t, u∗) ∂d(t,x•(t))

∂x•(t)

∣∣∣∣
x•(t)=x∗(t)

+ b(t, u∗)
∂d(t,x◦(t))

∂x•(t)

∣∣∣∣
x•(t)=x∗(t)

(35)

where the derivatives ∂d(t,x•(t))/∂x•(t) and ∂d(t,x◦(t))/∂x•(t) give the trait sensitivities of the focal

individual and its average neighbour, respectively, at time t to changes in focal’s state variable x•(t).

Hence, the feedback effect of state change is equal to the trait sensitivities of all individuals in the group

weighted by their effects on the focal’s fitness (the latter are effectively the direct and indirect fitness

effects).

We now make three observations about eqs. (34)–(35). First, trait sensitivities result in inter-temporal

feedbacks in trait expressions. We can see this by first observing that current trait expression affects

changes in state variables (by way of the second line of eq. 29) which affect future fitness (measured

by the shadow value). In turn, the dynamics of shadow value takes into account that closed-loop traits

respond to changes in state variables (by way of the second line of eq. 35). That is, the shadow value takes

into account the effects of current trait expression on future trait expression. Hence, under closed-loop

control, the current trait expression of one individual is linked to future trait expression of itself and other

individuals in its group. Second, the sign of the feedback effect of state change (sign of eq. 35) determines

if the trait sensitivity causes the shadow values to be higher (for negative feedback term) or lower (for
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positive feedback term), assuming that the sign is the same throughout the interaction period. This means

that the sign of feedback effect determines how trait sensitivity affects the trade-off between current and

future (state-modulated) fitness effects (by way of eq. 29). Third, the shadow value dynamics given by

eqs. (34)–(35) is different from that in classical results from dynamic game theory (first developed by

Starr and Ho, 1969a,b), where the feedback effect through the focal’s own trait variation does not appear

due to the absence of interactions between relatives, whereby −c(t, u∗) = 0 at s(t, u∗) = 0. By contrast,

in our model with interactions between relatives one has −c(t, u∗) + r(u∗)b(t, u∗) = 0 at s(t, u∗) = 0.

Thus, we recover the classical result for the feedback effect from dynamic game theory when r(u∗) = 0.

We now consider three scenarios (which are relevant for biology) under which the feedback term

(given by eq. 35) that describes the dynamics of λ∗•(t,x
∗(t)) vanishes (similar arguments also hold for the

feedback term λ∗◦(t,x
∗(t)) and recall that we do not need to consider the dynamics λ(t) here, because

λ∗(t,x∗(t)) does not affect the selection gradient). That is, we consider scenarios for which eq. (32) is a

system of ODE’s (for components λ∗•(t,x
∗(t)) and λ◦) and therefore solving a PDE (28) for v∗(t,x∗(t))

is not necessary to determine the candidate uninvadable trait. These three scenarios are as follows.

(i) Open-loop u(t) = d∗(t) controls. Because the traits do not depend on the state variables, then the

are no trait sensitivities and ∂d•(t)/∂x•(t) = 0 and ∂d◦(t)/∂x•(t) = 0 which implies that eq. (35)

vanishes.

(ii) No social interactions in the group, meaning that fitness components of individuals do not depend

on traits and states of other individuals in the group, i.e. the fitness components f , Φ and g of

the focal individual do not depend on u◦ and x◦, hence b(t, u∗) = 0. It then further follows from

eq. (26) that in order for s(t, u∗) = 0 to be satisfied, we need c(t, u∗) = 0. It then follows directly

that eq. (35) vanishes.

(iii) In a population of clonal groups (r(u∗) = 1) that share a common state variable (x•(t) = x◦(t),

e.g. common resource in the group). Two observations can be made for this scenario. First, from

eq. (26) it follows that −c(t, u∗)+b(t, u∗) = 0 for clones at s(t, u∗) = 0. Second, since x•(t) = x◦(t),

then e.g. ∂d(t,x•(t))/∂x•(t) = ∂d(t,x◦(t))/∂x•(t). Combining these two observations directly

leads to conclude that the feedback term eq. (35) vanishes.

The are a two implications that follow for these three cases. First, open-loop and closed-loop evo-

lutionary equilibria are in general very different, since the state-feedback effect causes inter-temporal

feedbacks between trait expressions of locally interacting individuals under closed-loop controls, which

are not possible under open-loop controls. However, if individuals do not locally interact or if they

interact in clonal groups, then closed-loop and open-loop representation of controls produces the same

candidate uninvadable trait and state trajectories.
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Second, the sign of feedback effect of state change (eq. 35) determines if the shadow value for closed-

loop traits is higher or lower than the shadow value for open-loop traits (given that this sign is the same

for all t ∈ [0, tf ]). If the sign of the net trait sensitivity is negative, then changing the state results in

a lower future inclusive fitness effect (recall the definition from eq. 29) for closed-loop controls than for

open-loop controls (in a candidate uninvadable population). Hence, for a negative trait sensitivity, state

variables change less for closed-loop controls than for open-loop controls. If the sign is positive then the

opposite is true (i.e. future inclusive fitness effect is higher for closed-loop controls, hence state variables

are expected to change more).

3.3 First-order condition for open-loop controls

We now focus specifically on open-loop controls by pointing out the simplifications in our analysis that

arise when

d∗(t,x∗(t)) = d∗(t). (36)

As we showed in the previous section, under eq. (36) the state-feedback term eq. (35) for shadow value

dynamics λ∗•(t,x
∗(t)) vanishes (similarly it vanishes also for λ∗◦(t,x

∗(t)) and λ∗(t,x∗(t))), which implies

that eq. (32) is a system of ODE’s. Hence, we can characterise the necessary condition for an open-loop

control paths as follows.

Candidate uninvadable open-loop control result. Let u∗ = d∗ = {d∗(t)}t∈T be the candidate unin-

vadable open-loop control path with associated state path x∗ = {x∗(t)}t∈T and shadow value λ∗(t,x∗(t)).

The candidate uninvadable control path u∗ = d∗ has to necessarily satisfy eq. (12), where the point-wise

selection coefficient s(t, u∗) on a control component u∗(t) = d∗(t) can be written for all t ∈ T as

s(t, u∗) =

∂H
(
u•(t),x

∗(t),λ(t,x∗(t))
)

∂u•(t)
+ r(u∗)

∂H
(
u•(t),x

∗(t),λ(t,x∗(t))
)

∂u◦(t)


u•(t)=d∗(t)

(37)

where d∗(t) = (d∗(t), d∗(t), d∗(t)), the state variable satisfies

dx∗(t)

dt
= g(d∗(t),x∗(t)) with i.c. x∗(0) = xinit, (38)

and the shadow values satisfy

−dλ∗(t,x∗(t))

dt
= ∇H

(
d∗(t),x(t),λ∗(t,x∗(t))

)∣∣∣
x(t)=x∗(t)

with f.c. λ∗(tf ,x
∗(tf)) = ∇Φ(x(tf))|x(t)=x∗(t).

(39)
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This result is Pontryagin’s weak principle for interactions between relatives (since only small mutant

deviations are considered, Speyer and Jacobson, 2010, p. 74) and only requires consideration of the

shadow value. It has been derived previously Day and Taylor (1997, 2000), for a slightly less general

model, where individuals locally play the field or interact in a pairwise way (see also Day and Taylor,

1998; Wild, 2011 for related work). We here re-derived this result as a corollary of the closed-loop result

of the previous section when the feedback-terms describing the dynamics of the shadow value λ(t) vanish

(i.e, eq. 35 vanishes). Hence, we closed the loop between the selection gradient on function-valued traits,

invasion implies substitution, Hamilton’s rule, dynamic programming, and Pontryagin’s (weak) maximum

principle.

4 Example: Common pool resource production

4.1 Biological scenario

We here present an application of our model to production of common pool resource that returns fitness

benefits to all group members but is produced at a personal fitness cost. The evolving trait we consider

is the schedule u = {u(t)}t∈T of effort invested into resource production during an interaction period

T ∈ [0, tf ] and we will hereinafter refer to the control u(t) as the production effort at time t. Let

u•(t), u◦(t), u(t) denote the production efforts at time t of the focal individual, average neighbour in

the focal group, and average individual (from other groups) in the population, respectively. Let xc(t)

and x(t) be the resource level at time t (the total amount of resources produced) in the focal group

and the average group in the population, respectively. Note that here we have a common state variable

xc(t) = x•(t) = x◦(t) between individuals in the same group and individuals interact through the state

only locally (resources produced in other groups does not directly affect the fitness of individuals in the

focal group).

We study the evolution of the production effort under two different scenarios: (i) individuals can

adjust their production effort according to the (local) resource level xc(t) (closed-loop control) and (ii)

individuals are committed to a fixed schedule of production effort (open-loop control). One difficulty in

analysing the evolution of such traits is that limited genetic mixing generates relatedness between group

members but also competition between them, which leads to kin competition (e.g., Taylor, 1988; Frank,

1998; Rousset, 2004; Van Cleve, 2015). Since we want to highlights the key effects of the evolution of

open-loop and closed-loop controls in the context of interactions between relatives in a simple way, we

want to avoid the complexities brought by kin competition and thus assume implicitly a life cycle that
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entails no kin competition. In particular, we assume that individual fitness takes the form

w(u•, u◦, u) =

[
xc(tf)− ceffort

∫ tf

0

u•(t)
2 dt

]
, (40)

which depends on the resource level xc(tf) in the group at the end of interaction period tf and on the

accumulated (personal) cost of producing the common resource for the group (the second term in eq. 40).

Here ceffort is a parameter scaling the personal cost. The resource level xc(tf) and ceffort are measured

in units of the number of offspring to the focal individual and scaled such that they inherently take into

account the proportional effect of density-dependent competition (proportional scaling of fitness does not

affect the direction of selection). Neglecting the effects of kin competition in eq. (40) does not lead to

any loss of generality in our forthcoming analysis, since taking kin competition into account would only

affect the final results by re-scaling the value of relatedness (e.g., Van Cleve, 2015).

We assume that the rate of increase of the resource level in a group depends on the total amount

of production effort that individuals in the group invest into producing it and that the return from this

effort decreases exponentially with the current level of resource

dxc(t)

dt
= a

(
u•(t) + (N − 1)u◦(t)

)
e−xc(t) xc(0) = 0, (41)

where the parameter a > 0 is the efficiency of producing the common resource.

4.2 Static characterisation of the production effort

We can express the reproductive value (19) as

v(t, x(t);u) =

[
x(tf)− ceffort

∫ tf

t

u(t)2 dt

]
, (42)

where the state variable is only one-dimensional (since fitness depends only on resources produced in

the group xc(t), which is here evaluated at resident strategy, i.e. xc(t) = x(t)). We will denote the

corresponding shadow value (common to all actors) with λc(t, x;u) = ∂v(t, xc(t);u)/∂xc(t)|xc(t)=x(t),

which gives the effect on fitness of changing the state variable in the group evaluated at the resident

population.

Using eq. (40), the fitness components f and Φ (as defined in eq. 13) take the form

f(u•(t), xc(t)) = −ceffortu•(t)
2 and Φ(xc(tf)) = xc(tf), (43)
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while the rate of change of the state variable xc(t) is given by

gc(u•(t), xc(t)) = a
(
u•(t) + (N − 1)u◦(t)

)
e−xc(t). (44)

On substituting eqs. (43) and (44) into the Hamiltonian function eq. (25) produces

H
(
u•(t), xc(t), λc(t, x(t);u)

)
= −ceffort

(
u•(t)

)2

+ a
(
u•(t) + (N − 1)u◦(t)

)
e−xc(t)λc(t, x(t);u). (45)

Since reproduction is assumed to take place after the interaction period [0, tf ] and producing resources

is costly, then the current fitness contribution f (the first term in eq. 45) is negative for all t ∈ [0, tf ].

Hence, the effect on the current state change weighted by the shadow value gcλc (the second term in

eq. 45) has to be positive.

In terms of eq. (45), the direct fitness effect is

−c(t, u∗) =
∂H
(
u•(t), x

∗(t), λ∗c(t, x∗(t))
)

∂u•(t)

∣∣∣∣∣∣
u•(t)=u∗(t)

= −2ceffortu
∗(t) + aλ∗c(t, x∗(t))e−x

∗(t) (46)

while the indirect fitness effect is

b(t, u∗) =
∂H
(
u•(t), x

∗(t), λ∗c(t, x∗(t))
)

∂u◦(t)

∣∣∣∣∣∣
u•(t)=u∗(t)

= (N − 1)aλ∗c(t, x∗(t))e−x
∗(t), (47)

where λ∗c(t, x∗(t)) = λc(t, x∗(t);u∗) from which we obtain the fundamental balance equation (eq. 29) for

this model:

2ceffortu
∗(t) = [a+ r(u∗)a(N − 1)] e−x

∗(t)λ∗c(t, x∗(t)). (48)

This says that the net effect of accumulation of personal cost due to spending effort to produce a unit

resource must balance out the inclusive fitness benefit associated with the unit resource. Solving eq. (48)

for u∗(t) yields

u∗(t) = D(t, x∗(t), λ∗c(t, x∗(t))) = γe−x
∗(t)λ∗c(t, x∗(t)), (49)

where

γ =
a(1 + (N − 1)r(u∗))

2ceffort
(50)
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scales the benefit to cost ratio of producing the resource, note also that γ > 0. Eq. (49) says that

(candidate uninvadable) production effort u∗(t) decreases exponentially with the resource level x∗(t),

increases linearly with the shadow value and relatedness, and is not directly dependent on time. This

general nature of the solution applies to both open-loop and closed-loop controls and is depicted in Fig. 1.

4.3 Full characterisation of the production effort

4.3.1 Closed-loop production effort

We now turn to analyse u∗(t) explicitly as a function of time, which requires to evaluate x∗(t) and

v∗(t, x∗(t)) = v(t, x∗(t);u∗). To that end, we evaluate the dynamic eq. (41) for xc(t) along u• = u∗ and

xc = x∗ and substituting the expression for u∗(t) from eq. (49) therein yields

dx∗(t)

dt
= aNγλ∗c(t, x∗(t))e−2x∗(t), x∗(0) = 0. (51)

Substituting the Hamiltonian (45) for our example into eq. (28) and substituting the right-hand-side of

eq. (49) to express u∗(t) and simplify yields

−∂v
∗(t, x∗(t))

∂t
= c1e

−2x∗(t)(v∗x(t, x∗(t)))2, v∗(tf , x
∗(tf)) = x∗(tf), (52)

where

c1 = γ(aN − ceffortγ) =
aγ

2
(2N − (1 + (N − 1)r(u∗))), (53)

and note that c1 > 0. Using the method of characteristics, Ewald et al. (2007) have showed that the

partial differential equation (52) has the following solution

v∗(t, x∗(t)) = log

(
1

2

√
8c1(tf − t) + exp(2x∗(t)) +

exp(x∗(t))

2

)
− c1(tf − t)(

1
2

√
8c1(tf − t) + exp(2x∗(t))) + exp(x∗(t))

2

)2

(54)

(our eq. 52 corresponds to eq. (21) of Ewald et al., 2007 where c1 = 3/2k and their solution is presented

on page 1459 of their paper, where c1 = c = 3/2k). Taking the derivative with respect to x∗(t) and upon

simplifying yields the expression for the shadow value

λ∗c(t, x∗(t)) =
2 exp(x∗(t))√

8c1(tf − t) + exp(2x∗(t)) + exp(x∗(t))
. (55)
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Substituting this into the static characterisation eq. (49) shows that

u∗(t) = d∗(t, x∗(t)) =
2γ(√

8c1(tf − t) + exp(2x∗(t)) + exp(x∗(t))
) , (56)

where the state variables is the solution of

dx∗(t)

dt
= 2aNγ

exp(−x∗(t))√
8c1(tf − t) + exp(2x∗(t)) + exp(x∗(t))

, x∗(0) = 0, (57)

which was obtained by substituting the shadow value from eq. (55) into the dynamic eq. (51) of resource

level x∗(t) and for which we were not able to find a closed form expression.

4.3.2 Open-loop production effort

We now derive an explicit expression for the candidate uninvadable open-loop trait u∗(t) = d∗(t). Sub-

stituting the Hamiltonian (45) for our example into eq. (39) and using the right-hand-side of eq. (49)

to express u∗(t), yields the dynamic equation of the shadow value λ∗c(t, x∗(t)), and with eq. (51) for the

dynamic equation of resource level x∗(t) we arrive at the following two-point boundary value system

−λ̇∗c(t, x∗(t)) = −aNγ(λ∗c(t, x∗(t))2e−2x∗(t) with f.c. λ∗c(tf , x
∗(tf)) = 1

ẋ∗(t) = aNγλ∗c(t, x∗(t))e−2x∗(t) with i.c. x∗(0) = 0.

(58)

This system has one real-valued solution

λ∗c(t, x∗(t)) =

(√
4aNγtf + 1− 1

) (
t
(√

4aNγtf + 1− 1
)

+ 2tf
)

4aNγt2f

x∗(t) = log

(
t
(√

4aNγtf + 1− 1
)

2tf
+ 1

)
,

(59)

and substituting this solution back into the expression for static characterisation eq. (49), we obtain the

explicit expression

u∗(t) = d∗(t) =

√
4aNγtf + 1− 1

2tf
. (60)

for the candidate uninvadable open-loop trait, which turns out to be constant in time.

4.4 Comparison of closed-loop and open-loop production efforts

With this example, we recover the result that in a population of clonal groups (r(u∗) = 1) closed-loop and

open-loop equilibria coincide (Figure 2). In a population of non-clonal groups (r(u∗) < 1) the production
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effort u∗(t) and the resulting amount of resource x∗(t) tend to be lower under closed-loop candidate

uninvadable equilibrium (hereinafter, we simply write “equilibrium”) than under open-loop equilibrium

(Figure 2). Overall, the production effort monotonically increases over time for the closed-loop control

and stays constant under the open-loop control (Figure 2).

The difference between closed-loop and open-loop (non-clonal) equilibria arises from the difference in

the dynamic constraint on the shadow value (recall section 3.2.2). We find that the shadow value is lower

under closed-loop control than under open-loop control when r(u∗) < 1 (Fig. 3). This is so, because of

the feedback effect of state change (eq. 35), which for our example is

∂H(d(t, xc(t)), x∗(t), λ∗c(t, x∗(t)))

∂xc(t)

∣∣∣∣
xc(t)=x∗(t)

=
(
b(t, u∗)− c(t, u∗)

) ∂d(t, xc(t))

∂xc(t)

∣∣∣∣
xc(t)=x∗(t)

< 0. (61)

Since, this is negative, the shadow value declines faster backwards in time than under closed-loop equi-

librium. In order to understand why the feedback effect is negative, we need to consider the signs of

b(t, u∗)− c(t, u∗) and the trait sensitivity ∂d(t, xc(t))/∂xc(t) (which is here same for all group members).

The term b(t, u∗)− c(t, u∗) is positive when groups are non-clonal and zero when they are clonal (Fig. 4,

panel a). This means that if everyone in the group produces more of the resource, then the focal’s fit-

ness increases under non-clonal equilibrium and is unaffected under the clonal equilibrium. The trait

sensitivity is always negative (Fig. 4, panel b). Hence, individuals will reduce their production effort in

response to an increase in the resource level and the magnitude of this effect is larger for higher values

of relatedness.

In conclusion, investment effort is lower for closed-loop traits than for open-loop traits in a population

of non-clonal groups (r(u∗) < 1), because closed-loop trait expression takes into account that other

individuals will reduce their production effort in response to the focal individual increasing its production

effort. In a population of clonal groups where the focal individual increases its trait expression, the

response from other individuals will not affect the fitness returns to the focal. An open-loop equilibrium

can thus be thought of as a group fitness maximising equilibrium, which can be achieved under closed-

loop trait expression only when there are no genetic conflicts between individuals (i.e. clonal groups).

For open-loop controls this equilibrium is always achieved, regardless of how related individuals are, since

genes code for control trajectories that are pre-determined at birth (full commitment to control trajectory)

and trait expression can not be adjusted in response to changes in the resource level. For clonal groups,

trait sensitivity to changes in the resource level does not alter individual behaviour, because everyone’s

interests in the group are aligned.
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5 Discussion

We formalised the directional selection coefficient on function-valued traits when interactions occur be-

tween individuals in a group-structured population subject to limited genetic mixing. This selection

coefficient describes the directional evolution of quantitative function-valued traits and determines three

relevant evolutionary features. First, it gives the invasion condition of a mutant allele coding for a mul-

tidimensional phenotypic deviation (the deviation of a whole function) of small magnitude and takes the

form of Hamilton’s marginal rule −c+rb > 0, where the marginal direct fitness effect −c and the marginal

indirect fitness effect b are given by directional derivatives (formally Gâteaux derivatives). Second, the

selection gradient is frequency-independent (same for all allele frequencies) and thus underlies gradual

evolution of function-valued traits, since −c + rb > 0 implies not only initial invasion of the mutant

function-valued deviation, but also substitution of the resident ancestral type in the population. Finally,

the stationary selection gradient (i.e. when −c + rb = 0) gives the necessary first-order condition for

uninvadability and allows to characterise long-term evolutionary outcomes. While these three features

are well known to hold for scalar traits (e.g., Rousset, 2004; Lehmann and Rousset, 2014; Van Cleve,

2015), our derivation of Hamilton’s marginal rule for multidimensional traits generalises them to traits of

arbitrary complexity and establishes a link between selection on scalar and function-valued quantitative

traits.

We also showed how selection on dynamic function-valued traits (i.e. traits that are time-dependent

and are potentially subject to dynamic state constraints) can be analysed using optimal control theory.

In particular, we analysed selection on both open-loop controls, whose expression is only time-dependent,

and closed-loop controls, whose expression is also state-dependent. Regardless of the mode of trait

control, the direct and the indirect effects (−c and b) of Hamilton’s rule can in a dynamic context be

decomposed into, on one side, the direct and indirect effects on current fitness of a focal individual and,

and on the other side, the direct and indirect effects on its future contributions to fitness. These latter

effects arise through changes in the states of interacting individuals and depend on the shadow values,

which are the focal’s future contributions to fitness resulting from current variations in states and are

formally given by the effects of state changes on the reproductive value function. The shadow values

are thus central in balancing the trade-off between current and future fitness effects and thus in shaping

life-history trade-offs.

Our analysis allows to compare the differences of how selection acts on open-loop and closed-loop

controls. While the selection coefficient takes the same form (Hamilton’s rule) for these two modes of

trait control, the dynamic constraints on the two cases are different and this arises from the difference in

the dynamics of the shadow value, which plays a central role in understanding these differences. For open-
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loop traits, the shadow value dynamics depends only on how state variation directly affects current fitness

and state dynamics. For closed-loop traits, the shadow value dynamics is shown to depend additionally

on the state feedback effect, which captures how state variations of the individuals in interaction affect

current fitness and state dynamics through trait sensitivity to state variations (eq. 35). This causes

interdependencies between the states of different individuals and inter-temporal effects between trait

expressions, which are absent under open-loop controls. Analysis of the feedback effect leads to two

insights about the role of state-dependence of trait expression in shaping trait evolution. First, the sign

of the feedback effect (the sign of eq. 35) determines if the shadow value is larger (for positive feedback

effect) or smaller (for negative feedback effect) for closed-loop traits than for open-loop traits. Second,

state-dependence of trait expression plays no role if there are no social interactions between individuals

or interactions occur only between clones (r = 1), in which cases the candidate uninvadable open-loop

and closed-loop trait expressions coincide (and the state-feedback term is zero). Thus, in both cases only

open-loop analysis is required, which turns out to be useful because only ordinary differential equation’s

(ODE’s) need to be solved to determine the uninvadable open-loop and closed-loop controls.

We also worked out an example of common pool resource production to illustrate these concepts,

and where strategic interactions under closed-loop trait expression cause individuals to invest less into

common pool resource at an evolutionary equilibrium (the state feedback effect is negative). This result

is in line with the literature of economic game theory, where “period commitments” lead to higher levels

of cooperation in common pool situations (Meinhardt, 2012). Indeed, an open-loop control can be viewed

as a strategy that commits to its expression over the entire interaction time period [0, tf ], since it cannot

be altered in response to some change experienced by individuals, while a closed-loop control is a strategy

with no commitment over time since it is conditional on state. However, depending on the nature of the

interaction between individuals, closed-loop trait expression can also lead to higher levels of cooperation.

A concrete example is an analysis of the repeated prisoner’s dilemma game, where open-loop controls lead

to defection, while closed-loop controls can sustain cooperation (e.g., Weber, 2011), since under closed-

loop strategies current actions are linked to future ones. Hence, only closed-loop strategies can sustain

the reciprocity principle of repeated games by giving rise to incentives that differ fundamentally from

those of unconditional trait expression (see Binmore, 2020, p. 87 for a characterisation of this principle).

We finally discuss some scopes and limitations of our formalisation. First, concerning scopes, we

focused explicitly on two types of controls, but other types of controls are taken implicitly into account

as special cases of our formalisation. For instance, closed-loop stationary controls, where trait expression

depends only on state and not on time are included in our analysis as special cases of closed-loop controls.

Stationary controls are obtained under certain scenarios when the components of fitness (such as functions

f , Φ and g in eqs. 13 and 15) do not explicitly depend on time (as we have assumed here) and the time
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horizon of the interaction period becomes very large (i.e. tf →∞, see e.g. McNamara et al., 1991; Venner

et al., 2006). Then, the uninvadable closed-loop strategy convergences to a stationary strategy d∗(x∗)

and the PDE for the value function becomes an ODE, which is easier to solve (see e.g. Dockner et al.,

2000, p. 97). This could be applied for modelling reaction norms to (stationary) environmental factors

(e.g. salinity, altitude, temperature).

Another special case included in our analysis is that of constant controls, where trait expression

depends neither on state nor time, but nevertheless affects the dynamics of some state variable that in

turn affects fitness, in which case the value function becomes a constant. Several concrete biological

situations fall into this category. For instance, neural networks are dynamical systems whose output is

controlled by a finite number of scalar weights (Haykin, 2009), the selection on which is encapsulated

by our formalisation if weights are taken to be traits evolving genetically and thus treated as controls

(see Ezoe and Iwasa, 1997 for an application to evolutionary biology). Likewise, phenomena as different

as gene expression profiles and learning during individual’s lifespan can be regarded as outcomes of

dynamical systems controlled by a finite number of constant traits (e.g. see respectively Alon, 2020 and

Dridi and Akçay, 2018).

Concerning limitations, we modelled a population reproducing in discrete time, where within each time

period individuals can interact for a fixed time interval [0, tf ]. As such, the vital rates of individuals can

change over this interaction period, but not between interaction periods. Hence, our model with limited

dispersal and time-dependent vital rates (during [0, tf ]) applies to semelparous species, which covers

models with conflict between relatives of annual organisms (Day and Taylor, 2000; Avila et al., 2019).

Further, if we allow for complete dispersal between groups (r(u) = 0), then our framework can be used to

address the evolution of function-valued traits under overlapping generations with time-dependent vital

rates as in continuous time classical life history models with and without social interactions (e.g. León,

1976; Schaffer, 1983; Stearns, 1992; Perrin, 1992), but we add the possibility of considering the evolution

of closed-loop controls. This scenario is encapsulated in our formalisation because the individual fitness

function we used to analyse dynamic trait evolution (eq. 13) takes the same functional form as the

basic reproductive number in age-structured populations (and which is sign equivalent to the Malthusian

or geometric growth rate, e.g., Karlin and Taylor, 1981, p. 423-424). As such, our results on closed-

loop controls (section 3.2) allow to characterise long-term evolutionary outcomes when the fitness of an

individual takes the form of the basic reproductive number. For this situation, our results for open-

loop controls (section 3.3) reduce to the standard Pontryagin’s weak principle used in life-history models

(e.g. Schaffer, 1983; Stearns, 1992; Perrin, 1992). In order to cover time-dependent vital rates with

overlapping generations within groups under limited dispersal, one needs to track the within-group age

structure (e.g. Ronce et al., 2000), which calls for an extension of our formalisation. Finally, we did not
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consider between-generation fluctuations in environmental conditions, which certainly affect the evolution

of function-valued traits and it would be interesting to investigate this case. Hence, while our results

are not demographically general, our hope is that the present formalisation is nevertheless helpful in

providing broad intuition about the nature of directional selection on function-valued traits.
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Appendix A: Derivation of Hamilton’s rule for function-valued traits

In this Appendix, we prove the gradient version of Hamilton’s rule for function-valued traits and show

that this provides an invasion implies substitution principle under weak selection (eqs. 4–8). A central

concept used in our proof is the notion of a Gâteaux derivative.

A.1 Gâteaux derivative and point-wise functional derivative

Let F : Y[T ]→ R be some functional where Y[T ] is a vector space over a domain T and assume that for

some y ∈ Y[T ] the limit

dF (y + εη)

dε

∣∣∣
ε=0

= lim
ε→0

F (y + εη)− F (y)

ε
=
δηF (y)

δηy
(A.1)

exists for all deviations η that satisfy y + εη ∈ Y[T ] for a sufficiently small non-negative parameter ε.

Then, the function F is said to be Gâteaux differentiable at y, and δηF (y)/δηy is the shorthand notation

for a Gâteaux derivative at y in the direction of η (Hille and Phillips, 1957, Section 3). The Gâteaux

derivative can thus be thought of as a generalization of the directional derivative familiar from finite

dimensional spaces. Most rules that hold for ordinary derivatives also hold for Gâteaux derivatives, e.g.

Taylor’s theorem and chain rule (e.g. see Section 2.1C in Berger, 1977, or, Appendix A of Engel and

Dreizler, 2013). The Gâteaux derivative can be expressed in terms of point variations (e.g. see Engel and

Dreizler, 2013, eq. A.15 and eq. A.28) as

δηF (y)

δηy
=

∫
T

∂F (y)

∂y(t)
η(t)dt, (A.2)

where

∂F (y)

∂y(t)
= lim
ε→0

F (y + εδt)− F (y)

ε
, (A.3)

is the point-wise functional derivative of F at y(t) and δt is the Dirac measure taking value 1 at t and

otherwise it is 0. That is, eq. (A.3) is the partial derivative of F with respect to x at t and hence we

use the more familiar ‘partial derivative’ notation from finite dimensional spaces. The representation in

eqs. (A.2)-(A.3) is useful because it allows, for instance, to take a functional derivative of fitness with

respect to the trait, and partition it into a deviation η(t) and a marginal fitness effect at a specific (single)

time point t ∈ T , ∂F (y)
∂y(t) (i.e. a point-wise marginal fitness effect), and only then integrate over the domain

T .
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A.2 Dynamics of mutant-frequency

Consider that the mutant allele coding for trait um and the resident coding for trait u, segregate in the

homogeneous island population as described in the main text. Because no individual-level demographic

heterogeneity is assumed withing groups (i.e., no class structure), each group can be characterised, from

a population genetic state perspective, by the number of mutants that inhabit the group and we denote

the set of all group genetic states with I = {0, 1, 2, . . . , N}. The state of the entire homogeneous island

population can thus be described with the vector φτ = {φi,τ}i∈I where φi,τ is the frequency of groups

with i mutants at demographic time τ . Since population size is constant in the homogeneous island

population (mean fitness is one), the change in the average frequency ∆pτ = pτ+1 − pτ of the mutant

allele from demographic time τ to τ + 1 (over one life-cycle iteration) can be expressed as

∆pτ = W (um, u,φτ )pτ − pτ , (A.4)

where W (um, u,φτ ) is the marginal fitness (or lineage fitness) of the mutant allele. Namely, this is the

expected number of offspring (including the surviving self) produced by a randomly sampled mutant

individual from the collection of all mutants in the population when the distribution of mutants and

resident across groups is φτ . This fitness can be written as the average

W (um, u,qτ ) =
∑
i∈I

ŵ(um,ui,uφ)qi,τ , (A.5)

where qi,τ = iφi,τ/
∑
k∈I kφk,τ is the probability that a randomly sampled mutant resides in a group

with i mutants (whence
∑
i qi,τ = 1) and where ui = (um, u, i− 1) and uφ = (um, u,φτ ) are vectors that

describe, from the perspective of an individual sampled in a group with i mutants, the distribution of

traits among group neighbours (local individuals) and in the groups in the population at large (non-local

individuals), respectively. The function ŵ : U × U2 × I × U2 × ∆(I) → R+ is the individual fitness

where ∆(I) denotes the space of frequency distributions on I (i.e. the simplex in RN+1), and as such,

ŵ(um,ui,uφ) gives the fitness of a mutant when among its neighbours i−1 individuals have trait um and

N − (i− 1) have trait u, and in the groups in the population at large, mutant and resident traits follow

the φτ distribution. When the mutant is rare, eq. (A.5) reduces to the invasion fitness of the mutant in

the homogeneous island population (Mullon et al., 2016, eq. 1).
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A.3 Weak-selection approximation

We now study mutant gene frequency change ∆pτ assuming small ε. To that end, it is useful to note

that the fitness of a mutant in a group in state i can be approximated by writing it in terms of average

traits as

ŵ(um,ui,uφ) = ŵ(um, ūi, ūφ) +O(ε2), (A.6)

where ūi = (ūi, ūi, i−1) specifies that all group neighbours have the same group average trait ūi = u+εηpi

with pi = [(i− 1)/(N − 1)] being the frequency of mutants among neighbours, while ūφ = (ū, ū,φτ )

specifies that all non-local individuals have the same average population trait ū = u + εηpτ with pτ =∑
i∈I(i/N)qi,τ being the mutant frequency in the population. Eq. (A.6), which has been used for scalar

traits (Rousset, 2004, p. 95), follows by Taylor expanding ŵ(um,ui,uφ) to the first-order about ε = 0

and using the chain rule (which applies to Gâteaux derivatives, e.g. eq. A.38 in Engel and Dreizler, 2013)

to see that the coefficients of the Taylor series involve (at most) Gâteaux derivatives weighted by average

allele frequencies. This is an instantiation of the so-called generalised law of mass action (Meszéna et al.,

2005; Dercole, 2016) and is secured by the assumption that all individuals within a group that have the

same trait are exchangeable (individuals are demographically homogeneous).

Because all non-local (mutant and resident) individuals are considered to have the same average trait

(the same is true for group neighbours), ŵ(um, ūi, ūφ) is de facto independent of φτ . This allows us to

further simplify the right-hand side of eq. (A.6) by writing

ŵ(um, ūi, ūφ) = w(um, ūi, ū), (A.7)

where the function w : U3 → R+ is the (average) fitness function introduced in section 2 of the main text,

where we do not need to detail mutant distributions. Hence, w(um, ūi, ū) is the fitness of an individual

with trait um in terms of only the average trait ūi of its group-neighbours and the average trait ū of

individuals in the population.

A.3.1 Allele frequency change

Substituting eq. (A.5)–(A.7) into eq. (A.4), we can express the change in allele frequency as

∆pτ =
∑
i∈I

w(um, ūi, ū)qi,τpτ − pτ +O(ε2). (A.8)
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Taylor expanding the fitness function to the first-order about ε = 0 yields

∆pτ =
∑
i∈I

[
w(um, ūi, ū)|ε=0 + ε

dw(um, ūi, ū)

dε

∣∣∣∣
ε=0

+O(ε2)

]
qi,τpτ − pτ +O(ε2), (A.9)

where w (um, ūi, ū)|ε=0 = 1 (fitness in a monomorphic population is one), whereby

∆pτ =
∑
i∈I

ε
dw(um, ūi, ū)

dε

∣∣∣∣
ε=0

qi,τpτ +O(ε2). (A.10)

We now apply eq. (A.1) and use the chain rule for Gâteaux derivatives (see e.g. eq. A.38 in Engel and

Dreizler, 2013), which produces

dw(um, ūi, ū)

dε

∣∣∣∣
ε=0

=
δηw(um, ūi, ū)

δηum

∣∣∣∣
um=ūi=ū=u

+

δηw(um, ūi, ū)

δηūi

∣∣∣∣
um=ūi=ū=u

pi,τ +
δηw(um, ūi, ū)

δηū

∣∣∣∣
um=ūi=ū=u

pτ , (A.11)

where all partial derivatives here and henceforth are evaluated at the resident value u. Since all the

partial derivatives are independent of any allele frequency, they give the effects on any individual’s fitness

stemming, respectively, from itself, its average neighbour, and an average population member by varying

(infinitesimally) trait expression. Hence, the type of the actor is not relevant when evaluating the fitness

effects and we can equivalently write eq. (A.11) as

dw(um, ūi, ū)

dε

∣∣∣∣
ε=0

=
δηw(u•, u◦, u)

δηu•

∣∣∣∣
u•=u◦=u

+
δηw(u•, u◦, u)

δηu◦

∣∣∣∣
u•=u◦=u

pi,τ +
δηw(u•, u◦, u)

δηu

∣∣∣∣
u•=u◦=u

pτ (A.12)

where we took into consideration that the sum of partial derivatives of the fitness function with respect

to all of its arguments is zero (since population size is constant, see e.g. Rousset, 2004, p. 96 for scalar

traits) and where we replaced the variables um, ūi, and ū with u•, u◦, and u (note that we have already

substituted the resident trait into the final argument). This will be useful subsequently as it makes clear

that fitness effects are independent of individual types and thus allows us to focus attention on the fitness

of a focal individual.

Substituting eq. (A.12) into eq. (A.10) gives

∆pτ = ε
∑
i∈I

[
δηw(u•, u◦, u)

δηu•
(1− pτ )qi,τpτ +

δηw(u•, u◦, u)

δηu◦
(pi,τ − pτ )qi,τpτ

]
+O(ε2). (A.13)

Because
∑
∈I pi,τqi,τ = pm|m,τ is the probability that, conditional on being a mutant, a randomly sam-
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pled neighbour is also a mutant, and pm|m,τpτ = pmm,τ is the probability that two randomly sampled

individuals are both mutants (i.e., frequency of mutant pairs), eq. (A.13) can be written

∆pτ = ε

[
δηw(u•, u◦, u)

δηu•
pτ (1− pτ ) +

δηw(u•, u◦, u)

δηu◦
(pmm,τ − p2

τ )

]
+O(ε2). (A.14)

Hence, to the first order in ε, the dynamics of ∆pτ is a function of only direct and indirect fitness effects

evaluated in the resident population, and the average frequency pτ and mutant-pair frequency pmm,τ .

Further, we only need to study the dynamics of pmm,τ under neutrality (ε = 0) because any higher order

terms contribute to O(ε2) in eq. (A.14). Eq. (A.14) thus generalises to function-valued traits, a standard

result for scalar traits (first detailed in Roze and Rousset, 2003 and re-derived a number of times since,

e.g., Roze and Rousset, 2004; Rousset, 2004; Roze and Rousset, 2008; Lehmann and Rousset, 2014).

A.3.2 Mutant-pair dynamics and relatedness

Using standard population genetic arguments for writing recursions of moments of allelic state (e.g.,

Jacquard, 1974; Nagylaki, 1992; Roze and Rousset, 2008), we have

pmm,τ+1 = P1(u)pτ + P2(u)pmm,τ + (1− P1(u)− P2(u))p2
τ , (A.15)

where P1(u) is the the fraction of pairs within groups (of two randomly sampled individuals in the same

group without replacement) that descended from the same individual in the previous demographic time

step (so that possibly one individual in the pair is the parent of the other in the presence of survival). The

quantity P2(u) is the fraction of pairs that have descended from two distinct individuals in the previous

demographic time period, and where all these coefficients are constant since they are evaluated under

ε = 0 and thus depend at most on the resident trait u. The steady state can be solved explicitly and one

gets

p̂mm = r̂(u)p+ (1− r̂(u))p2, (A.16)

where

r̂(u) =
P1(u)

1− P2(u)
(A.17)

is the relatedness in a patch at the steady state, i.e. the fraction of pairs at the steady state that

have a common ancestor in the patch. Owing to neutrality, this is also the probability that a randomly

sampled neighbour of a randomly sampled focal individual, carries the same allele as the focal. More-
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over, the steady state r̂(u) changes continuously with a resident trait whenever P1(u) and P2(u) change

continuously.

A.4 Timescale separation and the invasion implies substitution - principle

We can observe that the dynamics of mutant frequency pτ , given by eq. (A.14), is dominated by terms of

order O(ε), while the mutant-pair frequency pτ,mm, given by eq. (A.15), is dominated by terms of order

O(1). Hence, when ε is small, the variable pmm,τ undergoes significant fluctuations over the demographic

time step ∆τ = (τ + 1)− τ = 1 (one iteration of a life cycle) while pτ is (nearly) constant. By contrast,

pτ changes significantly over a slower time interval ∆τ∗ = ε∆τ while pmm,τ is near its equilibrium value.

We will refer to ∆τ∗ as the evolutionary time step and the phenotypic effect ε scales the relationship

between evolutionary and demographic time (i.e. one evolutionary time step contains 1
ε demographic

time steps, and equivalently we can write 1
∆τ = ε 1

∆τ∗ ).

Combining eq. (A.14) and eq. (A.15), we see that the dynamics of the mutant frequency is thus fully

described by the coupled system in demographic time

∆pτ = ε

[
δηw(u•, u◦, u)

δηu•
pτ (1− pτ ) +

δηw(u•, u◦, u)

δηu◦
(pmm,τ − p2

τ )

]
+O(ε2)

∆pmm,τ = (P2(u)− 1)pmm,τ + P1(u)pτ + (1− P1(u)− P2(u))p2
τ +O(ε),

(A.18)

and by a change of variables the system in eq. (A.18) can be equivalently expressed in slow evolutionary

time as

ε
∆pτ∗

∆τ∗
= ε

[
δηw(u•, u◦, u)

δηu•
pτ∗(1− pτ∗) +

δηw(u•, u◦, u)

δηu◦
(pmm,τ∗ − p2

τ∗)

]
+O(ε2)

ε
∆∗pmm,τ∗

∆τ∗
= (P2(u)− 1)pmm,τ∗ + P1(u)pτ∗ + (1− P1((u))− P2(u))p2

τ∗ +O(ε).

(A.19)

We now separate the demographic and evolutionary timescales (i.e. the timescales of pτ,mm and pτ ) by

letting ε→ 0 and the two last systems above reduce, respectively, to

∆pτ
∆τ

= 0

∆pmm,τ

∆τ
= (P2(u)− 1)pmm,τ + P1(u)pτ + (1− P1(u)− P2(u))p2

τ

(A.20)

and

∆pτ∗

∆τ∗
=
δηw(u•, u◦, u)

δηu•
pτ∗(1− pτ∗) +

δηw(u•, u◦, u)

δηu◦
(pmm,τ∗ − p2

τ∗)

0 = (P2(u)− 1)pmm,τ∗ + P1(u)pτ∗ + (1− P1((u))− P2(u))p2
τ∗ .

(A.21)
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Eq. (A.20) says that in a purely fast demographic time (ε = 0) the mutant frequency pτ = p stays constant

(“frozen in time”), while mutant-pair frequency pτ,mm changes. Eq. (A.21) says that in a purely slow

evolutionary time (ε = 0) the mutant-pair frequency has reached the steady state p̂mm(u) (its solution

given in eqs. A.16–A.17), while the mutant frequency pτ∗ = p changes (thus p is in a so-called quasi-steady

state – it changes so slowly that it is considered a steady state in one timescale but a fluctuating variable

in another). By performing the substitution pmm,τ∗ = p̂mm(u) and pτ∗ = p in eq. (A.21) the dynamics of

mutant frequency in slow evolutionary time is

∆p

∆τ∗
= p(1− p)

[
δηw(u•, u◦, u)

δηu•
+
δηw(u•, u◦, u)

δηu◦
r̂(u)

]
, (A.22)

where r̂(u) is given in eq. (A.17). Because r̂(u) in eq. (A.17) persists under small perturbation of the

resident phenotype u (Section A.3.2), we can approximate eq. (A.22) with an equation in fast demographic

time whenever ε is sufficiently small, i.e.

∆p = εp(1− p)
[
δηw(u•, u◦, u)

δηu•
+
δηw(u•, u◦, u)

δηu◦
r̂(u)

]
+O(ε2), (A.23)

where we used ∆τ = 1. This gives us the invasion implies substitution - principle on the time of the

demographic process we began with (e.g., eq. A.4). Therefore, we can re-write eq. (A.23) as

∆p = p(1− p)sη(u) +O(ε2), (A.24)

with

sη(u) = −cη(u) + bη(u)r̂(u), (A.25)

and by using the definition of Gâteaux derivatives in eq. (A.1) we can explicitly write

−cη(u) = ε
δηw(u•, u◦, u)

δηu•

∣∣∣∣
u•=u◦=u

= ε× lim
ε→0

[
w(u+ εη, u, u)− w(u, u, u)

ε

]
, (A.26)

which is the effect a focal individual has on itself if it were to express the mutant phenotype and

bη(u) = ε
δηw(u•, u◦, u)

δηu◦

∣∣∣∣
u•=u◦=u

= ε× lim
ε→0

[
w(u, u+ εη, u)− w(u, u, u)

ε

]
, (A.27)

which is the effect that all local individuals have on the focal individual if they were to express the

mutant phenotype (where we have likewise substituted u in the second equality). Hence, we have derived

eqs. (4)–(5) of the main text.
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Appendix B: First-order condition for state-dependent models

In this Appendix we derive the results of main text section 3. These derivation are based on standard

approach of calculus of variations as used in optimal control theory (Liberzon, 2011; Weber, 2011), but our

argument will somewhat differ from standard approaches insofar as we will not make use of the Hamilton-

Jacobi-Bellman equation, since we are interested only in the necessary first-order conditions (as opposed

to necessary conditions in the standard approach). As such, it is important to stress that throughout

sections B.1 and B.3, where we derive the dynamics of the (neutral) reproductive value v(t,x(t);u) and

the shadow value λ(t,x(t);u) = ∇v(t,x(t);u), we evaluate all the traits u•(t) = u◦(t) = u(t) and states

x•(t) = x◦(t) = x(t) at some resident values. Only in section B.2 we look at small deviations from the

resident population, by analysing the Gâteaux derivatives of the fitness function w(u•, u◦, u), where we

show that we only need to analyse the (neutral) reproductive value v(t,x(t);u).

For conciseness of notation, we also use the following short-hand notation: for total derivatives w.r.t.

time t we write df(t, x(t))/ dt ≡ ḟ(t, x(t)), for partial derivatives we write ∂f(t, x(t))/∂x(t) ≡ fx(t, x(t)),

and second-order partial derivatives we write ∂2f(t, x(t))/∂x(t)∂x(t) ≡ fxx(t, x(t)). As in the main text,

we always use the gradient ∇ notation for gradient with respect to state variables x(t).

B.1 Reproductive value dynamics in a resident population

We here derive the dynamic equations for the reproductive value, eq. (20) of the main text, and an

associated equation for the reproductive value that is useful for the other derivations.

B.1.1 Partial differential equation for the reproductive value function

Recall from eq. (19) of the main text that the reproductive value at time t is defined as

v(t,x(t);u) =

∫ tf

t

f(u(τ),x(τ))dτ + Φ(x(tf)). (B.1)

where the argument u has been separated with the semicolon in order to emphasise that the controls

have been fixed. Hence, for a given u and initial condition x(t) at time t the state trajectory x is fully

determined (i.e. the solution to the ODE in eq. (16) exists and is unique). Because both functions u and

x are now given functions, the reproductive value in eq. (B.1) is considered to be a function of time t

and the initial condition x(t) only (strictly speaking it should be a function also of the final time tf).

In order to derive a dynamic equation of v(t,x(t);u), we consider a very small (but positive) time
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interval ∆t and write eq. (B.1) as

v(t,x(t);u) =

∫ t+∆t

t

f(u(τ),x(τ))dτ +

∫ tf

t+∆t

f(u(τ),x(τ))dτ + Φ(x(tf))

=

∫ t+∆t

t

f(u(τ),x(τ))dτ + v(t+ ∆t,x(t) + ∆x(t);u),

(B.2)

where ∆x(t) = x(t+∆t)−x(t) is the change in the state variables over ∆t and v(t+∆t,x(t)+∆x(t);u)

is the reproductive value at t + ∆t and all arguments have been noted accordingly. Using a first-order

Taylor expansion around t, we approximate the second term in the second line of eq. (B.2) as

v(t+ ∆t,x(t) + ∆x(t);u) = v(t,x(t);u) + vt(t,x(t);u)∆t

+∇v(t,x(t);u) ·∆x(t),+O(∆t2), (B.3)

where

vt(t,x(t);u) =
∂v(t,x(t);u)

∂t
(B.4)

is the partial derivative with respect to the first-argument while

∇v(t,x(t);u) =

(
∂v(t,x•(t);u)

∂x•(t)
,
∂v(t,x•(t);u)

∂x◦(t)
,
∂v(t,x•(t);u)

∂x(t)

)
x•(t)=x(t)

(B.5)

is the vector of partial derivatives with respect to the last argument. Now approximating the first term

on the right-hand-side of eq. (B.2) by f(u(t),x(t), t)∆t, we can write eq. (B.2) as

v(t,x(t);u) = f(u(t),x(t))∆t+ v(t,x(t);u)

+ vt(t,x(t);u)∆t +∇v(t,x(t);u) ·∆x(t) + O(∆t2) (B.6)

Subtracting v(t,x(t);u) from both sides, dividing by ∆t, letting ∆t → 0, noting that ∆x(t)/∆t →

g(u(t),x(t)) (as ∆t→ 0), and rearranging leads to

−vt(t,x(t);u) = f(u(t),x(t)) +∇v(t,x(t);u) · g(u(t),x(t)) (B.7)

which is a PDE for v(t,x(t);u) with a final condition (f.c.) v(tf ,x(tf);u) = Φ(x(tf)) for the fixed control

path u.

An analogous equation (in the context of life-history evolution) to eq. (B.7) has been previously

derived for any resident population in Metz et al. (2016, see eq. 71), but where the traits were assumed to
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be open-loop controls. It is important to stress here that eq. (B.7) is not a form of the so-called Hamilton-

Jacobi-Bellman equation for the value function evaluated on the optimal control path of optimal control

theory (e.g., eq. 3.7 Dockner et al., 2000, chapter 3.2, or eq. 5.10 in Liberzon, 2011 or eq. 3.16 in Weber,

2011), even though it has a similar structure. This is because (i) the reproductive value v is here defined

to hold for any resident control schedule u (and is not evaluated at optimality like the value function),

and (ii) the value function for our model cannot be computed from the reproductive value of the focal

individual, but needs to be computed from the invasion fitness of the mutant, which is the value function

in an evolutionary model (invasion fitness is given by eq. A.5 when the mutant becomes rare or eq. 38 in

Day and Taylor, 2000, but in the latter case only open-loop traits were allowed).

B.1.2 Dynamic equation for shadow value (gradient of reproductive value)

Recall that the controls u(t) = d(t,x) are functions of x. We now derive the dynamic equation for the

shadow value (gradient of reproductive values), which will be useful in later proofs. Taking the gradient

of eq. (B.7) with respect to x(t), we have

−∇vt(t,x(t);u) = ∇f(u(t),x(t)) +∇ [∇v(t,x(t);u) · g(u(t),x(t))] (B.8)

with f.c. ∇v(tf ,x(tf);u) = ∇Φ(x(tf)), where

∇f(u(t),x(t)) =(
∂f(d(t,x•(t)),x•(t))

∂x•(t)
,
∂f(d(t,x•(t)),x•(t))

∂x◦(t)
,
∂f(d(t,x•(t)),x•(t))

∂x(t)

)
x•(t)=x(t)

d(t,x•(t))=d(t,x(t))=u(t)

,
(B.9)

∇Φ(x(tf)) =

(
∂Φ(x•(tf))

∂x•(tf)
,
∂Φ(x•(tf))

∂x◦(tf)
,
∂Φ(x•(tf))

∂x(tf)

)
x•(tf )=x(tf )

, (B.10)

are (column) vectors. Bringing all the terms to the same side and using the chain in rule to expand

∇ [∇v(t,x(t);u) · g(u(t),x(t))], we obtain

∇vt(t,x(t);u) +∇f(u(t),x(t)) + H
(
v(t,x(t);u)

)
g(u(t),x(t))

+∇g(u(t),x(t))∇v(t,x(t);u) = 0, with f.c. ∇v(tf ,x(tf);u) = ∇Φ(x(tf)),

(B.11)

where ᵀ is the transpose operator, 0 = (0, 0, 0) is a zero (column) vector and

H
(
v(t,x(t);u)

)
=


∂2v(t,x•(t);u)
∂(x•(t))2

∂2v(t,x•(t);u)
∂x◦(t)∂x•(t)

∂2v(t,x•(t);u)
∂x(t)∂x•(t)

∂2v(t,x•(t);u)
∂x•(t)∂x◦(t)

∂2v(t,x•(t);u)
∂(x◦(t))2

∂2v(t,x•(t);u)
∂x(t)∂x◦(t)

∂2v(t,x•(t);u)
∂x•(t)∂x(t)

∂2v(t,x•(t);u)
∂x◦(t)∂x(t)

∂2v(t,x•(t);u)
∂(x(t))2


x•(t)=x(t)

, (B.12)
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is the Hessian matrix of the reproductive value function and

∇g(u(t),x(t))

=


∂g(d(t,x•(t)),x•(t))

∂x•(t)
∂g(d(t,x◦(t)),x◦(t))

∂x•(t)
∂g(d(t,x(t)),x(t))

∂x•(t)

∂g(d(t,x•(t)),x•(t))
∂x◦(t)

∂g(d(t,x◦(t)),x◦(t))
∂x◦(t)

∂g(d(t,x(t)),x(t))
∂x◦(t)

∂g(d(t,x•(t)),x•(t))
∂x(t)

∂g(d(t,x◦(t)),x◦(t))
∂x(t)

∂g(d(t,x(t)),x(t))
∂x(t)


x•(t)=x(t)

d(t,x•(t))=d(t,x◦(t))
=d(t,x(t))=u(t)

(B.13)

is a gradient of vector g.

Now total differentiating ∇v(t,x(t);u) with respect to time and using the property that u is fixed

along a path, we get

d∇v(t,x(t);u)

dt
= ∇vt(t,x(t);u) + H

(
v(t,x(t);u)

)
g(u(t),x(t)), (B.14)

which, on substitution into eq. (B.11), and noting that the order of taking partial derivatives can be

changed yields

− d∇v(t,x(t);u)

dt
= ∇f(u(t),x(t)) +∇g(u(t),x(t))∇v(t,x(t);u)

with f.c. ∇v(tf ,x(tf);u) = ∇Φ(x(tf)),

(B.15)

which will be used in the next section.

B.2 First-order condition and the Hamiltonian

We now turn to deriving the (point-wise) direct effect −c(t, u(t)) and the indirect effect b(t, u(t)) , given

by eqs. (23) and (24), as well as the point-wise selection gradient for closed-loop traits, eq. (26) and the

dynamic equation for the shadow value, eq. (32).

In Appendix A we showed that we can express the direct effect (A.26) and indirect effect (A.27) as

Gâteaux derivatives

−cη(u) = ε
δηw(u•, u◦, u)

δηu•

∣∣∣∣
u•=u

,

bη(u) = ε
δηw(u•, u◦, u)

δηu◦

∣∣∣∣
u•=u

(B.16)

In order to compute these Gâteaux derivatives we first re-write the fitness function w(u•, u◦, u) by aug-

menting to it a zero quantity containing of adjoint system of constraints (see e.g. Liberzon, 2011, p. 97)

and we then we show how to decompose the direct effect −cη(u) and indirect effect bη(u) into point-wise

direct effects −c(t, u(t)) and point-wise indirect effects b(t, u(t)), respectively, which allows to characterise
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the point-wise first-order condition (26).

B.2.1 Augmenting the fitness function with an adjoint system of constraints

Recall the individual fitness function eq. (13) of the main text and let us append to it a zero quantity

w(u•, u◦, u) =

∫
T
f(u•(t),x•(t))dt+ Φ(x•(tf))

=

∫
T
f(u•(t),x•(t))dt+ Φ(x•(tf)) +

∫
T

[λ(t,x(t);u) · (g(u•(t),x•(t))− ẋ•(t))] dt︸ ︷︷ ︸
=0

,
(B.17)

where recalling (eq. 21 of the main text) that λ(t,x(t);u) = ∇v(t,x(t);u) is the shadow value (gradient

of reproductive value function). We can integrate the last term in eq. (B.17) by parts

−
∫
T
λ(t,x(t);u) · ẋ•(t)dt

=

∫
T
λ̇(t,x(t);u) · x•(t)dt− λ(tf ,x(tf);u) · x•(tf) + λ(0,x(0);u) · x•(0),

(B.18)

and hence the eq. (B.17) becomes

w(u•, u◦, u) =

∫
T

(
f(u•(t),x•(t)) + λ(t,x(t);u) · g(u•(t),x•(t)) + λ̇(t,x(t);u) · x•(t)

)
dt

− λ(tf ,x(tf);u) · x•(tf) + λ(0,x(0);u) · x•(0) + Φ(x•(tf)).

(B.19)

B.2.2 Computing the Gâteaux derivatives of the fitness function

We now substitute eq. (B.19) into eq. (B.16) and use eq. (A.2), which yields that we can express the

Gâteaux derivatives of the fitness function in terms of point-wise variations as follows

− cη(u) = ε
δηw(u•, u◦, u)

δηu•

∣∣∣∣
u•=u

=

ε

∫
T

{[
∇f(u(t),x(t)) +∇g(u(t),x(t))λ(t,x(t);u) + λ̇(t,x(t);u)

]
·xu•(t)η(t)

+
[
fu•(u•(t),x(t)) + λ(t,x(t);u) · gu•(u•(t),x(t))

]
η(t)

}
dt

+
[
Φx(x(tf))− λ(tf ,x(tf);u)

]
· xu•(tf)η(tf)

(B.20)

43

.CC-BY 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted September 25, 2020. . https://doi.org/10.1101/2020.09.23.310532doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.23.310532
http://creativecommons.org/licenses/by/4.0/


and

− bη(u) = ε
δηw(u•, u◦, u)

δηu◦

∣∣∣∣
u•=u

=

ε

∫
T

{[
∇f(u(t),x(t)) +∇g(u(t),x(t))λ(t,x(t);u) + λ̇(t,x(t);u)

]
·xu•(t)η(t)

+
[
fu◦(u•(t),x(t)) + λ(t,x(t);u) · gu◦(u•(t),x(t))

]
η(t)

}
dt

+
[
Φx(x(tf))− λ(tf ,x(tf);u)

]
· xu◦(tf)η(tf)

(B.21)

where the term λ(0,x(0);u) · x•(0) has disappeared under differentiation because it is a given initial

condition, and where all the derivatives under the integrals are evaluated at u•(t) = u(t), x•(t) = x(t)

and

xu•(t) =

(
∂x•(t)

∂u•(t)
,
∂x◦(t)

∂u•(t)
, 0

)
x•(t)=x(t)

(B.22)

xu◦(t) =

(
∂x•(t)

∂u◦(t)
,
∂x◦(t)

∂u◦(t)
, 0

)
x•(t)=x(t)

(B.23)

are point variations of x(t) caused by variations in u•(t) and u◦(t), respectively.

Finally, by definition of the shadow value and from eqs. (B.14) and (B.15) we have

−λ̇(t,x(t);u) = ∇f(u(t),x(t)) +∇g(u(t),x(t))λ(t,x(t);u) (B.24)

with f.c. λ(tf ,x(tf);u) = ∇Φ(x(tf)). Hence, it follows from eqs. (B.14) and (B.15) that the terms (in

brackets) multiplying xu•(t) and xu◦(t) are zero. Therefore, we can write

− cη(u) = ε
δηw(u•, u◦, u)

δηu•

∣∣∣∣
u•=u

= ε

∫
T

−c(t, u)η(t)dt (B.25)

and

bη(u) = ε
δηw(u•, u◦, u)

δηu◦

∣∣∣∣
u•=u

= ε

∫
T

b(t, u)η(t)dt, (B.26)
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where

− c(t, u) =
∂w(u•, u◦, u)

∂u•(t))

∣∣∣∣
u•(t)=u(t)

= fu•(u•(t),x•(t))|x•(t)=x(t)
u•(t)=u(t)

+ λ(t,x(t);u) · gu•(u•(t),x•(t))|x•(t)=x(t)
u•(t)=u(t)

=
∂H
(
u•(t),x(t),λ(t,x(t);u)

)
∂u•(t)

∣∣∣∣∣∣
u•(t)=u(t)

(B.27)

and

b(t, u) =
∂w(u•, u◦, u)

∂u•(t))

∣∣∣∣
u•=u

= fu◦(u•(t),x•(t))|x•(t)=x(t)
u•(t)=u(t)

+ λ(t,x(t);u) · gu◦(u•(t),x•(t))|x•(t)=x(t)
u•(t)=u(t)

=
∂H
(
u•(t),x(t),λ(t,x(t);u)

)
∂u◦(t)

∣∣∣∣∣∣
u•(t)=u(t)

(B.28)

are point variations of w(u•, u◦, u) caused by u•(t) and u◦(t) (recall eq. A.2) and with this we have derived

eqs. (23) and (24) of the main text.

Substituting eqs. (B.27) and (B.28) into eq. (7) of the main text (substituting u∗ = d∗(x∗), where

d∗(x∗) = (d∗(t, x∗(t)), d∗(t, x∗(t)), d∗(t, x∗(t))) and x∗ = (x∗, x∗, x∗)) and using the definition of the

Hamiltonian

H
(
u•(t),x•(t),λ(t,x(t);u)

)
= f(u•(t),x•(t)) + g(u•(t),x•(t)) · λ(t,x(t);u) (B.29)

(eq. 25). This yields

s(t, u∗) =
∂H
(
u•(t),x

∗(t),λ∗(t,x∗(t))
)

∂u•(t)

∣∣∣∣∣∣
u•(t)=u∗(t)

+r(u∗)
∂H
(
u•(t),x

∗(t),λ∗(t,x∗(t))
)

∂u◦(t)

∣∣∣∣∣∣
u•(t)=u∗(t)

,

(B.30)

where λ∗(t,x∗(t)) = ∇v(t,x∗(t);u∗) and the evaluation can be expressed as u∗(t) = d∗(t,x∗(t)) for

closed-loop traits and as u∗(t) = d∗(t) for open-loop traits. Now recall that the dynamics of x∗(t) can

be obtained from eq. (16) when evaluating it along u∗, which yields

ẋ∗(t) = g(u∗(t),x∗(t)), x∗(0) = xinit. (B.31)

The dynamics of λ∗(t,x∗(t)) = ∇v(t,x∗(t);u∗) can be obtained from eq. (B.15) and taking into account
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the Hamiltonian function and evaluating along u∗ we obtain for closed-loop control u∗ = d∗(x∗) path

− λ̇∗(t,x∗(t)) = ∇H
(
d(t,x(t)),x(t),λ∗(t,x∗(t))

)∣∣∣ x(t)=x∗(t)
d(t,x(t))=d∗(t,x∗(t))

,

with f.c. λ∗(tf ,x
∗(tf)) = ∇Φ(x(tf))|x(tf )=x∗(tf )

(B.32)

and open-loop control u∗ = d∗ path

− λ̇∗(t,x∗(t)) = ∇H
(
d∗(t),x(t),λ∗(t,x∗(t))

)∣∣∣
x(t)=x∗(t)

,

with f.c. λ∗(tf ,x
∗(tf)) = ∇Φ(x(tf))|x(tf )=x∗(tf )

(B.33)

In conclusion, we have derived the point-wise direct and indirect effects, given by eqs. (23) and (24)

of the main text (given here by eqs. B.27 and B.28, respectively). In addition we derived the point-wise

selection gradient eq. (26) of the main text (here, eq. B.30) along with the dynamic eqs. (32) and (39) on

the shadow value function λ∗(t,x∗(t)) (here, eqs. B.32 and B.33) for closed-loop controls and open-loop

controls, respectively. With this we have derived the first-order condition of uninvadability for closed-loop

and open-loop controls.

B.3 Shadow value dynamics and the state feedback

In this section we derive (34)–(33) of the main text, namely we show the components of the shadow

value dynamics and it depends on higher order derivatives of v∗(t,x∗(t)). To that end, it will turn out

to be useful to explicitly express the control in closed-loop form u(t) = d(t,x(t)), unless we are explicitly

evaluated at singular path u∗ = d∗(x∗). Substituting the Hamiltonian (B.29) into eq. (B.15) yields

− λ̇∗(t,x∗(t)) = ∇H
(
d(t,x(t)),x(t),λ∗(t,x∗(t))

)
| x(t)=x∗(t)
d(t,x(t))=d∗(t,x∗(t))

= ∇H
(
d∗(t,x∗(t)),x(t),λ(t,x∗(t))

)
|x(t)=x∗(t) +∇H

(
d(t,x(t)),x∗(t),λ∗(t,x∗(t))

)
|d(t,x(t))=d∗(t,x∗(t)),

(B.34)

where

∇H
(
d(t,x(t)),x(t),λ∗(t,x∗(t))

)
=∂H

(
d(t,x•(t)),x•(t),λ∗(t,x∗(t))

)
∂x•(t)

,
∂H
(
d(t,x•(t)),x•(t),λ∗(t,x∗(t))

)
∂x◦(t)

,
∂H
(
d(t,x•(t)),x•(t),λ∗(t,x∗(t))

)
∂x(t)

 ,

(B.35)
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∇H
(
d∗(t,x∗(t)),x(t),λ∗(t,x∗(t))

)
=∂H

(
d∗(t,x∗(t)),x•(t),λ∗(t,x∗(t))

)
∂x•(t)

,
∂H
(
d∗(t,x∗(t)),x•(t),λ∗(t,x∗(t))

)
∂x◦(t)

,
∂H
(
d∗(t,x∗(t)),x•(t),λ∗(t,x∗(t))

)
∂x(t)

 ,

(B.36)

∇H
(
d(t,x(t)),x∗(t),λ∗(t,x∗(t))

)
=∂H

(
d(t,x•(t)),x∗(t),λ∗(t,x∗(t))

)
∂x•(t)

,
∂H
(
d(t,x•(t)),x∗(t),λ∗(t,x∗(t))

)
∂x◦(t)

,
∂H
(
d(t,x•(t)),x∗(t),λ∗(t,x∗(t))

)
∂x(t)

 .

(B.37)

We can express the last gradient (B.37) as

∇H
(
d(t,x(t)),x∗(t),λ∗(t,x∗(t))

)
=
∂d(t,x(t))

∂x
Hu•

(
u•(t),x

∗(t),λ∗(t,x∗(t))
)
|u•(t)=d∗(t,x∗(t)),

(B.38)

where

∂d(t,x(t))

∂x
=


∂d(t,x•(t))
∂x•(t)

∂d(t,x◦(t))
∂x•(t)

∂d(t,x(t))
∂x•(t)

∂d(t,x•(t))
∂x◦(t)

∂d(t,x◦(t))
∂x◦(t)

∂d(t,x(t))
∂x◦(t)

∂d(t,x•(t))
∂x(t)

∂d(t,x◦(t))
∂x(t)

∂d(t,x(t))
∂x(t)


x•(t)=x(t)

d(t,x•(t))=d∗(t,x∗(t))

(B.39)

gives all the components of the feedback effect of state variables on trait expressions.

Lets now further explore the elements of a matrix (B.39). From eq. (17) it follows that ∂d(t,x(t))/∂x•(t) =

∂d(t,x(t))/∂x•(t) = 0. From eqs. (17) and (18) it also follows that

∂d(t,x◦(t))

∂x•(t)

∣∣∣∣
x•(t)=x(t)

=
1

N − 1

∂d(t,x◦(t))

∂xn(t)

∣∣∣∣
x•(t)=x(t)

=
1

N − 1

∂d(t,x•(t))

∂x◦(t)

∣∣∣∣
x•(t)=x(t)

,

∂d(t,x◦(t))

∂x◦(t)

∣∣∣∣
x•(t)=x(t)

=
∂d(t, (x◦(t), x(t), x(t)))

∂x◦(t)

∣∣∣∣
x•(t)=x(t)

+
N − 2

N − 1

∂d(t, (x(t), xn(t), x(t)))

∂xn(t)

∣∣∣∣
x•(t)=x(t)

=
∂d(t,x•(t))

∂x•(t)

∣∣∣∣
x•(t)=x(t)

+
N − 2

N − 1

∂d(t,x•(t))

∂x◦(t)

∣∣∣∣
x•(t)=x(t)

,

∂d(t,x◦(t))

∂x(t)

∣∣∣∣
x•(t)=x(t)

=
∂d(t,x•(t))

∂x(t)

∣∣∣∣
x•(t)=x(t)

(B.40)

Hence, we can express all the non-zero derivatives in matrix (B.39) as effects of the different actors

changing their state on the focal recipient trait expression. Recall the static characterisation (30) from
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the main text, which holds for interior solutions (when selection gradient (B.30) vanishes)

d∗(t,x∗(t)) = D(t,x∗(t),λ∗(t,x∗(t))). (B.41)

Thus, from eq. (B.41) it follows we can express all the derivations of closed-loop contols d in terms of

derivations of function D, i.e.

∂d(t,x•(t))

∂x•(t)

∣∣∣∣
x•(t)=x∗(t)

=
∂D(t,x•(t),λ(t,x•(t);u

∗))

∂x•(t)

∣∣∣∣
x•(t)=x∗(t)

,

∂d(t,x•(t))

∂x◦(t)

∣∣∣∣
x•(t)=x∗(t)

=
∂D(t,x•(t),λ(t,x•(t);u

∗))

∂x◦(t)

∣∣∣∣
x•(t)=x∗(t)

,

∂d(t,x•(t))

∂x(t)

∣∣∣∣
x•(t)=x∗(t)

=
∂D(t,x•(t),λ(t,x•(t);u

∗))

∂x(t)

∣∣∣∣
x•(t)=x∗(t)

,

(B.42)

Substituting eqs. (B.40) and (B.42) into eq. (B.39) yields

∂d(t,x(t))

∂x

∣∣∣∣
d(t,x(t))=d∗(t,x∗(t))

=
∂D(t,x•(t),λ(t,x•(t);u∗))

∂x•(t)
1

N−1
∂D(t,x•(t),λ(t,x•(t);u∗))

∂x•(t) 0

∂D(t,x•(t),λ(t,x•(t);u∗))
∂x◦(t)

∂D(t,x•(t),λ(t,x•(t);u∗))
∂x◦(t) + N−2

N−1
∂D(t,x•(t),λ(t,x•(t);u∗))

∂x◦(t) 0

∂D(t,x•(t),λ(t,x•(t);u∗))
∂x(t)

∂D(t,x•(t),λ(t,x•(t);u∗))
∂x(t)

∂D(t,x(t),λ(t,x(t);u∗))
∂x(t)

 .

(B.43)

where all the derivatives in the matrix are evaluated at x•(t) = x(t) = x∗(t). We can observe from

eq. (B.43) that that all the non-zero elements of matrix (B.43) depend on higher-order derivatives of

v∗(t,x∗(t)) and hence eq. (B.34) is not and ODE for λ(t,x∗(t)) = ∇v∗(t,x∗(t)).
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Figure 1: Static characterisation u∗(t) = D(t, x∗(t), λ∗c(t, x∗(t))) (eq. 49) of the candidate uninvadable
production effort as a function of resource x∗(t) in the group for fixed values of λ∗c(t, x∗(t)) = 0.002 and
for different values of relatedness between individuals in the group. Parameter values: N = 10, a = 1,
ceffort = 0.01. Note that characterisation holds for both open-loop and closed-loop controls.
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(a) Candidate uninvadable production effort u∗(t)
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(b) Candidate uninvadable resource level x∗(t)

Figure 2: Candidate uninvadable production effort (panel a) and resource level (panel b) for closed-loop
(CL) (solid lines) and open-loop (OL) traits (dashed lines) for different values of average relatedness r(u∗)
in the patch. Parameter values: N = 10, a = 1, ceffort = 0.01, T = 100. Note that if individuals in the
group are clones (r(u∗) = 1), the closed-loop and open-loop traits coincide.
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Figure 3: Shadow value λ∗c(t, x∗(t)) over time t for closed-loop (CL) and open-loop (OL) control and for
different values of relatedness between individuals in the group. Parameter values: N = 10, a = 1, ceffort =
0.01, T = 100. Note that characterisation holds for both open-loop and closed-loop characterisation of
the trait expression rule.
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(a) Group feedback effect: −c(t, u∗) + b(t, u∗)
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(b) Trait sensitivity: ∂d∗(t, x∗(t))/∂x∗(t)

Figure 4: Group feedback effect on focal’s fitness (panel a) and trait sensitivity (panel b) for closed-loop
(CL) control for different values of average relatedness r(u∗) in the group. Parameter values: N = 10,
a = 1, ceffort = 0.01, T = 100.
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