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Environmentally induced phenotypes have been proposed to initiate
and bias adaptive evolutionary change toward particular direc-
tions. The potential for this to happen depends in part on how well
plastic responses are aligned with the additive genetic variance and
covariance in traits. Usingmeta-analysis, we demonstrate that plastic
responses to novel environments tend to occur along phenotype
dimensions that harbor substantial amounts of additive genetic
variation. This suggests that selection for or against environmentally
induced phenotypes typically will be effective. One interpretation of
the alignment between the direction of plasticity and the main axis
of additive genetic variation is that developmental systems tend to
respond to environmental novelty as they do to genetic mutation.
This makes it challenging to distinguish if the direction of evolution
is biased by plasticity or genetic “constraint.” Our results therefore
highlight a need for new theoretical and empirical approaches to
address the role of plasticity in evolution.

phenotypic plasticity | phenotypic accommodation | cryptic genetic
variation | evolvability

Populations that encounter novel environments must often
adapt to persist. The rate and direction of adaptive change

depends on the phenotypic and genetic variation that is exposed
to natural selection. The “plasticity-first” hypothesis proposes
that environmentally induced phenotypic variation initiates and
directs adaptive genetic divergence along particular trajectories
(1, 2). This has been demonstrated experimentally (3, 4), and the
observation that plastic responses sometimes are aligned with
population divergence in morphology, physiology, and behavior
makes it a plausible explanation for adaptive divergence in the
wild (5–10). However, whether or not evolutionary divergence
generally is disposed to follow the direction of environmentally
induced phenotypes is contested and poorly understood (reviewed
in refs. 2 and 11–14).
Adaptation following exposure to novel or stressful environ-

ments is hypothesized to involve the refinement, exaggeration, or
elimination of ancestrally plastic responses through quantitative
genetic change. This is possible only when there is heritable
variation along the dimensions of the phenotype that are plastic.
In quantitative genetics, this variation is described in terms of
additive genetic variance and covariance between traits, com-
monly referred to as the G matrix. The predicted change in
phenotype under directional selection on standing genetic vari-
ation has been considered a quantitative genetic estimate of
evolvability (15). Quantitative genetic evolvability is highest in
the direction of phenotypic space with the most additive genetic
variance. All else being equal, quantitative genetic evolvability of
environmentally induced phenotypes will therefore be high when
the direction of phenotypic plasticity is well aligned with the axis
of maximum additive genetic variation in novel environments.
We refer to this alignment as the short-term evolutionary po-
tential (ref. 1, p. 142) of environmentally induced phenotypes or
plastic responses.

There are reasons to believe that the direction of plasticity and
the main axis of genetic variation can be aligned. Both genetic
and environmental perturbation produce their phenotypic effects
through development, and phenotypes that are induced by mu-
tation can often also be induced by environmental factors, and
vice versa (1). The G matrix is partly a result of the distribution
of mutational effects (in addition to, e.g., selective loss of vari-
ation) and will therefore tend to reflect how traits are coregu-
lated in development (16). Indeed, models demonstrate that
correlational selection can produce developmental interactions
that channel the phenotypic effects of mutation along dimen-
sions of trait combinations that were favored in the past (17–21).
Since phenotypic accommodation involves the coordinated ad-
justment of traits that need to function together (1), it too relies
on developmental interactions that likely are products of corre-
lational selection. Selecting for environmentally induced phe-
notypes may therefore change developmental regulation of
phenotypes such that it increases the additive genetic variation
along the dimensions of the phenotype that are plastic (22). If so,
it implies that selection in the direction or opposition of plastic
responses to novel environments will typically be effective, which
may predispose the population to evolve in the short term along
the phenotype dimensions that are plastic.

Significance

Theory suggests that populations can evolve by genetic modifi-
cation of environmentally induced responses. We demonstrate
that such plastic responses to novel environments tend to occur
along trait dimensions that have high genetic variation. This
suggests that selection for or against environmentally induced
phenotypes typically will be effective. That organisms respond to
environmental novelty and genetic variation in similar ways can
be explained by how development is wired. This makes it chal-
lenging to distinguish if plasticity or genetic constraints shape
evolutionary responses following environmental change.
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Here we use a meta-analysis to test if plastic responses are
biased toward trait dimensions that harbor high levels of additive
genetic variation. Plastic responses can be described by a “plas-
ticity vector” that quantifies the change in mean phenotypic trait
values between two environments, expressed as the distance
between the multivariate phenotype means. We chose to focus
on environmental conditions to which the population is not (yet)
adapted, since this is the most contentious scenario for plasticity-
driven evolution. The potential for adaptive divergence along the
trait dimensions that are environmentally responsive will be high
when (i) genetic variation underlying phenotypic variance and
covariance (the Pmatrix) increases in the novel environment and
(ii) the plastic response (“plasticity vector”) falls along the main
axis of G, while the orientation of G stays the same in the novel
environment, or (iii) the plastic response does not fall along the
main axis of G, but the orientation of G rotates in the novel
environment such that it aligns with the direction of plasticity
(Fig. 1). Our meta-analysis tests how common these scenarios are.

Results
We conducted a systematic search of the literature (see Materials
and Methods for more detail) and identified 21 studies across
19 species where G and P matrices could be compared (i.e.,
32 environmental comparisons of G and P with n = 64 effects
total). We also identified 32 studies (n = 98 effects) across
30 species that could be used to derive estimates of the quanti-
tative genetic evolvability in the direction of plasticity. This
larger number of studies could be included because we only
needed a vector of trait means and G matrices to generate effect
sizes (see Materials and Methods for more detail). Data were
taxonomically biased toward insects with a total of 56 effect sizes,
whereas fish and plants had 18 and 16 effect sizes, respectively.
There were also G matrices estimated for one snail and one frog
species (having six and two effects, respectively). Matrix size

varied from 2 to 11 traits (mean = 4.16, n = 98), and the novel
environments were imposed under conditions that were either
“stressful” (resulting in decreased survival) or “nonstressful,”
and using different breeding designs. Given these factors can
affect G (23–25) we controlled for them in our analysis (see
below and Materials and Methods for more details).

Changes in Additive Genetic Variance in Response to Novel Environments.
We first explored if novel environmental conditions result in an
increase in additive genetic variation (i.e., “cryptic genetic varia-
tion”; refs. 23 and 24) by generating effect sizes that contrasted the
structure of G between nonnovel and novel environments. Non-
novel environments were those that the populations were consid-
ered to be well adapted to, or in which populations had been reared
for at least five generations or more, whereas novel environments
were those that were manipulated outside normal rearing condi-
tions. We quantified changes in additive genetic variation by cal-
culating a number of effect sizes describing changes in G across
environments (see Materials and Methods for more detail). Here we
focus on those describing the change in total standardized genetic
variation (SDV) and the change in the proportion of additive ge-
netic variation along the major axis of G (i.e., gmax) ðPVmaxÞ as these
capture how heritable variation may be released in response to
novel conditions. For some studies, novel environments were con-
sidered stressful and/or led to a decrease in survival (see Materials
and Methods). Using a metaregression model we therefore tested
whether the observed changes in G depended on whether the novel
environment was “stressful” or “nonstressful.” We also tested
whether the type of breeding design (“full-sib” vs. “half-sib”) and the
number of traits impacted the magnitude of change.
Across studies, there was little evidence for a release of cryptic

genetic variation (overall meta-analytic mean from intercept-only
models: SDV: = −0.12, 95% CI = −0.47 to 0.23; PVmax = −0.06,
95% CI = −0.68 to 0.55). However, there was a high amount of
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Fig. 1. Alternative scenarios describing differences in the short-term evolutionary potential of environmentally induced phenotypes. Ellipses depict multi-
variate phenotypic (P, light color) and genotypic (G, dark color) variation for two traits (Trait 1 and Trait 2). Arrows connecting the centroids of nonnovel
(green) and novel (orange) environments are the plasticity vectors that describe the change in multivariate mean phenotype (P) between two environments.
(A) Plastic responses to novel environments can be said to have high evolutionary potential if there is ample genetic variation underlying P and the vector of
plastic response is well-aligned with the major axis of genetic variation in the novel environment (i.e., dark orange ellipse). (B) Plastic phenotypic responses
can be said to have low evolutionary potential if there is limited genetic variation underlying P and the vector of plastic response does not align with the
major axis of genetic variation in the novel environment.
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between-study variance in effect sizes (proportion of between-
study variance ½I2st�: SDV: = 0.84; PVmax = 0.73). When control-
ling for the number of traits, breeding design, and whether or not
the environmental manipulation was stressful there was evidence
that variance can increase in novel environments. Specifically, trait
variance significantly increased in novel environments for studies
using full-sib breeding designs [SDV: overall mean estimate (logit
scale) = 0.62, 95% CI = 0.086 to 1.159; Fig. 2A and see SI Ap-
pendix, Table S2], with ∼61% of the total additive genetic varia-
tion falling along gmax [PVmax: overall mean estimate (logit scale) =
0.465, 95% CI = −0.5 to 1.43; Fig. 2B and see SI Appendix, Table
S2]. However, G matrices estimated using half-sib breeding de-
signs actually exhibited a lower total additive genetic variance in
novel environments and a lower proportion of additive genetic
variance along gmax compared with studies using full-sib breeding
designs (by ∼35%; Fig. 2 A and B). Whether the novel environ-
ment was stressful or not did not impact the change in additive
genetic variance (Fig. 2 A and B).

Evaluating the Short-Term Evolutionary Potential of Environmentally
Induced Phenotypes. The potential for environmentally induced
phenotypes to bias evolutionary divergence depends on the de-
gree to which plastic responses fall along dimensions of the
phenotype that harbor heritable variation (Fig. 1A). We derived
new effect size measures inspired by Hansen and Houle (15) to
test this prediction. We first quantified how much additive ge-
netic variation fell in the direction of the plastic response (de-
fined as πe) and then derived a measure of quantitative genetic
evolvability (sensu ref. 15), defined as the alignment between the
plastic response vector and main axes of additive genetic varia-
tion ðgmaxÞ, in both the nonnovel and novel environment
(denoted as θe; see Material and Methods for details). We also
explored the relationship between G and P within and across
environments and present these results in SI Appendix, Tables
S2 and S3. We explicitly tested whether there were significant
changes in how the plastic response vector aligned with additive
genetic variation when a population moves from a nonnovel to

novel environment using a metaregression model contrasting
environment type (nonnovel vs. novel), after controlling for trait
number and breeding design.
On average, there was substantial additive genetic variance in

traits along the plasticity vector in both the nonnovel and novel
environments (average variance of 69.14% in the nonnovel and
71.06% in the novel; Fig. 3A and SI Appendix, Table S3). Plastic
responses fell between 32 and 42° from the major axis of additive
genetic variation (i.e., gmaxx; Fig. 3B and see SI Appendix, Table
S3). This alignment between the plasticity vector and gmax was
significantly greater than expected under random alignment (SI
Appendix, Table S1).
However, the angle between the plastic response vector and

gmax (i.e., θe) for the nonnovel and novel environments varied
substantially across studies (between-study heterogeneity; I2st =
0.80; Fig. 4). These findings suggest that results depend on the
types of traits measured, the type of environmental exposure,
and/or past selective history; disentangling these sources of vari-
ation, however, is not possible with the existing data. In some
studies, the rotation of the G matrix made the plasticity vector
align better in the novel environment than in the nonnovel envi-
ronment, whereas the opposite occurred in other studies (Fig. 5).

Discussion
West-Eberhard suggested that “genes are followers, not leaders,
in adaptive evolution” (1). Evolutionary exaggeration or reduc-
tion of environmentally induced phenotypes requires heritable
variation along the dimensions of the phenotype that are plastic.
Our results demonstrate that the alignment between plastic re-
sponses to a novel environment and the main axis of genetic
variation is greater than expected by chance (Fig. 4 and SI Appendix,
Table S1). This may reflect developmental systems responding
similarly to environmental and genetic inputs. Such developmental
biases should facilitate adaptive divergence in response to selection
on environmentally induced phenotypes, making plasticity appear to
take the lead in adaptive evolution (1).
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Fig. 2. Mean effect sizes comparing the change in genetic variation across environments for studies where novel environmental manipulations were stressful
(Stressful/Nonstressful) and with different breeding designs (Half-sib vs. Full-sib). (A) Total SDV between G matrices across environments. (B) Change in the
proportion of variation along gmax (PVmax) between G matrices across environments. Note that in all cases effect sizes are means for a study for an average
number of traits and are independent of other factors (i.e., marginalized means) in the model (see Materials and Methods).
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It is not fully understood why genetic and environmental
perturbations should have similar phenotypic effects. However,
theoretical models have demonstrated that evolved regulatory
systems tend to produce developmental biases that reflect cor-
relational selection in the past (reviewed in refs. 20 and 26). For
example, multivariate selection can predispose developmental
systems to respond plastically in the direction of trait covariance
(22). Similar biases in phenotypes can occur in response to muta-
tion (e.g., ref. 21). The matrix of mutational variance and co-
variance (the M matrix; refs. 27 and 28) is a more appropriate
estimate of developmental bias than G since the latter also reflects
the effects of selection and drift. Nevertheless, G is often assumed
to represent how phenotypes vary in response to genetic variation
(e.g., refs. 29 and 30). In other words, since both the direction of
plasticity and the G matrix capture how trait development is reg-
ulated, plastic responses and the major axis of additive genetic
variation may commonly be aligned. Our results suggest that this
may indeed be the case for many traits, even for plastic responses to
environments to which organisms are not adapted.
Exposure to a novel or stressful environment may also be as-

sociated with a general increase in additive genetic variation (23).
The release of “cryptic genetic variation” is sometimes considered
central to plasticity-first models of evolution (2, 31). While additive
genetic variation generally increased in novel environments, studies
using half-sib breeding designs actually supported a decrease in
additive genetic variance. This difference between breeding designs
suggests that maternal or paternal effects contribute significantly to
the phenotypic variation that is expressed in novel environments,
and that the variance contributed by parental effects may result in
better alignment with the plastic response. This result provides a
more nuanced understanding of previous work; without effectively
disentangling environmental and genetic effects studies may over-
estimate how much genetic variation is “cryptic” (32, 33).
While these results suggest substantial scope for population

divergence in the direction of plasticity, the impact of plasticity
on evolutionary trajectories depends on the strength and form of

selection operating on the phenotype distribution in novel en-
vironments—information that is often missing. For example, the
studies in our meta-analysis rarely estimated selection on phe-
notypes in the novel environment (this also means we were un-
able to account for any selection that may have occurred due to
mortality). This is not surprising given that estimating selection
demands additional or more complex experiments. To date, only
one study appears to have explicitly addressed the alignment be-
tween gmax, plasticity, and selection (34). Lind et al. (34) showed
that, in water fleas, adaptive plasticity in response to fish predator
cues was well-aligned with gmax and the response to survival se-
lection; however, the same was not true in response to midge
predatory cues. It is unclear if this difference is related to the
strength of past selection, but the water flea clones were consid-
ered to be well-adapted to both predator regimes (which is why
the study was not included in our meta-analysis).
That evolutionary responses are not easily predicted on the

basis of either selection or variability is also evident by a com-
pilation of 16 long-term study populations, which showed that, as
environments change, the relationship between heritable varia-
tion in single traits (i.e., h2) and selection is weak (35). Indeed,
some of the studies in the present analysis found that the di-
rection of plasticity and standing genetic variation were poorly
aligned. On the basis of the theoretical models described above,
it may appear reasonable to conclude that such instances of poor
alignment simply reflect that individuals fail to successfully ac-
commodate to novel conditions. However, this interpretation is
complicated not the least by the fact that G also reflects selective
removal of genetic variation (36). This means that most additive
genetic variance detected by the studies in this meta-analysis
could be selectively neutral in the ancestral environment. If so,
the alignment between additive genetic variance and the direction
of plasticity can be interpreted as if plasticity is biased toward
dimensions of the phenotype that have been weakly, rather than
strongly, selected in the past. This ambiguity in the interpretation
of an alignment between plastic responses and G calls for
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theoretical and empirical studies that can demonstrate how
developmental evolution shapes plasticity and standing genetic
variation, the latter through phenotypic effects of mutation and
selective removal of phenotypes.
Our findings have important implications for testing the

plasticity-first hypothesis. Such tests are often done by compar-
ing ancestral-descendent populations (2, 5, 6, 19, 37–39). Typi-
cally, studies identify a set of traits that have diverged between
the populations and establish whether ancestral populations
show plasticity in the direction of descendent populations for
those traits. However, while the alignment between plastic re-
sponses and the major axis of genetic variation make plasticity-
led divergence more likely, it also makes it challenging to dis-
tinguish signatures of plasticity-led evolution from evolutionary
divergence biased by the phenotypic effects of genetic mutation
(i.e., “genetic constraints”; refs. 29 and 30). More generally,
quantitative genetic estimates are likely to provide limited insights
into more long-term evolution (40, 41). Distinguishing the distinct
empirical traces of environmentally and genetically induced de-
velopmental biases in evolution will thus require identification of
appropriate “null” models (38). Ancestral-descendant compari-
sons in natural populations combined with theoretical modeling
and experimental evolution studies will likely be necessary to as-
sess the role of plasticity in adaptive diversification.

Materials and Methods
Literature Searches and Data Collection. We did two literature searches for
studies containing either (i) ‘G matri*’ AND ‘P matri*’ AND ‘environ*’ or (ii)
‘genetic covariance’ AND ‘phenotyp* covariance’ AND ‘environ*’ in the title,
abstract or keywords to find studies that estimated G and P matrices in
multiple environments. In both searches we used Web of Science and Scopus
(search date October 9, 2017), given that different search engines can yield
different results (42). We restricted our subject areas to biology, plant sci-

ences, evolutionary biology, ecology, developmental biology, and agricul-
ture. In addition, we extracted P and G correlation/covariance matrices from
primary studies collated by previous meta-analyses exploring the environ-
mental sensitivity of G (33, 43) and a meta-analysis compiling environmental
effects on additive genetic variance (32).

To be included in our meta-analysis, the primary study had to (i) conduct a
quantitative genetic breeding design in two or more environments, where
one environment was considered representative for the population or spe-
cies (i.e., nonnovel), and one or more environments were novel, (ii) measure
two or more phenotypic traits, and (iii) present G and P correlation/co-
variance matrices for these traits or G along with trait means in both envi-
ronments. We defined a novel environment as one where the source
population had not been experienced in the recent past (more than five
generations) or where the authors had clearly stated the novelty of the
environment within the paper. We further classified novel environments as
stressful if (i) authors clearly stated that the environment was stressful and/
or (ii) a decreased survival in the novel environment was evident. We ac-
knowledge that novel environments not deemed stressful by authors or
where mortality data were not provided may also be considered stressful in
many cases, but the distinction is nevertheless potentially important since
selective mortality can influence estimates of genetic and phenotypic vari-
ation. Relevant studies deemed to meet the above criteria based on title and
abstracts were screened by two of the authors (D.W.A.N. and R.R.). In some
studies, only correlation matrices were provided. These studies were in-
cluded if we could obtain additive genetic variance estimates for the set of
traits so that correlation matrices could be converted to covariance matrices
(necessary for generating effect sizes, see below). In instances where only
part of the necessary data were available (e.g., only G and not P, missing
sample sizes, no variance estimates, etc.) we estimated G and P from raw
data if they were deposited from the authors in repositories or contacted
authors directly for the relevant information. If this information could not
be obtained we excluded the study, or in some cases the trait, from our
analysis. See SI Appendix, Fig. S1 for a full PRISMA diagram. All raw matrix
data extracted from studies (44–75), code, and analyses can be found at
https://osf.io/fz7sr/.

−5 0 5 10 15

−5

0

5

10

15

e  Non−Novel

e
 N

ov
el

505−

−5

0

5

e  Non−Novel

e
 N

ov
el

HighLow

Low

High

Well
Aligned

Well
Aligned

Poorly
Aligned

Poorly
Aligned

BA

Fig. 4. (A) The total amount of genetic variation along the plastic response vector as a proportion of the maximum amount of variation in any direction, πe.
Smaller values on the axes (i.e., negative numbers) correspond to situations where genetic variation along the plasticity vector is low (“Low” label) whereas
larger positive values correspond to situations where genetic variation along the plasticity vector is high (“High” label) for the nonnovel (green text) and
novel (orange text) environments. (B) The angle between the plastic response vector and gmax ðθeÞ in novel and nonnovel environments across all studies.
Labels correspond to values on the axes where the plasticity vector does not align with the major axis of genetic variation, gmax, (Poorly Aligned) or where
gmax aligns with the plasticity vector (Well Aligned) in both the nonnovel (green text) and novel (orange text) environments. Axes are on the transformed
scale to facilitate comparisons with analyses. Large negative values (e.g., −8) indicate that the plastic response vector and gmax is fully aligned (i.e., ∼0°),
whereas large positive values (e.g., 8) indicate that the plastic response vector and gmaxis not aligned (i.e., ∼90°). Values of 0 indicate that the plastic response
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Moderator (Predictor) Variables. We collected a number of moderator vari-
ables which we a priori expected to explain variation in effect sizes. These
included the number of traits quantified (i.e., total size of the G matrix),
stressfulness of environment, and the study design used to estimate G ma-
trices (i.e., half-sib or full-sib) which distinguished narrow-sense and broad-
sense estimates of additive genetic variation, respectively. For meta-analyses
involving comparison of G across environments, we also categorized effect
sizes as having come from studies where the novel environment was con-
sidered stressful (i.e., stressful vs. nonstressful) and included this in the rel-
evant analyses. However, it is important to note that our main aim is not to
isolate specific environmental predictors of variation in effect size but to
assess the extent to which the direction of plasticity and the main axis of
additive genetic variance is aligned for populations exposed to a novel
environment.

Matrix-Based Effect Sizes and Sampling Variance. We were specifically in-
terested in comparing G and P matrices within and across nonnovel and
novel environments and determining how stressfulness of the novel envi-
ronment, trait number, and study design impacted the magnitude of
changes in matrices. In addition, we were also interested in the degree to
which plastic responses (i.e., the plasticity vectors) align with genetic varia-
tion (G) in nonnovel and novel environments. These questions require effect
size estimates that can be used to compare various aspects of matrices and
their alignments (details on effect size measures used are discussed below).

Estimation of G and P occurs with varying levels of precision (76), and any
comparisons both within and between environments should attempt to
account for the effects of sampling variance to avoid potentially erroneous
conclusions.

We took a flexible meta-analytic approach to effect size and sampling
variance estimation with matrices that allowed us to make use of traditional
multilevel meta-analytic models, whichmore effectively weight studies based
on their precision. Given that no single matrix effect size captures all aspects
of how matrices can change, we used a series of alternative effect size
measures (Fig. 6 A–D and described in detail below) and generated their
corresponding sampling variances for comparing G and P matrices within
and across environments (Fig. 6E). While we compared both G and P to
themselves across environments, we focus on comparisons of G only. This is
appropriate since G and P typically were very similar (see analysis code and
results at https://osf.io/fz7sr/). Before simulations, any nonpositive-definite
matrices (i.e., nonpositive eigen values) were “bent” to make them positive-
definite, and we excluded any matrix row and column entry where trait
genetic or phenotypic variances were zero or negative (33). This ensured
that all matrices used for simulations were positive definite.

Toestimate sampling variability formatrix-based effect sizes,weusedMonte
Carlo simulations where each positive definite covariance matrix ðΣÞ, along
with its respective sample size (number of families or sires for G and number of
individuals for P), was used to generate 5,000 simulated datasets of each trait
matrix from a paper. Sets of traits had the same covariance structure as the
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covariance matrix taken from each paper, but with random variation (simu-
lated) added. Traits were assumed to follow a multivariate normal distribution
[MVN∼ ð�x,ΣÞ, where �x is a vector of means (zeros for G and the mean of each
trait for P), with a length the size of the number of traits] (Fig. 6E). Matrix
effect sizes generated in this way have the benefit of propagating sampling
variance from different study designs across different environments and from
different matrices (i.e., G and P). Covariance matrices generated from the
5,000 simulated datasets were then used to calculate various matrix-based
statistics (described below). From these distributions, we took the average
of the distribution as the average effect for the study and the variance of
the distribution as the studies corresponding sampling variance.

To ensure that a few traits were not disproportionately impacting effect
sizes, we standardized the trait means along with P and G matrices. For
comparing quantitative genetic evolvabilities, as quantified by the additive
genetic variances within and between populations, these data should be
standardized by the mean (15, 77). Since we were also interested in the plastic
response, which is measured as the change in trait means, we cannot simply
divide by the trait means for each study within each environment. We there-
fore first calculated the average of the trait means within each study (μ) as

μ=
�xNN + �xNov

2
,

where xNN is the vector containing the mean phenotypic trait values in the
nonnovel environment (i.e., NN) and �xNov is the vector of mean phenotypic
trait values in the novel environment (i.e., Nov). Next, we standardized
means ð�xμÞ and covariance matrices ðΣμÞ as

�xμ ≡
�x
μ

Σμ ≡Σ⊘
�
μμ’
�
,

where �x is the vector with means for a given study and environment, and Σ is
a covariance matrix (either the G or the P matrix). ⊘ denotes an elementwise
division. Below we describe in detail how we calculated different matrix-based
effect sizes using the standardized means and covariance matrices, but to
simplify notation we drop the subscript μ in the remainder of the text.
Comparing changes in standardized variance. We calculated the change in the
total additive genetic variation of the multivariate phenotype (Fig. 6A). The
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total amount of variation was first calculated for each matrix as the sum of
all diagonal elements of Σ (i.e., the trace of the covariance matrix). We then
calculated the standardized difference in total variance between the non-
novel and novel G matrices ðSDVGÞ as

SDV = 2
trðΣNovÞ –tr ðΣNNÞ
trðΣNovÞ+ tr ðΣNNÞ,

where the trðΣNNÞ and trðΣNovÞ are the traces of the covariance matrices in
the nonnovel environment and novel environment, respectively. We did not
take the absolute difference in variance because we were interested in, and
also had specific predictions for, how variance should change in response to
novel environmental conditions. Positive standardized effect sizes indicate
that total variance in multivariate phenotypes from novel environments
were larger than total variance in nonnovel environments.
Comparing proportion of variation along major axes of G. We also estimated the
proportion of variation in G ðPVG maxÞ that was along the major axis of
additive genetic variation (i.e., along gmax) for each environment (Fig. 6A).
We quantified the proportion of total variance along gmax as

PVmax =
λmax

trðΣÞ,

where λmax is the first eigenvalue (i.e., the amount of variation along the
first eigenvector) and the trðΣÞ is the trace of the covariance matrix. Given
that PVmax is a proportion, we logit-transformed it to normalize its distri-
bution and sampling error.
Comparing major axes of genetic and phenotypic variation. Second, we explored
how the orientations of G and P change within and across environments by
calculating the angle between the major axes of variation (Fig. 6B). The
major axis of variation for a covariance matrix is described by its first ei-
genvector. To compare within environments, we calculated the angle be-
tween gmax and pmax (θNN or θNov depending on the environment), which are
the first eigenvectors of G and P, respectively. To compare across the envi-
ronments, we calculated the angle between the nonnovel gmax and novel
gmax ðθGÞ, or the angle between the nonnovel pmax and novel pmax ðθPÞ,
depending on whether the angle was calculated for the genetic or phe-
notypic variation. The angle between the two first eigenvectors was cal-
culated as

θ=
180
π

cos−1
�

v1 max · v2 maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1 max · v1 max

p
·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 max · v2 max

p
�
,

where v1 max is the first eigenvector of one of the covariance matrices and
v2 max is the first eigenvector of the other covariance matrix. This calculation
results in angles varying between 0° and 180° and so we subtracted from
180° any angle between 180° and 90° to yield angles between 0° and 90°
(33). To normalize the distribution of angles we divided them by 90 and
performed a logit transformation.
Assessing short-term evolutionary potential of plastic responses. Finally, to in-
vestigate the short-term evolutionary potential along the dimensions of
plastic responses we tested whether or not the plastic response vector—the
change in mean trait values between the nonnovel to novel environment—
was aligned with the G matrices of the nonnovel and the novel environ-
ment. First, we calculated the vector Δ�x describing the change in mean trait
values:

Δ�x = �xNN − �xNov .

Next, we projected the G matrices for both the nonnovel and novel envi-
ronments on the vector Δ�x to calculate the amount of variance in G in the
direction of vector Δ�x (i.e., eΔ�x) using equation 1 in ref. 15:

eΔ�x =
ðΔ�xÞ’GΔ�x

jΔ�xj2 .

To estimate how much variation was present in the direction of the plastic
response compared with the maximum amount of variation in any direction,
we divided eΔ�x by the first eigenvalue of G ðλG maxÞ, to calculate the evolu-
tionary potential of plasticity (Fig. 6C):

πe =
eΔ�x

λG max
.

Given that πe is a proportion, we logit-transformed it to normalize its dis-
tribution and sampling error. To test whether πe was significantly larger
than expected for any random alignment between the plastic response and

G, we also calculated a null expectation for the evolutionary potential of
plasticity ðπ0Þ:

π0 =
λG

λG max
,

in which λG is the average of all eigenvalues for G. Next, we subtracted the
logit of π0 from the logit of πe to estimate the difference between the ob-
served and expected evolutionary potential in the direction of plasticity ðπe−0Þ:

πe−0 = logitðπeÞ− logitðπ0Þ.

When the lower boundary of the credible interval for the intercept of the
meta-analytic model (as described below) for πe−0 is larger than zero, the
evolutionary potential in the direction of plasticity is higher than what we
would expect for a random alignment between Δ�x and gmax. We also calcu-
lated the angle between Δ�x and the first eigenvector of G ðvG maxÞ (Fig. 6D):

θe =
180
π

cos−1
 

Δ�x · vG maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ�x ·Δ�x

p
·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vG max · vG max

p
!
.

This calculation results in angles varying between 0° and 180° and so we
subtracted from 180° any angle between 180° and 90° to yield angles be-
tween 0° and 90°. To normalize the distribution of angles we divided them
by 90 and then performed a logit transformation.

Meta-Analysis. We meta-analyzed effect sizes using multilevel meta-analytic
and metaregression models (78) with the R package metafor (79). In all
models, effects were weighted by their sampling variance from the simu-
lations and we included “study” as a random effect. For analyses comparing
environments, each study contributed multiple estimates and so we included a
random slope of environment type in the study-level random effect to account
for this nonindependence. However, only a random intercept was included if
variance in the slope failed to converge in the model. Given that there was
strong overlap between study and species we did not include a species-level
random effect or phylogeny in our models to avoid confounding estimates
(80). The package metafor does not estimate a residual variance by default so
we included an observation-level random effect in all our models. Multiple
environments were manipulated in some studies, and given quantitative ge-
netic designs often separated families across these environments, this intro-
duces a level of nonindependence between effect sizes (80). Given the limited
sample sizes, we did not account for this level of dependence; however, we
acknowledge this may lead to inflated type I error rates.

We used intercept only meta-analytic models to quantify total ðI2t Þ and
between study ðI2stÞ heterogeneity in effects (81, 82) as

I2st =
σ2st

σ2st + σ2e + σ2m

I2t =
σ2st + σ2e

σ2st + σ2e + σ2m

σ2m =
P

wiðk− 1Þh
ðPwiÞ2 −

P
w2

i

i,
where σ2m is an estimate of the total sampling variability derived from wi, the
weight or inverse of the sampling variance, and k the total number of ef-
fects. σ2st and σ2e are the between- and within-study variance estimates. I2st can
be interpreted as the proportion of variation in effects resulting from dif-
ferences between studies, which includes differences such as species, trait
types, and methodological approaches that vary across studies. In contrast, I2t
is the total proportion of variation in effects beyond sampling variance. If I2t
is high, then this suggests that the effects observed are not simply the result
of sampling variability.

We ran metaregression models to explore how our predicted moderator
variables explained variation in effects. For each effect size, we includedmain
effects for moderators we hypothesized would explain variation in effects
when sample sizes allowed. These included (i) the number of traits, (ii) en-
vironment type (nonnovel and novel—only for analyses comparing the
alignment between the plasticity vector and G), (iii) the type of novel envi-
ronment (i.e., stressful or nonstressful—only for analyses comparing G across
environments), and (iv) the breeding design (i.e., half-sib or full sib). Given the
limited sample sizes and uneven taxonomic sampling we restricted models to
estimating main effects of the above moderators only. Models comparing G
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and P across environments were run separately. We calculated the marginal-
ized mean effect size (and confidence intervals) for different subgroups of
categorical predictors by taking the weighted average of the mean (and
sampling variance) of one level in factor 1 (e.g., half-sib for the breeding de-
sign factor) across both levels of factor 2 (i.e., stressed and nonstress for the
novel environment factor). We did this for all combinations to produce mean
estimates unconditional on other categorical factors in the model. We checked
funnel plot (i.e., effect size as a function of sampling error) asymmetry to look
for evidence of publication bias. However, we found no clear evidence for
publication bias in any of the effect sizes (SI Appendix, Fig. S2).
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