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A fundamental aim of post-genomic 21st century biology is to understand the genotype–phenotype map (GPM) or how specific

genetic variation relates to specific phenotypic variation. Quantitative genetics approximates such maps using linear models, and

has developed methods to predict the response to selection in a population. The other major field of research concerned with the

GPM, developmental evolutionary biology, or evo-devo, has found the GPM to be highly nonlinear and complex. Here, we quantify

how the predictions of quantitative genetics are affected by a complex, nonlinear map based on the development of a multicellular

organ. We compared the predicted change in mean phenotype for a single generation using the multivariate breeder’s equation,

with the change observed from the model of development. We found that there are frequent disagreements between predicted

and observed responses to selection due to the nonlinear nature of the genotype–phenotype map. Our results are a step toward

integrating the fields studying the GPM.
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A fundamental aim of post-genomic 21st century biology is to
understand how genomic variation relates to specific phenotypic
variation. This relationship, called the genotype–phenotype map
or GPM, is considered by many researchers to be critical factor
for understanding phenotypic evolution (Houle et al. 2010). The
GPM determines which phenotypic variation arises from which
random genetic variation. Natural selection then acts on that
realized phenotypic variation. Thus, natural selection and the
GPM jointly influence how traits change over evolutionary time
(Alberch 1982; Müller 2007; Polly 2008).

Quantitative genetics uses a statistical approach to describe
the GPM and predict how the phenotype changes by natural
or artificial selection. This approach has long made significant
contributions to plant and animal breeding (Falconer and Mackay

1996; Roff 2007). A central equation of quantitative genetics,
and to our understanding of the evolution of natural populations,
is the breeder’s equation: R = h²s (Falconer and Mackay 1996).
According to this equation, the change in the mean of a trait
between two generations, R, is equal to the selection differential,
s, multiplied by the heritability of the trait, h².

Natural selection can act on several traits at the same time,
that is, an individual’s fitness typically depends on multiple of
its traits. In addition, there may be co-variation between traits.
In this general case, it is more appropriate to use the multivariate
extension of the breeder’s equation:

!z̄ = G P−1s (1)
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where !z̄ is the between-generation change of trait means, G is
the matrix of additive genetic variances and covariances between
traits, P is the matrix of phenotypic variances and covariances
between traits, and s is the selection differential (Lande 1979;
Lande and Arnold 1983). The multivariate breeder’s equation can
be used to infer past selection and predict future responses to
selection (Lande 1979; Lande and Arnold 1983; Grant and Grant
1993; Morrissey et al. 2010). There is a large body of literature
related to G and its evolutionary implications (Jones et al. 2004;
Roff 2007; Arnold et al. 2008; Aguirre et al. 2013) and for some
researchers the study of G is central to understand phenotypic
evolution (McGuigan 2006; Roff 2007).

Quantitative genetics theory relies on a number of simpli-
fying assumptions. The most important of these for our purposes
is the assumption that only the additive contributions of genes
to a phenotype play a significant role in evolution. Under this
assumption, the variation in a trait is determined, to a large extent,
by a large number of polymorphic loci. Alleles in each loci add a
small effect to the trait and such effects are independent from each
other. This is equivalent to assuming a linear GPM, that is, small
genetic changes always lead to proportionally small phenotypic
changes.

Developmental evolutionary biology or evo–devo (Alberch
1982; Müller 2007) is the other main field concerned with
the GPM. Evo-devo views the GPM as highly nonlinear and
complex (Alberch 1982; Newman and Müller 2000; Müller 2007;
Gjuvsland et al. 2013). Most evo-devo studies, however, do not
consider the population level. At that level, it has been suggested
that the nonlinearities of the GPM average out because of the
recombination of alleles occurring among individuals in sexual
populations (Hansen 2008). According to these authors then,
the nonlinearities of the GPM would not hinder the accuracy of
quantitative genetics, at least in the short-term (Hansen 2008; Hill
et al. 2008).

Some previous studies claim that the breeder’s equation may
be inaccurate if the GPM is not linear (Alberch 1982; Rice 2004).
These studies, however, provide no direct information on how
nonlinear real GPMs are. Studies in gene regulation, development,
and physiology, on the other hand, provide direct functional infor-
mation about real GPMs. These studies, however, are not usually
framed in a population context that would allow the quantification
of the accuracy of breeder’s equation for these GPMs.

Our aim is to quantify how the predictions of the multivariate
breeder’s equation are affected when considering the complex
and nonlinear GPMs found in the study of development. For that
purpose, we combine a computational GPM model that is based
on our current understanding of the development of a complex
organ, the mammalian tooth (Salazar-Ciudad and Jernvall 2010;
Salazar-Ciudad and Marı́n-Riera 2013), and a population genetics
model with mutation, recombination, and selection (see Fig. 1).

Through the combination of the development and population
models, we simulate phenotypic evolution.

The tooth developmental model has been shown to be
able to reproduce multivariate morphological variation at the
population level (Salazar-Ciudad and Jernvall 2010) and has been
used to model micro-evolution (Salazar-Ciudad and Marı́n-Riera
2013). The tooth developmental model starts from a small flat
epithelium expressing some specific extracellular diffusible
gene products. Over the development simulation time, these
gene products regulate the expression of other gene products
and cell behaviors such as cell division and adhesion. As a
result, the epithelium starts to fold and change its morphology.
These morphological changes affect the spatial distribution of
the extracellular diffusible gene products and triggers further
spatial changes in gene expression, cell behavior regulation and,
ultimately, morphology. As a result a complex 3D morphology
(i.e., a specific distribution of cells in space) is produced.

The developmental model includes a set of “developmental
parameters.” These specify how strong or weak the interactions
between the gene products included in the model are, their
regulation of cell behaviors and the strength of bio-mechanical
interactions between cells during the simulation of a specific
morphology. There are 21 of these developmental parameters and
they specify, for example, the diffusion rates of the extracellular
signaling molecules involved in the model, how strongly they
regulate their own synthesis by the cells that receive them or
the adhesion strength between cells (see Materials and Methods
section and Salazar-Ciudad and Jernvall 2010 for details). The
values of these parameters are genetically determined and genetic
variation has an effect on phenotypic variation because it affects
these values. However, there is no simple correspondence be-
tween these developmental parameters and genes. The diffusion
rate of an extracellular gene product, for example, depends,
among other things, on its size, shape, and hydration. Shape or
3D structure is determined by the folding of the primary sequence
of a gene product. Such folding process is quite complex and is
well-known to entail a complex GPM on its own (Stadler et al.
2001; Greenbury et al. 2014; Rodrigues et al. 2016).

Most mathematical models of development are based on
similar interactions between gene products and cell behaviors
(Oster and Alberch 1982; Raspopovic et al. 2014; Osterfield et al.
2017; Hirashima et al. 2017; Glen et al. 2019). These models give
rise to different morphologies because they start from different
initial conditions and include different networks of interactions
between genes. Based on these models and on what is known
about organ development, it has been suggested that the dynamics
of interaction between gene products, cell behaviors, and mor-
phology is, overall, of a similar complexity in most organs and
body parts and that, thus, the overall complexity and properties
of their GPM should be similar (Alberch 1982; Salazar-Ciudad
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Figure 1. Our model combines a development model, leading from genotype to phenotype, and a population model, leading from
phenotype to fitness and from fitness to next generation. The developmental model is depicted in the right. The developmental
parameters of each individual are determined additively from a set of loci in each individual’s genotype. Then the developmental model
is run for the developmental parameter set of values in each individual. As a result a phenotype, a 3D morphology, is produced for each
individual. For each individual phenotype a set of quantitative traits are measured. The distance between those and an optimal phenotype
determine the fitness of each individual (middle panel in the figure). The 50% of males and females with highest fitness are selected as
parents. Random mating then occurs among the selected individuals and mutation is applied to produce their offspring genotypes for the
next generation. By iterating these processes of development, selection, recombination, and mutation in each generation, phenotypic
evolution is simulated. In addition, shown in the right panel, the G and P matrices and the s vector are estimated for each generation
(generation i in the figure). Estimations are done with data from a parallel half-sib breeding design in each generation. From these
matrices, using the multivariate breeder’s equations, we estimate the trait mean values for the next generation (generation i+1) and
compare them with those observed from the evolutionary-developmental model.

et al. 2003; Salazar-Ciudad 2010; Urdy 2012). Thus, although our
developmental model is based on tooth development, we should
expect its GPM to be representative of a large class of phenotypes.
This is specially the case for morphologies that form, like teeth,
by the folding of epithelia. This applies to a large number of
organs and body parts, including limbs, heads, kidneys, genitalia,
lungs, insect wings, and early brain (Gilbert and Barresi 2016).

The population model includes a set of individuals. Each
individual has a genotype, a set of values of the developmental
parameters, a phenotype, and a fitness. The values of the
developmental parameters of an individual are determined by
its genotype. Each developmental parameter is determined
additively by many loci. The phenotype of each individual is

determined by running the developmental model on the values
of its developmental parameters (see Fig. 1). Each individual
phenotype is a 3D morphology (see Fig. 2A) on which five traits
are measured: the position of specific morphological landmarks.

Individual fitness is calculated based on the distance between
each trait in each individual’s phenotype and these same traits in
an optimal morphology (see Fig. 1;Fig. S1). Mutation is applied
to individuals in each generation. The processes of mutation,
development and selection are iterated over generations to simu-
late evolution. A different optimal morphology is used in each of
these evolutionary simulations. Overall, thus, our model includes
a genetic space, a developmental parameter space and a morpho-
logical trait space (see Fig. 1). Each individual occupies a point
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Figure 2. Observed and predicted change can differ in a systematic way over generations. Panel (A) shows, on the right, an example
3D morphology arising from the developmental model. Marked are the three cusps of the tooth, which are the landmarks. The outline
on the right shows the five traits measured in each tooth, where zi is the i-th trait. Panel (B) shows, on top, the observed (gray line)
and predicted change (red line) for trait 2 in evolutionary simulation 18, and on the bottom the prediction bias in that simulation. Panel
(C) shows the same but for trait 3 in evolutionary simulation 5. As explained in the main text, prediction bias is the difference between
the predicted and observed change for each generation. Predicted change was calculated using the multivariate breeder’s equation and
estimates of G, P, and s in each generation. Observed change is shown with a 99% confidence interval (gray area) generated from
repeating each generation 10 times to minimize the stochastic effect of drift, mutation, and recombination (the gray line is the mean
of the repetitions, the gray area extends 3 SEM, see Materials and Methods section). Predicted change is shown with a 99% confidence
interval (red area) calculated using the REML-MVN resampling method (the red line is the mean of the resamples, the red area is 3 SEM;
notice that the interval is small compared to that of the observed change, due to the large sample size used to estimate each variance
component). Prediction biases in the lower plots include 99% confidence intervals as well. Observed teeth with trait values closest to
the population mean at five time points are included above the plots, with a black segment indicating the traits plotted. Direction of
selection for each landmark is shown in the insets below each plot, with purple arrows pointing in the direction of selection. Evolution
for the remaining traits for both simulations is shown in Figure S2. In the simulation shown in panel B, bias is big until generation 23.
In the simulation shown in panel (C), bias is large from generation 10. There, the population reaches a region where it cannot further
evolve toward the optimum, since genetic changes lead to teeth lacking lateral cusps.
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in the genetic space (a genotype), a point in the developmental
parameter space, and a point in the trait space (a phenotype). A
population can then be seen as occupying a cloud in each of these
spaces. In this article, as described above, the mapping between
the developmental parameter space and the phenotypic space is
determined by the developmental model while the mapping be-
tween the genotypic space and the developmental parameter space
is additive. Notice then that any nonlinearity in the GPM is due
to the developmental model alone. Because of that, one can talk
about a region of the GPM being nonlinear when the population
is in a region of the developmental parameter space where small
parameter changes lead to relatively large phenotypic changes.

As we have the genotypes, traits, and fitness of each individ-
ual, we can estimate G, P, and s in each generation. From that
(following equation [1]) we estimate, in each generation of each
evolutionary simulation, the expected response to selection, that
is, how much does each trait change. We then measure the differ-
ence between the response to selection expected from the multi-
variate breeder’s equation and the observed response to selection
in each generation of the evolutionary simulations (see Fig. 1).

Material and Methods
Evolution is modeled using an individual-based algorithm similar
to that in Salazar-Ciudad and Marı́n-Riera (2013). The complete
model is composed of a developmental model and a population
model. The developmental model is used to generate each individ-
ual’s phenotype from its genotype. The population model is used
to determine the genotypes in each generation based on genotypes
from the previous generation through selection, mutation, and re-
combination. Each model has a set of parameters that we refer to
as developmental and population parameters, respectively. There
are 21 developmental parameters and four population parameters.
For each set of population parameters, we ran 32 simulations
of 30 generations each using different optima to explore the
behavior of the system. We refer to each of these simulations with
a distinct optima and set of population parameters as an “evo-
lutionary simulation.” Both the population and developmental
model were written in Fortran 90. The data from the evolutionary
simulations was analyzed and visualized using R. In addition,
in each generation, the matrix of additive genetic variances and
covariances between traits, G, the matrix of phenotypic variances
and covariances between traits, P, and the selection differentials,
s, were estimated. From that a predicted response to selection
was calculated from the multivariate breeder’s equation and
compared with the one observed in the evolutionary simulation.

DEVELOPMENTAL MODEL

The developmental model used is a computational model of
tooth development (Salazar-Ciudad and Jernvall 2010). This
model provides an example of a genotype–phenotype map for the

morphology of a complex organ. The tooth developmental model
is a mathematical representation of the current understanding of
the basic gene network behind tooth development, and includes
the basic cell behaviors (cell division and cell adhesion), cell
mechanical interactions, and their regulation by gene products
known to be involved in the process. The model is mechanistic in
the sense that from this hypothesis and some very simple initial
conditions—that is, a flat epithelium representing the initiation of
tooth development—the model reproduces how the morphology
and patterns of gene expression in 3D change during development
until an adult tooth morphology is reached. The epithelium grows
by cell division and folds owing to forces arising from cells.
Cell division occurs after cell size reaches a threshold. Some
gene products diffuse between cells: an activator autoregulates
itself and, after a threshold, causes the differentiation of enamel
knots (which will result in cusps) and induces the production of
an inhibitor and secondary signals. These gene products interact
with the cells and determine their mechanical behavior.

The dynamics of the developmental model are determined
by the value of a set of 21 developmental parameters, which are
genetically determined. These developmental parameters specify
the magnitudes of several biological and physical properties of
the cells, tissues, and molecules involved in the process such
as proliferation rate, molecular diffusion rates, and interactions
between gene products. The developmental parameters are
listed in Table S1. The model’s output is the three-dimensional
position of tooth cells: the tooth morphology. For a more detailed
description of the model we refer the reader to the original
publication introducing it (Salazar-Ciudad and Jernvall 2010).

The tooth developmental model is suitable for our question
because it is able to produce realistic population-level phenotypic
variation (Salazar-Ciudad and Jernvall 2010). Furthermore,
it is based on developmental biology and therefore includes
epigenetic biophysical factors, such as extracellular cell signaling
and diffusion in space and mechanical interactions between
cells, which have been extensively proposed to lead to complex
genotype–phenotype maps (Forgacs and Newman 2005).

For our study, we define measurable morphological traits
in the tooth shape and track them through the generations of the
population. We define the phenotypic traits as the coordinates
of landmarks in the tooth morphology. We locate landmarks in
the three tallest cusps in each tooth. In tooth development, cusp
height correlates negatively with the time they appear in an indi-
vidual’s development (Jernvall et al. 1994). Thus, the three tallest
cusps are the first three cusps to be formed during development.
Because of that, we position the teeth on the (x,y) plane so that the
x position of the central cusp is 0. The y = 0 axis of each tooth is at
its base (calculated as the average of the positions of its margins),
just as in previous studies using the same model (Salazar-Ciudad
and Marin-Riera 2013). Since all teeth arise from the same
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Table 1. Population parameters. Values for the population pa-
rameters. We defined a core population parameter set and stud-
ied deviations for each parameter at a time. Values where defined
based on Jones et al. (2014). Note that the number of loci is per
developmental parameter (i.e. total number of loci in the core
population parameter set is five loci times 21 developmental pa-
rameters, 105 loci). The total number of loci affecting each trait is
therefore always within the previously suggested ranges (50–100
in Goddard 2001; 2–100 in Falconer Mackay 1996).

Parameter Low value Core value High value
Mutational

effect size
0.05 0.1 0.2

Frequency of
mutations

0.0005 0.001 0.002

Number of loci 2 5 10
Population size 100 600 1000

deterministic mathematical model, they are all in the same
arbitrary space units and they are directly comparable without
re-scaling or re-orientation. Note that the tooth model is determin-
istic and, thus, teeth develop in the same position (there is no noise
displacing or rotating them that should be corrected by procrustes
analysis). Figure 2A shows the location of the three landmarks
in an example morphology. Trait 1 is the y-coordinate of the
landmark located in the central cusp. Trait 2 and trait 3 are the x-
and y-coordinates of the landmark located in the posterior cusp,
respectively. Similarly, trait 4 and trait 5 are the x- and y- coor-
dinates of the landmark located in the anterior cusp, respectively.
Traits 1, 3, and 5 are therefore the heights of the three cusps.

POPULATION MODEL

The developmental model was embedded in a population model.
Table 1 shows the four population parameters (population size,
mutation rate, mutational effect size, and number of loci.) We
defined a core set of population parameters and studied deviations
from those core values. For each parameter set, we ran 32 evo-
lutionary simulations each with a different optimum (see section
“Mapping between phenotypes and fitness” below). All popu-
lations were composed of equal number of males and females,
with no sexual dimorphism. The sexes were introduced primarily
for consistency during the quantitative genetics analysis (i.e., sire
and dam distinction, see “Quantitative genetics model” section).

The population model considers four steps per generation:
(1) a mapping between genotypes and developmental param-
eters; (2) a mapping between developmental parameters and
phenotypes (the developmental model); (3) a mapping between
phenotypes and fitness; (4) reproduction, with recombination and
mutation on the genotypes. By iterating steps (1) to (4) in each
generation, we simulated how the genotypes and phenotypes of
the population change over generations (Fig. 1).

(1) Mapping between genotypes and developmental parame-
ters: The input of the developmental model is the values of the 21
developmental parameters. Each of these parameters corresponds
to a developmentally relevant interaction, but not necessarily
to a single gene (see Salazar-Ciudad and Jernvall 2010). In
the model, for a given individual, several genes contribute to
the value of each developmental parameter. Each individual’s
genotype is diploid with a fixed number of loci. Each allele in
a loci has a specific quantitative value. These genetic values
will determine the developmental parameters that will go into
the tooth developmental model, and constitute the heritable
information. The developmental parameter values are determined
as the sum of the contributions of a fixed number of these genetic
loci (similar to Rolian 2015). The population parameter number
of loci (see Table 1) determines how many haploid loci additively
make up a single developmental parameter. All developmental
parameters are thus genetically determined. We purposely use
this very simple yet unrealistic mapping because our focus is
on how the part of the developmental dynamics we understand
the better (i.e., the developmental model) affects phenotypic
variation and evolution, without confounding effects. There is no
pleiotropy since in the mapping from genes to parameters each
loci contributes to the value of one and only one developmental
parameter. Pleiotropy from genes to phenotype arises from the
developmental dynamics which map parameters to phenotypes.

(2) Mapping between developmental parameters and pheno-
types: This is accomplished by running the developmental model,
for each combination of developmental parameters corresponding
to each individual. As explained in the “Developmental model”
section, phenotypes are measured as the coordinates of three
cusps in the developed tooth (see Fig. 2A). All developmental pa-
rameters contribute to evolutionary change and some parameters
have larger phenotypic effects than others (see Fig. S3).

(3) Mapping between phenotypes and fitness: Different
regions of the GPM will have different properties and may lead to
different behaviors. This is why we had to explore the GPM evenly
in all directions. For this, we performed evolutionary simulations
selecting in different directions (i.e., toward different optimal
morphologies in this trait space). Each evolutionary simulation
had a different optimal morphology. Each of the five morphologi-
cal traits was chosen to increase or decrease in respect to an initial
reference morphology (see the Initial population section). This
leads to a total of 25 = 32 trait combinations. The optimum value
for each trait was set at an equal distance, ±3 units from the mean
value of that trait in the starting population (see Fig. S1). Optimal
morphologies are therefore evenly distributed and equidistant
around the initial morphology. Each of the optimal morpholo-
gies determines, thus, a distinct direction of selection. These
directions, as defined in the trait space, result in different
and non-colinear β = P−1 s at the start of each evolutionary
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simulation (see Fig. S12). We also ran simulations starting from
different initial morphologies, to discard that our results are
particular to a certain region of parameter space.

Selection was performed in each generation by selecting the
50% of males and females with least distance to the optimum
morphology. The top males and females were then mated
randomly. We do not allow siblings to mate to reduce inbreeding.
If over evolution individuals with only one or two cusps arise (i.e.,
some of the five traits we study are missing), they are assigned
0 fitness and excluded from the calculation of G, P, and s.

(4) Reproduction, recombination, and mutation: Once
the parents are selected, they produce one gamete each by
randomly selecting one of the two alleles for each loci with equal
probability. The gametes of the parents then fuse to form the
diploid genome of the offspring. Each parental couple generates
two males and two females for the next generations. This keeps
the population size constant and results in all selected parents
having exactly the same fitness.

In the gamete formation process, there is a per-loci prob-
ability of mutation, which is one of the population parameters
called mutation rate (see Table 1). Mutation is implemented by
adding a random number to the mutating loci, drawn from a
normal distribution with a zero mean and a standard deviation
equal to another of the population parameters, the “mutational
effect size” (see Table 1).

(5) Initial population: The initial population is composed of
exactly the same individuals in all evolutionary simulations with
the same set of population parameters. The number of individuals
is specified by the population parameter “population size” (see
Table 1). To build the initial population, each locus starts with
10 equally frequent alleles with values drawn from a normal
distribution. The mean of the distribution was such that when
summing over all loci one obtains the reference developmental
parameter values, that is, the developmental parameter values
that reproduce the morphology of the postcanine tooth of the
ringed seal (Phoca hispida ladogensis, see Salazar-Ciudad and
Jernvall 2010). The variance of the distribution of genetic values
was set equal to the population parameter mutational effect
size. These genetic values were then used in simulations under
stabilizing selection for 400 generations. Stabilizing selection
was performed by using the mean traits of the population at
the first generation as optimal morphology. In each generation,
the fitness of each individual in the population was calculated
as a function of the distance of its trait values and the optimal
trait values as, w(z) = exp(−α

∑n
i=1 (zi − oi )2), where zi is the

i-th element of the vector of trait values for the individual, oi

is the i-th element of the vector of optimum trait values and is
the fitness function. The steepness of the selection gradient is
determined by the parameter α, which was set as 0.05 (Jones
et al. 2004).

The parents of each individual in a generation were chosen at
random from the individuals of the previous generation. For each
individual in the previous generation, the probability of being
chosen as a parent was equal to its fitness divided by the sum of
the fitness of all individuals in the population in that generation.
The resulting population after the 400 generations of stabilizing
selection was used in the actual evolutionary simulations as the
initial condition.

ENVIRONMENTAL EFFECTS

To simplify the study of the impact of the GPM on the accuracy
of the breeder’s equation, we did not include environmental
effects for most evolutionary simulations. How the omission of
environmental effects affects the system was studied by perform-
ing evolutionary simulations with the core population parameter
set including environmental effects. In some simulations environ-
mental effects were introduced at the level of the developmental
parameters while in others they were introduced at the level
of traits themselves. For one set of simulations, environmental
noise was added to each of the loci of the genotype before being
added to determine the developmental parameters. The noise
added was 10−3 times the mutational effect size. For another
set of simulations (one per optimal morphology), we introduced
environmental effects at the level of the phenotype. After running
the developmental model for each individual and obtaining an
adult phenotype, a small environmental random effect was added
to each trait. These effects were normally distributed, with mean
0 and standard deviation equal to 10−2 times the value of the trait.

REPETITIONS

Our objective is to bracket the ability of classical quantitative
genetics to predict evolutionary change using a realistic GPM.
Sources of prediction error aside from the characteristics of the
GPM therefore must be carefully controlled. The two other main
sources of error are (1) stochastic error due to drift; (2) errors
in the estimation of the quantitative genetic parameters, mainly
of the G-matrix. The latter will be discussed in the Quantitative
genetics model section.

Because we are working with a finite population with a finite
genome, there will be stochasticity in the change of the mean
of the traits for the population due to sampling of individuals
and alleles. This occurs in the couple formation during random
mating and the random segregation of alleles in gamete forma-
tion. Stochasticity is also introduced through mutations. The
randomness in the above processes will result in deviations from
the predicted change using the breeder’s equation that are not
due to the nonlinearities of the GPM. To account for these types
of error, we perform repetition simulations. After running the full
evolutionary simulation for each of the optima for all 30
generations, we take the individuals of generation i and repeat the
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processes of random mating, mutations, and allele segregation
10 times. This results in 10 “parallel” generations i+1. For each
of these repeated, parallel generations i+1, we can calculate a
change in mean value for the traits with respect to their mean
values in generation i. These changes will only differ from
each other due to the randomness of the processes described
above. The selected parents from generation i are the same in
all repetitions, but the couple formation, the mutations, and the
recombination differ. What we call the “observed change” is the
change in trait means in the simulated population between two
consecutive generations, averaged over all repetitions. We also
use the information of the spread of the repeated changes. Figure
S4 shows that this method completely eliminates prediction
errors due to stochasticity when using a linear GPM.

QUANTITATIVE-GENETIC MODEL

The observed change is to be compared with the predicted change
using the multivariate breeder’s equation (1). It is known that
the parameters of the breeder’s equation can change in time,
although there is debate regarding how fast this occurs (Roff
2000; Doroszuk et al. 2008; Aguirre et al. 2013; Penna et al.
2017). To avoid errors arising from outdated estimations, G, P,
and s were calculated for each generation.

We calculated variance components by building a half-sib
breeding design on the evolutionary model. To estimate the
variance components in generation i, we randomly took half
of the males and half of the females from generation i and
formed couples that produced four offspring each. This process
was repeated 10 times, each time mating individuals randomly.
Note that the parental population is always the same (i.e., the
individuals in generation i). This design provides 11 times the
population size of phenotypic data composed of parents, full-sibs,
and half-sibs, to estimate each G and P (i.e., 6600 individuals for
the core population parameter set).

Restricted maximum likelihood (REML) estimates of addi-
tive genetic variance were obtained using the software WOMBAT
(Meyer 2007). The animal model used was the simplest possible,
yi = µ + ai + ei , where yi is the phenotype of individual i, µ is
the population mean, ai is the additive genetic merit of individual
i, and ei is a random residual error. When fitting an animal model
using REML, initial estimates of variance components have to
be provided. For each evolutionary simulation, initial estimates
for additive genetic variance and residual variance in generation
1 were set to half the total phenotypic variance. For subsequent
generations, the initial estimates were the estimates from the
converged REML fitting carried out for the previous generation.
In all cases, trait values were pre-multiplied by 100 to help with
convergence.

Sampling variation in the estimation of G was accounted
for using the REML-MVN method (Houle and Meyer 2015)

implemented in WOMBAT. The method allows to approximate
the uncertainty in evolutionary parameters estimated using
animal models by resampling G-matrices from the distribution
of its maximum-likelihood estimate. For each generation, we
resampled 100 G- and P-matrices from this distribution and
calculated 100 predicted multivariate changes using equation
(1). What we call the “predicted change” is the mean change in
trait means using the resampled variance components. We also
use the information of the spread of the changes predicted using
resampled variance components as a measurement of uncertainty.

MEASURING THE PREDICTION ERROR

As explained in the two preceding sections, the observed change
for trait k is the average of the changes in the mean of trait k over
the 10 repetitions. We symbolize it as !z̄o

k . The standard deviation
of the changes in the mean of trait k over the 10 repetitions is
symbolized as σo

k . The predicted change for trait k is the average
of the changes in the mean of trait k, obtained using the breeder’s
equation with 100 resamples of the G- and P-matrices from their
distributions using the REML-MVN method. We symbolize it
!z̄ p

k . The difference between the observed change for trait k and
the predicted change for trait k, is what we call “prediction bias
for trait k.” We call it bias because it is not due to stochastic
effects, which are removed by the averaging over repetitions (see
section “Repetitions”).

We calculate the relative bias as the absolute value of the
bias divided by the average of the absolute values of the predicted
and the observed changes, 2|!z̄o

k − !z̄ p
k |/(!z̄o

k + !z̄ p
k ). This

is a measure of how large the bias is, relative to the actual
changes. We also measure the effect size of the bias, as the
bias, divided by the standard deviation of the repeated observed
changes |!z̄o

k − !z̄ p
k |/σo

k . This is a measure of how large is
the bias relative to the variation in the observed changes. If the
effect size is small, it means it is irrelevant when compared to
changes due to stochastic factors inherent in any evolutionary
process.

We also calculate a multivariate error, taking all traits
together. What we call the multivariate bias, ‖ !z̄o

k − !z̄ p
k ‖,

is the Euclidean norm (symbolized by ‖ . ‖) of the difference
between the vector of predicted changes (!z̄ p) and the vector of
observed changes (!z̄o). What we call the relative multivariate
bias is the multivariate bias, divided by the Euclidean norm of
the vector of observed changes (‖ !z̄o

k − !z̄ p
k ‖ / ‖ !z̄o

k ‖).

MEASURING NONLINEARITY OF THE GPM

Local nonlinearity was measured based on how well a linear map
describes the relationship between developmental parameters
and traits. For each generation in each evolutionary simulation
for the core population parameter set, we build a matrix where
each column is an individual and each row a developmental
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parameter, standardized by removing the mean and dividing
by their standard deviation (we call this matrix U , Uk j is the
standardized k-th developmental parameter of the j-th individual).
We also have a matrix where each column is an individual and
each row is the value of a standardized trait (we call this matrix
Z ; Zk j is the standardized k-th trait of the j-th individual).

We want to find a linear transformation B, with number of
rows equal to the number of traits and number of columns equal to
the number of developmental parameters such that Z = BU + e.
We want e, the error term, to be minimized. The least square
solution B̃ is given by B̃ = ZU T (UU T )−1, where the operator T
is the transpose, and −1 the inverse. B̃ allows to predict the trait
values given the developmental parameters, for the best linear fit.
We then measure nonlinearity as the difference between B̃U and
Z . If the difference is 0, it means that the relationship between
U and Z is perfectly described by the linear transformation B̃
(i.e., the map is linear). We calculate the nonlinearity in each
trait as the root-mean-square error of the fit for the trait. We
also calculate a multivariate nonlinearity as the norm of the
error.

Nonlinearity in the GPM is also graphically shown using
marginal parameter–phenotype maps. These maps are constructed
for a given generation of a given evolutionary simulation. The
mean value of each of the 21 developmental parameters in the
population is calculated. We then select the two developmental
parameters whose variation explains the most phenotypic
variation. The values of these two developmental parameters are
then tinkered around the mean value. This produces a GPM that
we call marginal because it is the result of changing only two
of the 21 developmental parameters. Marginal GPM show the
relationship between developmental parameters and trait values.

Results
We found that in many generations there is a significant dis-
crepancy, or prediction error, between the trait changes observed
in the simulations and the trait changes predicted from the
multivariate breeder’s equations. Figure 2B and C shows the
changes in the trait means, both observed and predicted, for two
example evolutionary simulations (see also Videos S1 and S2).
To minimize the prediction error due to stochastic processes
such as drift, mutation, or recombination, we re-simulated
each generation of every evolutionary simulation 10 times (see
Material and Methods section) and calculated the mean observed
change per trait and generation. Although comparatively small
(shown in red in Fig. 2B and C), the estimation of the G-matrix
also has some variation and then there is also some variation in the
predicted change in each generation and evolutionary simulation.

The difference between the mean observed change and
the mean predicted change is what we call the bias. This bias

A B

C D

Figure 3. Distribution of bias for simulations in the core popu-
lation parameter set. Panels (A) and (B) show the distribution of
relative bias, calculated as the absolute value of the difference
between predicted and observed change, divided by the mean of
the absolute value of the two changes. Panel (A) shows a cumula-
tive plot, showing what percentage of generations (y-axis) show
at least a given amount of relative bias (x-axis), for each trait. The
half-life of the curves is highly dependent on the trait (half of the
generations have at least 4%, 11%, 8%, 13%, and 7% relative bias
for traits 1, 2, 3, 4, and 5, respectively). Panel (B) shows the dis-
tribution of the relative bias. Traits 2 and 4 show larger relative
biases that the other traits. Panels (C) and (D) show the distribu-
tion of the effect size of the bias, calculated as the absolute value
of the bias divided by the standard deviation of the repetitions
made to calculate the observed change (see Materials and Meth-
ods section). Similarly, the size of the effects is larger for traits 2
and 4. Panels (A) and (C) include an inset with the outline of a
tooth (see Fig. 2) and the traits marked with colors. Color coding
for traits is the same for all panels. Generations where the popu-
lations is in regions of the GPM where small parametric changes
lead to bicuspid teeth, such as the one shown in Figure 2C, were
not included in this plot because once this occurs in a generation,
as we explain in the results, bias remains high evermore.

is a systematic prediction error that is not due to stochastic
processes, nor to misestimation of variance components (G- and
P-matrices). In the evolutionary simulation shown in Figure 2B,
there is a clear prediction bias in the simulation until around
generation 23. During these first 23 generations, the teeth
undergo relatively large shape changes (see the example teeth in
Figs. 2B and 4, and Video S1). Figure 2C shows an extreme case
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A B C

Figure 4. Prediction bias arises when the population is in a nonlinear region of the parameter–phenotype map. The figure shows the
marginal genotype–phenotype map at different time points of three different evolutionary simulations of the core population parameter
set where prediction bias was found. The maps show how a trait (z-axis) changes when two specific developmental parameters are varied
while keeping all others constant at their population mean value (xy-plane in the plot, see Materials and Methods section). Teeth are
included for some points in the map, with a bar showing the trait being measured. Panel (A) is generation 20 of evolutionary simulation
6, where relative bias for trait 2 is 52% (see Fig. S2). Panel (B) shows generation 14 of evolutionary simulation 18, where relative bias
for trait 2 is 80% (this is the simulation shown Fig. 2B). In both cases, bias in the prediction arises under these nonlinear maps, where
small changes in parameter values produces relatively large changes in the measured traits. Panel (C) is for generation 15 of evolutionary
simulation 5, where relative bias is 200% (this is the simulation shown Fig. 2C). In this case, when both parameters are low, one of the
lateral cusps does not form. Indeed, the tooth shown for low values of both Parameter 1 and 5 is missing the posterior cusp, so there is
no black bar showing the trait. Bias arises because the linear approach of multivariate breeder’s equation predicts that teeth with smaller
values for trait 3 can be produced when in fact they cannot.

in which a cusp is lost during evolution. The prediction becomes
very biased at around generation 10.

Bias was not exclusive to a single trait or simulation, it was
common (Figs. S2 and S11 show all evolutionary simulations for
the core population parameter set). Figure 3B and D shows the
per-trait distribution of relative bias and effect size of the bias in
the evolutionary simulations for the core population parameter set.
Figure 3A and C shows how many of the simulated generations
have relative biases or effects sizes larger than a given amount.
Evolutionary simulations using different initial morphologies in
evolution show similar relative bias (Fig. S5). The relative bias
depends on the trait. Trait 1, the y-coordinate of the landmark
located in the central cusp, show little bias across all simulations
(median relative bias 3.8%, median effect size 0.45). Traits 2 and
4, the x-coordinates of the landmarks located in the lateral cusps,
showed the most amount of bias (median relative biases: 11.8%
and 13.5%; median effect sizes: 0.74 and 0.76, respectively). For
trait 4, 18% of the generations have a relative bias of 50% or larger.

Bias arises from nonlinearities in the GPM. Figures 4 and
S6 show explanatory examples of how specific aspects of the de-
velopmental dynamics lead to nonlinearities and then to bias. We
found that bias was larger when additive variances in the direction
of selection were smaller (see Fig. S7C and Table S2 for heritabil-
ity estimates). This can occur either because phenotypic variation
is also small or because a large part of the genetic variation is non-
additive, for example, because the GPM is nonlinear. We found

bias associates with measures of nonlinearity of the GPM around
the region of the developmental parameter space where the pop-
ulation is distributed at a given generation (see Fig. 5). Both the
spread and magnitude of the bias were larger in nonlinear re-
gions of the GPM. In these regions, small genetic changes lead to
small changes in the developmental parameters but these lead to
relatively large changes in some traits. As a result, when the popu-
lations move across these regions of the developmental parameter
space, the change in some of the traits is different to that pre-
dicted from the linear approximation of the multivariate breeder’s
equation. The breeder’s equation, then, over- or underestimates
the change in the mean of traits. As Figure S2 shows most popu-
lations pass through regions that lead to bias as they evolve.

Some evolutionary simulations showed particularly evident
prediction biases that where sustained for many generations (see
Figs. 2C and 4C). These were most common when selection
favored a decrease in a cusp’s height (either trait 3 or 5). Such
trait decreased in the evolutionary simulation until some limit
value, which was always larger than zero. Development was not
able to produce phenotypes with smaller values in this trait and,
thus, there was no evolution beyond this limit value. That was
not a global limitation of such trait but a local limitation. In other
words, the model may be able to produce such phenotypes, but
not from where the population is in the developmental parameter
space nor from any region near it (i.e., mutation in single or
few genes and recombination would not lead to further evolution
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A B

Figure 5. Prediction bias correlates with the local nonlinearity of
the genotype–phenotype map in the developmental model. Lo-
cal nonlinearity was measured for each trait in each generation
of all evolutionary simulations for the core population parameter
set (see Materials and Methods section). Panel (A) shows the rela-
tive bias against the nonlinearity. Panel (B) shows the effect sizes
for the bias against the nonlinearity. Both plots include bias and
nonlinearity for all five traits. The points were binned and plotted
as boxplots, with whiskers extending 0.5 times the interquartile
range from the box. Both the spread and magnitude of the relative
bias and the effect size of the bias increase with the nonlinearity
of the GPM. This means that for linear GPMs, the prediction works
very well always. For nonlinear GPMs, the prediction can show
very large mismatches but can also show small biases. Genera-
tions where the populations is in regions of the GPM where small
parametric changes lead to some cusps not forming, such as the
one shown in Figure 2C, were not included in this plot.

in the direction of selection). When the population is close to
the limit value in a trait, individuals produce offspring with
trait values higher than the limit, or offspring lacking that trait
completely (i.e., individuals where a cusp does not form during
development), but never offspring with trait values lower than
the limit value. Individuals without one or both of the lateral
cusps are given fitness 0 and not included in the estimations of
G, P, and s. In the evolutionary simulations where a local trait
limit is found, phenotypic variance decreases as the population
mean is pushed toward the limit value. Due to mutation and
recombination, however, there is always some small phenotypic
and genetic variation. This phenotypic variation, however, does
not accumulate at the limit trait value but spreads before it
since no phenotypes exist beyond the trait limit (see Fig. S8).
From this genetic variation, the multivariate breeder’s equation
estimates, due to its linear nature, that there should be a response
to selection decreasing the trait beyond its limit (see Fig. S8).
This leads to a bias since a change in the trait mean is predicted
where there can be none. Although biases related to trait limits
were not rare, most biases were not due to these limits. In fact,
our overall estimation of bias (Figs. 3, 5, and 6) excludes this type
of bias.

Population parameters such as population size, mutation
rate, mutation effect size, and number of loci had a modest effect

on bias (Fig. 6). We performed evolutionary simulation for the
same 32 optima, but changing one population parameter from the
core parameter set at a time (see Table 1). These parameters affect
how fast the population moves in the trait and developmental
parameter space, but do not affect the nonlinearity of the GPM
itself since, as we explain in the Introduction, the nonlinearity of
the GPM is determined by the developmental model alone (i.e.,
the mapping between genotype and developmental parameters is
additive; see Fig. 1). Irrespective of the value of the population
parameter set, the population is crossing the same regions of the
GPM on its way to the optimum, and the prediction biases are
therefore of similar relative magnitude among the population
parameter sets. A notable exception is the small population
size. In that condition, there is an increase in prediction errors
due to both stochastic factors (drift) and misestimation of
variance components (due to smaller sample sizes to estimate the
parameters). This leads to larger biases.

The addition of environmental effects had a negative impact
in the predictive ability of the multivariate breeder’s equations
(Fig. S9, see Materials and Methods section for details of the
implementation). When environmental effects were simulated by
adding a normally distributed random amount to each trait in each
individual, bias increased only slightly. When environmental
effects were simulated by adding a normally distributed random
term to each locus, bias increased substantially. Essentially this
increased the spread of the population in the genetic space and,
consequently, in the developmental parameter space. With the
population occupying a larger volume of the developmental pa-
rameter space, it is more likely that it will include highly nonlinear
regions that lead to bias when applying the breeder’s prediction.

Discussion
There is already some theoretical literature stating that the as-
sumptions of the breeder’s equations may not always hold (Merilä
et al. 2001; Pigliucci 2006; Wilson et al. 2006; Hadfield 2008;
Bonamour et al. 2017). These previous studies, however, do not di-
rectly consider the GPM. Exceptions are Rice’s (Rice 2002, 2004,
2012) and Morrisey’s work (Morrisey 2015). Rice’s work shows
that the predictions of the multivariate breeder’s equation can be
inaccurate under complex, nonlinear GPMs. Although this work
demonstrates that inaccuracies can occur, it does not include an
understanding of actual GPMs from which to evaluate how large
and frequent should these inaccuracies be, as our work intends.

There is a vast literature on population genetics models with
epistasis that is related to the GPM (Barton and Turelli 1989;
Hansen and Wagner 2001). Hansen and Wagner (2001) introduced
a multilinear model in which the effect of an allele substitution
in a locus is modeled as a linear combination of locus effects
and pairwise epistatic effects among loci. Using this description,
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Figure 6. Population genetic parameter has only a modest effect on the bias. The plots above show the distribution of multivariate
relative bias for all 30 generations of the 32 evolutionary simulations in each of the population parameter sets. We used a bootstrap
approach (10,000 resamples) to compare the medians of the multivariate relative biases of the population parameter with that of the
core parameter set. (Mutational effect size: Low versus Core, P-value = 0.091; High versus Core, P-value = 0.85; Frequency of mutations:
Low versus Core, P-value = 0.27; High versus Core, P-value = 0.89; Number of loci: Low versus Core, P-value = 0.064, High versus Core,
P-value = 0.057; Population size: Low versus Core, P-value < 0.001; High versus Core, P-value = 0.88). Because the population parameters
do not change the GPM, similar prediction biases were found in all conditions. Low population size did show much larger prediction
errors than the other population parameters. This is due to the fact that there are increased errors due to stochasticity (more bias) and
worse estimates of variance components (smaller sample sizes for their estimation). Generations where the populations is in regions of
the GPM where small parametric changes lead to some cusps not forming, such as the one shown in Figure 2C, were not included in this
plot.

the authors develop expressions for usual quantitative genetics
measures such as additive genetic variance, and most relevant to
us, a modification of the breeder’s equation that takes into account
epistasis. Carter et al. 2005 completed this analytical work with
simulation studies using the multilinear model, and showed that
directional epistasis modifies the response to selection from
that expected by the breeder’s equation (see also Hansen et al.
2006).

Compared to these models, ours does not assume a specific
pattern of epistasis among loci. Instead, such patterns arise from
the dynamics of the development model. It has been argued that
these epistasis models are more general than models explicitly
based in development because they are not specific of any system
(Hansen 2008). The characteristics of the genotype–phenotype
map arising from our development model, however, are not
addressable from these models (see Fig. S10). In addition, one
can also argue that a single realistically complex genotype–
phenotype map, such as ours, may be more informative about
realistically complex genotype–phenotype maps in general than
epistatic models that are not based on experimental data on
how genes interact. This may be specially the case for complex
phenotypes, such as morphology, that are known to arise from
complex networks of interactions between genes.

Our model represents a more realistic GPM than that of
the multilinear model, but it is not analytically tractable. Indeed,
while working with the multilinear model, Carter et al. (2005)
state that “to study truly nonlinear forms of gene interaction,
we have to turn to highly specific architectures, and rely almost
exclusively on computer simulations.”

Among the criticisms to the predictive capacity of quantita-
tive genetics, those of Polly (2008) are specially related to our
work. Polly proposes three key consequences that development
can have on morphological evolution and that evolutionary quan-
titative genetics cannot fully account for. We found evidence for
the three of them in our simulations. First, even with continuous
variation at the level of underlying developmental parameters,
traits may occasionally exhibit small jumps in evolution. This oc-
curs in our simulations and leads to bias. The posterior cusp in
Figure 4A, for example, exhibits a jump in position. It is important
to notice, however, that these jumps are small, and, thus, may not
be perceived as trait discontinuities (in fact the range of trait varia-
tion observed in our simulations is within that observed in nature,
see Fig. S3). Second, Polly argues that developmental interactions
may limit the production of certain phenotypic variants in non-
additive ways, leading to a bias in the prediction of the response
to selection. This is mirrored in our findings of the prediction
bias in certain regions of the GPM. We explicitly show that the
structure of additive genetic variances and covariances in the G-
matrix does not always summarize all associations between traits,
leading to the bias in the prediction. Lastly, Polly mentions that
some nonlinearities will lead to loss or appearance of structures.
Evidence for this can also be found in our simulations. In some
cases, such as the evolutionary simulation shown in Figures 2C
and 4C, some traits are lost in some individuals (i.e., a cusp fails
to appear in development). This, as explained in the Results, leads
to problems in the application of the breeder’s equations.

A possible criticism to our study is that we may be applying
the multivariate breeder’s equation in situations where its
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assumptions are violated (i.e., linear GPM, see Fig. 4). It is an
open question, however, how sensitive the predictions of quantita-
tive genetics are, in practice and in theory, to departures from these
assumptions. In this respect, our study can be seen as a systematic
quantitative exploration of the validity of these assumptions
under a realistically complex GPM. The prevailing view in quan-
titative genetics is that the breeder’s equations are very accurate
when applied to single traits (Roff 2007). When selecting for
multiple traits at the same time or when selecting for some traits
and studying the correlated response in other traits, however,
the empirical evidence is scarce and does not always fit the
expectations from the breeder’s equation (Beldade and Brakefield
2002; Roff 2007; Allen et al. 2008; Hine et al. 2014). Our results
suggest a simple reason for these biases and provide a theoretical
nonlinear-GPM perspective on what to expect when multiple
trait selection experiments finally become more common.

Our results are robust to changes in the classical population
parameters such as population size and mutation rate (Fig. 6). Bias
is due to the complexity of GPM, and the population parameters
simply affect how fast and how widely the population moves in
the trait space over generation and, consequently, on the develop-
mental parameter space. In other words, the population parameters
do not affect the overall properties of the GPM arising from the
model. For example, population size determines the area, or hy-
pervolume, of the developmental parameter space over which the
population’s individuals are spread in each generation but it does
not affect which regions of this space have a nonlinear GPM.

It has been proposed that nonlinearities in the GPM are
not relevant for the response to selection, at least in the short
term (Hill et al. 2008; Hansen 2008). According to these authors
the additive model will be a good local approximation to the
GPM. It is argued that, even if the phenotypic effect of an allele
depends nonlinearly on the genetic background (i.e., the specific
combination of alleles in the other loci), sex ensures the reshuf-
fling of alleles into different combinations in each generation.
In a population, then, the effect of an allele is averaged over all
backgrounds in the population. This averaging leads to a local
smoothing of the GPM that would make it locally linear. However,
whether such smoothing is enough to make the nonlinearity of the
GPM irrelevant for short-term predictions should depend on how
large are the nonlinearities, as well as on the recombination rates.
Our results explicitly show that even for large populations in
linkage equilibrium, the GPM is often nonlinear enough to lead to
significant deviations between observed and predicted changes.

There is a long ongoing apparent discrepancy between
evolutionary developmental biology and quantitative genetics
(Cheverud 1984; Polly 2008; Salazar-Ciudad 2006, Hansen
2008). One approach views the GPM as simple enough, at least in
practice, for trait evolution to be predictable from linear statistical
approaches. The other views the GPM as highly nonlinear. Our

results present a potential point of connection between these
two views. The predictions of quantitative genetics would often
work accurately but, very often too, they would show relatively
large prediction errors that cannot be corrected by improving
the estimates of quantitative genetic parameters, since they arise
from the nonlinearity of the GPM.
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Table S1. List of developmental parameters in the tooth development model.
Table S2. Heritability estimated for all traits in generation 15 of all evolutionary scenarios in the core parameter set.
Figure. S1. List of optima used in the simulations.
Figure. S2. Results of simulations for core parameter set.
Figure S3. Changes in different parameters produce phenotypic effects of different magnitudes.
Figure S4. The method of repetitions eliminates errors due to stochasticity in a linear map.
Figure S5. Prediction bias was found in simulation starting with different initial conditions.
Figure S6. Prediction bias arises when the population is in a nonlinear region of the parameterphenotype map.
Figure S7. Distribution of additive genetic variance in the direction of selection and relationship with relative bias.
Figure S8. Bias can arise because variation does not exist beyond a trait value but the linear transformation in the breeder’s equations infers that such
variation should exist.
Figure S9. Including environmental effects negatively affects the performance of the breeder’s equation.
Figure S10. The tooth model is not compatible with the assumptions of the multilinear model.
Figure S11. Multivariate prediction error for each generation of all 32 evolutionary simulations of the core parameter set.
Figure S12. The directions of selection in all 32 evolutionary simulations are different.
Video S1. Trait distribution in time for the 30 generations of the simulation shown in Fig. 2B.
Video S2. Trait distribution in time for the 30 generations of the simulation shown in Fig. 2C.
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