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Most organisms have finite life spans. The maximum life span of mammals, for example, is at most some years, decades, or

centuries. Why not thousands of years or more? Can we explain and predict maximum life spans theoretically, based on other

traits of organisms and associated ecological constraints? Existing theory provides reasons for the prevalence of ageing, butmaking

explicit quantitative predictions of life spans is difficult. Here, I show that there are important unappreciated differences between

two backbones of the theory of senescence: Peter Medawar’s verbal model, and William Hamilton’s subsequent mathematical

model. I construct a mathematical model corresponding more closely to Medawar’s verbal description, incorporating mutations of

large effect and finite population size. In this model, the drift barrier provides a standard by which the limits of natural selection on

age-specificmutations can bemeasured. The resultingmodel reveals an approximate quantitative explanation for typical maximum

life spans. Although maximum life span is expected to increase with population size, it does so extremely slowly, so that even the

largest populations imaginable have limited ability to maintain long life spans. Extreme life spans that are observed in some

organisms are explicable when indefinite growth or clonal reproduction is included in the model.
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Impact Summary
Our mortality is a topic that captures the attention of scientists

and the public alike. What are the ultimate causes of ageing

and eventual death? Can we predict the longevity of organ-

isms based on their traits? We typically take it for granted that

living things age and do not live forever, and evolutionary the-

ory provides theoretical understanding of why organisms age.

We also often take it for granted that maximum life spans of

familiar organisms are not only limited, but they fall in some

specific range. The maximum life span of mammals, for ex-

ample, is at most some years, decades, or centuries. Why not

thousands or tens of thousands of years, or more? This aspect

of the evolution of longevity is more elusive. Even if theories

can tell us reasons for why living things must age, they do not

offer an easy path to see where limits to life span might lie and

why. In other words, existing theory provides reasons for the

prevalence of ageing, but making explicit quantitative predic-

tions of life spans is difficult. I develop a mathematical theory

that accounts for two factors that are missing from much of

earlier work: mutations of large effect, and finite population

size. This combination in turn makes it possible to link a con-

cept called the “drift barrier” from evolutionary theory to the

evolution of ageing. The drift barrier refers to a limit where the

power of random genetic drift overcomes the power of natural

selection. Using such a model setup, I calculate a drift bar-

rier for a limiting age where natural selection can no longer

remove even deadly mutations from the population. This drift

barrier is an approximate theoretical limit for maximum life

spans that natural selection can support. The theory yields re-

sults in the observed range for mammals, and suggests direc-

tions for empirical tests.

The prevalence of senescence and intrinsically limited life

span is one of the oldest conundrums in biology. Weismann

proposed an evolutionary explanation for ageing and limited

longevity as far back as 1891 (Weismann 1891), but arguably

the most important contributions to the topic appeared in the
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1950s–1960s in work by Medawar (1952), Williams (1957), and

Hamilton (1966)—articles that are still among the most influen-

tial in evolutionary biology several decades later. The theory laid

out by Medawar is often called the “mutation accumulation” the-

ory for the evolution of senescence, and Hamilton’s contribution

provides the mathematical tools that can be used to formalize

this verbal theory and give it a more rigorous foundation. In

other words, Hamilton’s paper is said to provide a formal and

quantitatively explicit analysis of Medawar’s forces of natural

selection (e.g., Rose et al. 2007, Sherratt & Wilkinson 2009).

Here, I argue that although this description of the link be-

tween Medawar and Hamilton is justified and true, it is only a

partial truth. First, although Hamilton’s model was a major break-

through, there are two significant aspects of Medawar’s verbal

model that Hamilton’s mathematical approach cannot address.

Second, although Hamilton’s model is quantitative in the sense

that it provides a mathematical method to analyze age-specific

forces of selection, it does not provide a clear way to predict the

absolute length of life spans that we should expect to evolve. For

example, it yields a convincing reason for why mammals should

age, but it remains unclear why mammals should live a few years,

decades, or two centuries at most, rather than thousands or tens

of thousands of years. Constructing a mathematical model that

more closely follows the assumptions of the verbal example that

Medawar (1952) presented takes us toward a resolution to the

second issue (prediction of absolute life spans).

I will begin by recapitulating a central example that

Medawar (1952) presented to drive home his argument. I will

then explain why Hamilton’s (1966) model cannot address this

example, and derive a complementary model that can. Medawar

(1952) proposed that a decline in survival with age can escape

natural selection because older age classes are increasingly invis-

ible to selection. Central to the argument was a thought exper-

iment with a hypothetical stock of 1000 test tubes that are ran-

domly broken at a rate of 10% per month. Furthermore, the tubes

somehow reproduce themselves at a similar rate to maintain their

numbers constant. Medawar argued that even if the vulnerability

of the test tubes to breakage does not increase with age (i.e., the

test tubes do not senesce), they are nevertheless more likely to

have been randomly broken by the time they would reach old age

simply because they have spent more time under constant risk of

breakage. Now, instead of a population of unchanging, nonsenes-

cent test tubes, imagine that the test tubes carry a stopwatch that

is started at birth and a self-destruct device that shatters the tubes

when the stopwatch reaches a given, large enough reading (say,

100 months). Despite its seemingly drastic effect, few (if any)

tubes will in fact be affected by this self-destruct device, because

they have very likely been shattered by random breakage before

their time is up. The point Medawar was making with this ex-

ample is that if, instead of test tubes, we consider a population of

living organisms, a lethal mutation causing such age-specific self-

destruction would have very little effect because it would hardly

ever be expressed before the organism is dead anyway due to ex-

trinsic mortality, which must always be present in a stationary

or near-stationary population. Therefore, even a lethal mutation

with sufficiently late age of onset will be very weakly selected

against if it appears in an initially nonsenescent, immortal popu-

lation.

Where does this deviate from Hamilton’s (1966) mathemat-

ical model? There are two salient points. First, the nature of the

deleterious mutations is a major departure. Hamilton’s model is

based on the mathematical method of implicit differentiation and

thus limited to mutations of very small effect, in sharp contrast to

the lethal mutation in Medawar’s verbal example. Second, Hamil-

ton’s model and those elaborating on it do not typically account

for effects of finite populations, in contrast with the stationary

population of 1000 individuals in Medawar’s example (a note-

able exception here is the model and empirical analysis of Lohr

et al. 2014, where finite population size is accounted for, but mu-

tation effects remain small as in Hamilton’s 1966 model). To be

clear, the intention is not to claim that one of these classic papers

is better than the other: Medawar’s analysis has known limita-

tions (inherited from the brief remarks of Fisher 1930; see, e.g.,

Charlesworth 2000), and it would not be fruitful to rank a verbal

and mathematical model in this way in any case. Nor is the inten-

tion to claim that researchers are not aware of mutations of both

small and large effect, or of finite populations—the point is sim-

ply that the two models differ on these points. The assumptions of

Hamilton (1966) are not “wrong”—they are the kinds of simpli-

fying assumptions that are often needed for a tractable analysis.

But they do prevent us from seeing fundamental results that arise

when a mathematical model is constructed to explicitly follow

Medawar’s verbal account with lethal mutations and a population

that is finite and fixed in size. Most importantly, the new model

makes explicit predictions about maximum life span as a function

of simple life history and population parameters. For example, it

suggests a simple explanation for typical mammalian life spans,

something that previous theory has limited ability to do.

Methods
ANALYTICAL MODEL

The starting point is a biological parallel of Medawar’s test tube

population: a hypothetical population of initially non-senescent

organisms, such that a newly matured individual is indistinguish-

able from one that has successfully reproduced several times. We

then ask: can a lethal mutation (i.e., one that shatters a test tube)

that is expressed at a specific age spread in a finite population

of effective size Ne (see Table 1 for notation), and if so, at what

age? The age at which this can happen is determined by the
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Table 1. Notation used in the model.

Notation
Name of parameter, variable,
or function Notes

Ne Effective population size
b Age at first reproduction Age at which individuals are capable of

reproduction for the first time
σ Juvenile survival Probability of a newborn offspring surviving to

reproductive age
μ Adult mortality for continuous

reproduction
Instantaneous mortality rate of reproductive

individuals
f Fecundity Rate of reproduction in female offspring per

mother per year. Denoted f(t) if age specific.
l(t) Survival probability Probability of survival from birth to age t, taking

into account both juvenile and adult survival
σf Recruitment Rate of offspring surviving to maturity per mother

per year (i.e., juvenile survival multiplied by
fecundity)

drift barrier (Kimura 1962; Li 1978; Kimura 1984; Lynch 2007),

where the power of random genetic drift overcomes the power

of selection. Analogous to the drift barrier imposing a limit on

cellular perfection (Lynch 2012) and a lower bound on mutation

rates (Lynch et al. 2016), here the drift barrier imposes an upper

bound on life span. In the drift barrier hypothesis for mutation

rate evolution, natural selection primarily selects for reduced

mutation rates, whereas random genetic drift (which depends

on population size) prevents the maintenance of zero mutation

rates (Lynch et al. 2016). In the present model, natural selection

primarily selects for the maintenance of longer life spans, but

random genetic drift (again, dependent on population size)

prevents the maintenance of infinite life spans. This approach

allows us to relate the limits of maximum life span quantitatively

to population size and life history characteristics.

The method is first introduced with a life history model that

corresponds to Medawar’s example (Medawar 1952) and serves

as an approximation to the life histories of many mammals and

birds (Charlesworth 2001; Oli & Dobson 2003; however, note

that it is not intended to be a model of human life history where

female reproduction typically ceases relatively early in life). The

life cycle of the organism is divided into two phases: a maturation

phase of length b, which a newborn survives with probability

σ, after which the newly matured individual enters a pool of

adults competing for reproductive opportunities. She thereafter

reproduces with fecundity f per time unit, and the reproductive

phase continues until she is eventually unsuccessful and dies.

Now, again following Medawar, consider a newly intro-

duced mutation that is lethal at age x and the selection coefficient

against such a mutation in an initially nonsenescent population.

Obviously not all mutations are lethal in nature. However, aside

from being faithful to Medawar’s example, the role of this “test

mutation” in the current model is to provide a limiting case for

computing an age beyond which the population is outside the

reach of natural selection. If we can find a limit where lethal, age-

specific mutations become invisible to selection, we can be sure

that beyond that limit any age-specific mutation with less drastic

effects is also invisible to selection. In this sense, the lethal

mutation is a computational aid rather than an exact biological

assumption.

In the ancestral nonsenescent population, adult extrinsic

mortality (μ) is independent of age, so that survival to age t > b

is l (t ) = σe−μ(t−b) (the product of juvenile survival and negative

exponential survival probability arising from constant mortality

in the reproductive phase). Age-specific fecundity is f (t ) = f for

t > b and 0 otherwise. A stationary population (as in Medawar’s

example) then implies ∫∞
0 l (t ) f (t )dt = ∫∞

b σe−μ(t−b) f dt =
σ f
μ

= 1, from which it can be solved that μ = σ f (i.e., recruit-

ment into the adult population equals adult mortality). This

constraint does not imply commitment to a specific causal

relationship among μ, σ, and f: it results from the reasonable as-

sumption that over long, evolutionary timescales the population

is close to stationary (Fisher 1930; Hamilton 1966; Charlesworth

& Williamson 1975), implying that adult mortality must be in

balance with recruitment regardless of causal relationship. There

may of course be complicated underlying causal processes that

keep population size in check, but the assumption of a station-

ary population links adult mortality inexorably to recruitment

regardless of the nature and complexity of such processes (see

also, e.g., Cohen et al. 2020). Under the present assumptions, an

observation of the value for either recruitment or adult mortality

implies the value of the other, and for the purposes of the model it

is not necessary to know the processes keeping them in balance.

Now consider the fate of the mutant who dies at age x if she
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has survived that far. The expected difference in her lifetime

reproductive success relative to the wild-type is

s =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∞∫
b

σe−σ f (t−b) f dt = −1 x ≤ b

−
∞∫
x

σe−σ f (t−b) f dt = −e−σ f (x−b) = −e−μ(x−b) x > b

.

(1)

Equation 1 is the selection coefficient against such a mu-

tation. A mutation that is deadly before maturation can never

be fixed in a population (s = −1), but the selection coefficient

decreases thereafter, and the decrease is rapid if adult extrinsic

mortality is high. In a hypothetical infinite population, such

a mutation could not go to fixation no matter how small the

negative selection coefficient, but a finite population behaves in a

fundamentally different way. Classic results on mutation fixation

in finite populations (Kimura 1962) have a remarkably simple

corollary (Li 1978; Kimura 1984): a deleterious mutation can

spread over the population when |s| < 1/Ne (the drift barrier:

Lynch 2007). Therefore, the approximate limiting age x is found

by solving e−σ f (x−b) = e−μ(x−b) = 1/Ne, which obtains

x = b + ln (Ne)

μ
= b + ln (Ne)

σ f
. (2)

Equation 2 describes a temporal drift barrier for age-specific

mutations, written in alternative and complementary ways. The

importance of the form b + ln(Ne )
σ f is that both b and f are traits

of the organism, whereas μ is under the organism’s control to a

lesser extent. The equation x = b + ln(Ne )
σ f is therefore more con-

cretely tied to the phenotype of the organism than the alternative

form. The discrete counterpart of this equation is

x = b + ln (Ne)

ln (1 + σ f )
. (3)

See Supporting Information for derivation of equation 3.

Equation 2 is more transparent about the predicted correlations,

whereas equation 3 is more appropriate for organisms with

seasonal reproduction, and more efficient to simulate (see next

section). Apart from the difference in reproductive timing,

their underlying logic is exactly the same, they predict similar

correlations, and coincide quantitatively when σ f is small.

SIMULATION MODELS

The aim of the simulations is to confirm the logic of the an-

alytical models and to relax some assumptions made in their

derivation. Factors that are of particular interest here are (i) the

applicability of the drift barrier concept to an age-structured

population and the robustness of the model when this age-

structure subtly changes as a lethal mutation invades, (ii) ro-

bustness of the model when multiple mutations of varying effect

sizes exist in the population simultaneously, (iii) a preliminary

check for robustness in the face of population size fluctuations,

and (iv) the effect of parallel reproductive pathways where one

“rejuvenates” the offspring and one may do so to a lesser extent

(e.g., gametic vs. budding reproduction in organisms such as

hydra—see Discussion). The simulation results arise organically

out of a random process without reference to theory on fixation or

the drift barrier. A brief description is given here; full simulation

code with comments is provided in the Supporting Information.

Central to all simulations here is a population where the

number of adult individuals is regulated so that it stays fixed in

size (most simulation figures) or fluctuates around a specified

mean (open circles in Fig. 1). The adult population reproduces

simultaneously at discrete intervals, corresponding to the analyt-

ical equation (3). Adult population size, fecundity ( f ), juvenile

survival (σ), age at first reproduction (b), and the shape of the mu-

tation distribution are central features that can be altered. Adult

mortality arises implicitly at population regulation and is not

explicitly specified. A simulation could be set up with alternative

parametrizations and alternative ways of regulating population

size, but the aim here is to relate results explicitly to equation 3

and its variables. In each generation, all adults reproduce and

some juveniles survive to enter the adult phase, but prior to

the next reproductive event the population is culled back to its

fixed size from the juveniles that have matured in the current

generation and adults surviving from previous generations. The

age of every individual is tracked, and if they carry age-specific

deleterious mutations their survival probability at population

culling is altered by these mutations (in the case of lethal muta-

tions it become strictly zero). In Figure 3B, offspring reproduced

via the budding pathway “inherit” their parent’s age, whereas in

all other cases offspring are born at age 0 (see Discussion for

biological explanation). Note that adult population size is not nec-

essarily equal to Ne in an age-structured population (Hill 1979)

and must be computed according to each model parametrization

(see Fig. 1A and legend for an example of this effect).

In all simulations, a new mutation arises in one randomly

selected parent in every generation. The aim is not to mimic a

real mutation rate but to guarantee that multiple mutations are

typically present in the population simultaneously, thus ensuring

that results are not dependent on a sequence of temporally dis-

tinct mutation fixations or on a low mutation rate. Mutations in

all simulations are picked from the gamma distribution (the most

common mathematical distribution used to model the distribution

of mutation fitness effects: Eyre-Walker & Keightley 2007).

In Figures 1 and 3B, all mutations are lethal, but their age

of onset (i.e., maximum life span) varies. When a mutation

arises in a single individual, its value is picked from the gamma

distribution, truncated to maximum value 2. Maximum longevity

is multiplied by this value, so the mutation is deleterious in the
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range 0–1 and beneficial when >1. The gamma distribution

for Figures 1 and 3B is parameterized with shape and scale

parameters 1 and 0.218, respectively, resulting in a distribution

where approximately 1 in every 100 mutations is beneficial (see

Fig. S1 for a visualisation of mutation distributions). For the

results indicated with open circles in Figure 1B, adult population

size was forced to rapidly fluctuate (fluctuations visualised in

Fig. S2, using code shown in the Supporting Information).

In the simulations underlying Figure 2, the main difference

in comparison to Figure 1 is that although a mutation’s effect

is still picked from the gamma distribution, mutations are now

typically not lethal, thus relaxing another simplifying assumption

of the analytical model. Instead of altering life span directly,

mutations now alter age-specific relative survival probability at

population regulation, whereas the age of onset of the mutation

as well as the time-window (i.e., how long the effect of the

mutation persists after age of onset) is separately picked from

a uniform distribution (range 1–50 for onset and 0–25 for win-

dow). This setup allows the evolution of gradual senescence, in

contrast to Figure 1 where maximum life span is directly altered

by mutations. The gamma distribution for mutations in Figure 2

is shifted and truncated so values range from –1 to 1 (thus either

adding or subtracting from age-specific survival probability),

using shape parameter 1 and scale parameters 0.458, 0.218, and

0.189. These parameters correspond to 1 mutation in 10, 100,

and 200, respectively being beneficial (see Fig. S1).

Overall, the objective of these simulations is not to aim for

maximal realism, but instead to check whether the relatively sim-

ple analytical model is robust to some major deviations from its

simplifying assumptions. See figure legends and the full simula-

tion code in the Supporting Information for further details on the

simulations.

Results and Discussion
Any deleterious mutation with effects confined beyond age x

determined by equations 2–3 is effectively invisible to selection,

as is a beneficial mutation that “repairs” the effects of such a

deleterious mutation. Contrarily, below the limit x, sufficiently

deleterious mutations can be purged and sufficiently beneficial

mutations can be fixed by selection. As an upper limit, the

temporal drift barrier described by these equations is therefore

not strictly limited to the idealised lethal test mutation, but

approximately true for a much wider range of mutation dis-

tributions. If longevity is temporarily pushed slightly below x

by deleterious mutations, rare advantageous mutations become

1, 0.3

1, 0.5

           

1, 1

3, 1

10

5

1

A B

Figure 1. The effects of recruitment, age at first reproduction, and population size on the evolution of maximum life span. The curves

are analytical results based on the discrete equation 3, which is more efficient to simulate than the continuous equation 2. Dots are

results of simulations that intentionally violate assumptions of the analytical model to check for robustness (see model description in

the main text and code in the SI). Mutations arise in every generation so that there are always multiple alleles in the population, and

each mutation can increase or decrease life span by a randomly picked amount proportional to current life span. The gamma distribution

is parameterised so that on average 1 mutation in 100 is advantageous (i.e., increases maximum life span). However, all mutations still

result in certain death at the age thus determined; this assumption is relaxed in Figure 2. Each instance of the simulation was run for

1 million generations (panel A) or 4 million generations (panel B, to account for larger population sizes) in multiples of generation time,

and the coloured dots indicate averages of the last 30% of these generations. Note that the curves in panel A are not exact vertically

shifted copies of each other as one might first expect from equations 2–3. The reason for this is that age at first reproduction alters

Ne when overlapping generations are present. Ne for the analytical results was calculated following Hill (1979). In panel A, the adult

population size is 1600 individuals, and in panel B age at first reproduction is 1. The open circles in panel B are simulation results where

fluctuations of large magnitude in population size were allowed around the mean (see Supporting Information). Population persistence

in the presence of these fluctuations requires sufficiently high per-capita recruitment, hence these results are restricted to the two lowest

curves in panel B.
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Figure 2. Simulation results and the selection shadow as predicted by equation 3. In contrast to Figure 1, mutations are now typically

not lethal, and instead alter age-specific survival probability at population regulation. A mutation is picked from a gamma distribution

(Eyre-Walker & Keightley 2007) in every generation as in Figure 1, but manifests its effect in a very different way (see methods and

Supporting Information). Simulations were run for 1 million generations, and the figures represent the evolved age-specific survival

weightings averaged over the last 30% of these generations. A weighting of 1 is the maximum value (i.e., highest possible survival

probability), whereas a weighting of 0 implies certain death at population regulation. The gray zone illustrates the ages where the

analytical equation 3 predicts drift to overwhelm selection (hence expected to be an approximate limit to longevity). The three partially

overlapping curves within each panel result from mutation distributions parameterized so that on average 1 in 200, 1 in 100, and 1 in

10 mutations are beneficial, moving from leftmost to rightmost curve within each panel (see methods and Supporting Information for

details and illustrations of mutation distributions). In all panels, effective population size is 1600 individuals and age at first reproduction

is 1 (however, only adult life span is included in the x-axis).

visible to selection and increase longevity. If a rare advantageous

mutation pushes longevity above the limit, deleterious mutations

can easily take over provided they are more common than

advantageous ones. There is therefore no strict equilibrium, but

longevity is expected to fluctuate near x.

The long-term average resulting from this process will

depend to some extent on the distribution of mutation effects. As

is the case with many evolutionary models, it is trivial to define

unrealistic, extreme mutation distributions where equations 2–3

will fail to have predictive value. At one extreme, a distribution

restricted to advantageous mutations will maintain (or inevitably

drift toward) unlimited life spans. At the other, a distribution re-

stricted to deleterious mutations where each subsequent mutation

decreases fitness by an increment �1/Ne can in principle erode

any trait—age-specific or not—to oblivion. These limitations are

of course not specific to the current model, but examples of the

more general principle that evolutionary models must commonly

specify a reasonable range of possible mutations for their results

to hold. Specific analytical models could be constructed for some

mutation distributions, and it may be useful to do so for some

cases (see, e.g., Lynch 2012 for an example of a drift barrier

model with a specific mutation distribution). But for the present

argument, this would lead to multiple distribution-specific sub-

models, none of which would be likely to be exactly true in

nature. The approximate limits given by equations 2–3 are there-

fore arguably reasonable initial approximations in addition to

being simple and transparent. It is nevertheless of interest to de-

termine whether these equations hold, at least approximately, for
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Figure 3. Evolution of extraordinary life spans. In the analytical results of panel A, extrinsic mortality decreases over the adult lifetime,

for example, due to indeterminate growth. Age-specific extrinsic mortality is modeled in this example as μ
1+q(τ−b) , where τ is age and

q is a parameter that determines the strength of age-specific extrinsic mortality decrease. Repeating the derivation of equation 2 with

this assumption obtains x = b+ Ne
q
σf −1
q (see Supporting Information for derivation). The stronger the decrease in extrinsic mortality with

age, the higher the temporal drift barrier and evolving maximum life span x. The lowermost line (q = 0) corresponds to equation 2

with constant adult extrinsic mortality. In panel B, reproduction takes place partially via outgrowths or fragments of the parent (e.g.,

budding), and these fragments are assumed to inherit their parents biological age, that is, they are “born older” than offspring originating

from gametic reproduction. Budding reproduction alternates with gametic reproduction where age is not inherited. The bars represent

different autocorrelations for reproductive mode. p1 is transition probability from gametic to budding reproduction, whereas p2 is the

transition probability from budding to gametic reproduction. Hence, budding reproduction is absent in the leftmost bar, whereas budding

dominates the lifecycle in the rightmost bar. Note the break in the y-axis. The lack of “resetting” of biological age in budding reproduction

makes late-acting mutations visible to selection, and there is no limit to how far life span can evolve as the prevalence of budding

increases. Apart from transitions between the two reproductive modes, the simulation used to generate panel B is similar to Figure 1.

See Supporting Information for simulation code. In both panels Ne = 1600 and b = σ = f = 1.

some biologically reasonable mutation distributions. Figures 1–2

apply the gamma distribution (Eyre-Walker & Keightley 2007)

to a range of examples, and they also show that the result holds

to a good approximation if mutation rate is high so that several

mutations exist in the population simultaneously. Furthermore,

Figure 1B indicates that major fluctuations in population size

around the mean do not in themselves compromise the results

either. In Figure 2, mutations affect the age-specific relative

probability of survival during population regulation, rather than

directly altering maximum life span as in Figure 1. It should be

noted that the equations derived in this article apply as an approx-

imate upper limit even if mutations have beneficial pleiotropic

effects at earlier ages (Medawar 1952; Williams 1957; Kirkwood

& Rose 1991) because such effects make the mutation less

deleterious overall, shifting the limit toward younger ages. In

other words, if a mutation that is lethal at 100 years cannot be

purged by selection, then we can be certain that a mutation that

is lethal at 100 years and additionally has some positive effect at

age 10 cannot be purged by selection either.

The drift barrier described by equations 2–3 is very different

from the “walls of death” in previous studies, a concept based

on assumptions of all mutations affecting survival being dele-

terious (Tuljapurkar 1997; Wachter et al. 2013) and on infinite

population size (Wachter et al. 2013). Contrarily, the central

requirements for equations 2–3 to hold approximately are that

mutations with age-specific effects exist (as is assumed in much

of previous theoretical work, but see, e.g., Cohen 2004, Kirk-

wood & Melov 2011, and Wensink 2013 for critical discussion

of this assumption), that they are more commonly deleterious

than advantageous, and that population size is finite.

Figures 1–2 are not intended to cover all the bases but rather

to examine the most obvious deviations from model assumptions

such as variation in the mutation distribution, multiple simultane-

ously segregating mutations, and fluctuating population size. The

figures indicate that equations 2–3, although approximate, are

relatively robust. Future theoretical work could examine in more

detail the extent to which results may be altered by factors such

as variation in the mutation distribution, life history, regulation

and fluctuation of the population, and recombination.

IMPLICATIONS OF EQUATIONS 2–3

Equations 2–3 illuminate several aspects of the evolution of life

span. The negative exponential nature of cumulative survival

probability (eq. 1) and the resulting logarithm of population size
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(eqs. 2–3) demonstrate the inefficiency of natural selection at

keeping out even the most deleterious age-specific mutations. In

this context, an infinite population is a poor mathematical approx-

imation of any population that could hypothetically ever exist on

the planet. There are approximately 1050 atoms in the earth (Wol-

fram Research 2020), a number vastly higher than the size of any

biological population. Although the logarithmic function has no

upper bound, it increases extremely slowly: ln(1050) is only ap-

proximately 115. Therefore, although population size is expected

to explain some variation in longevity (and has been shown to do

so; Lohr et al. 2014), it can also be thought of as a limiting factor

whereby realistic effective population sizes place an upper bound

on longevity. Humans, for example, have a relatively low Ne of

approximately 10,400 (Charlesworth 2009), whereas Ne for the

house mouse is estimated to be 580,000 (Halligan et al. 2010).

Yet the difference in ln(Ne) is quite small: 9.2 (human) versus

13.3 (house mouse). Assuming that Ne for most mammals is in

the range 1000–1000,000, ln(Ne) will consequently vary between

7 and 14, only a twofold difference between the minimum and

maximum. Ne can therefore greatly limit life span even in very

large populations. Moreover, the slow increase of ln(Ne) to some

extent compensates for the approximate nature of the drift barrier.

As noted by Li (1978), “the dichotomy between s ≤ 1
N and s > 1

N

is somewhat arbitrary,” and in reality there is no exact and abso-

lute limit for the selection coefficient at which a barrier emerges.

But because Ne appears inside the logarithm in equations 2–3, the

inherent fuzziness of the drift barrier is “compressed,” so that it

provides a more solid and accurate anchor point than one might

initially expect.

“Extrinsic mortality,” whose effect on ageing is widely de-

bated (e.g., Wensink et al. 2017), can be thought to influence the

result in multiple ways. Equation 2 predicts adult mortality to be

negatively correlated and juvenile mortality to be positively cor-

related with maximum life span across species (increased juve-

nile mortality corresponds to a decrease in σ). Mortality can also

influence the outcome by decreasing Ne. All else being equal, fe-

cundity is predicted to be negatively correlated with maximum

life span (eqs. 2–3), indicating that care must be taken when us-

ing between-species comparisons to infer that organisms face a

trade-off between life span and reproduction. Although a nega-

tive fecundity-life span correlation could arise from such a phys-

iological trade-off, equation 2 shows that a negative correlation

at the interspecies level is expected even in the absence of one,

instead arising from the simple assumption of population station-

arity (see also Cohen et al. 2020 for a similar point and critical

discussion on trade-offs in intra- and interspecific comparisons).

It is worth reiterating that equations 2–3 do not assume any par-

ticular values for adult mortality, juvenile survival, or fecundity.

Instead, they only assume that these values must have been in bal-

ance over very long evolutionary timescales in the past, where the

population must have been close to stationary on average (Fisher

1930; Hamilton 1966; Charlesworth & Williamson 1975). It is

the evolutionary outcome of these long timescales that we ret-

rospectively examine when we observe maximum life spans in

nature. The equations relate this outcome to the drift barrier.

Equation 2 is also tentatively in line with the observation that

estimated age at onset of senescence is strongly positively corre-

lated with generation time in birds and mammals (Jones et al.

2008). Generation time for the life history used in derivation of

equation 2 is T = b + 1
μ

= b + 1
σ f (Lehtonen & Lanfear 2014),

which differs from equation 2 only by the factor ln(Ne) in the

second term. Although equation 2 relates explicitly to maximum

life span rather than age at onset of senescence, the two are likely

to often be positively correlated (maximum life span can obvi-

ously not be smaller than age of onset, and the two coincide in

the simplified hypothetical scenario where only lethal mutations

are considered). Overall, equations 2–3 are transparent in the cor-

relations they predict between maximum life span and model pa-

rameters. The equations should be considered as a whole, and

care needs to be taken in testing for correlations with individual

parameters. For example, the equations predict a positive correla-

tion between maximum life span and effective population size, all

else being equal. However, Ne is also likely to be correlated pos-

itively with fecundity across species: larger animals with smaller

populations tend to have lower rates of reproduction. The posi-

tive effect of ln(Ne) could therefore be compensated for or out-

weighed by the negative effect of fecundity in the denominator in

an across-species comparison. But importantly, the model goes

beyond correlational predictions. It makes explicit quantitative

predictions about maximum life span based on simple life his-

tory and population parameters, something that previous theory

has had limited ability to do. Although equations 2–3 do not by

themselves address the evolution of gradual senescence, they cap-

ture the “pace of ageing” and the variation in the time-scale on

which mortality progresses across species (Baudisch 2011).

Whether examining correlational or quantitative aspects of

the theory, it is important be aware of what equations 2–3 are

saying. Most importantly, they are not predictions of expected

life span. Instead, they are predictions of maximum life span and

the limits to natural selection, and how that limit in turn relates to

life history and population size. An alternative way to view this is

that equations 2–3 quantify where the “selection shadow” begins

in full force (Fig. 2). However, there is an interesting connection

between expected life span and maximum life span in the con-

tinuous reproduction model: the second term of equation 2 can

be written as 1
μ

ln(Ne). Noting that 1
μ

equals expected adult life

span in a nonsenescent population, one interpretation of equa-

tion 2 is that under this life history model, selection can maintain

up to ln(Ne) mean adult life spans in the face of age-specific,

deleterious mutations (for mammals, typically 7–14 mean adult
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life spans; see above). Hence, if we estimated average adult life

span under natural conditions in a population matching the model

assumptions, the result would correspond to approximately 1
μ

,

whereas the longest measured adult life span in a very large sam-

ple would approximately correspond to 1
μ

ln(Ne).

EMPIRICALLY TESTABLE PREDICTIONS

The models considered here suggest possible empirical tests. As

a preliminary and illustrative example, it is helpful to consider

estimates for the parameters of equation 2: a small rodent-like

example (e.g., house mouse) with b = 0.2, f = 20, σ = 0.2, and

Ne = 580,000; a small bat-like species (e.g., Brandt’s bat) with

b = 1, f = 0.5, σ = 0.5, and Ne = 250, 000; and a large whale-

like example (e.g., blue whale) with b = 6, f = 0.2, σ = 0.5,

and Ne = 80,000 (see e.g., Roman and Palumbi 2003 for esti-

mates of historical effective population sizes for large whales,

Halligan et al. 2010 for effective population size of wild mice,

and Bhak et al. 2017 for Myotis bats). Here, the units of b and f

are years and female offspring per year, respectively. Substitut-

ing these values into equation 2 yields 3.5 years, 51 years, and

119 years, respectively, which are relatively near observed max-

imum longevities for similar species (4, 41, and 110 years, re-

spectively, for the house mouse, Brandt’s bat, and blue whale;

de Magalhães & Costa 2009). It is notable that body size does

not enter into the analysis in any way, despite the approximately

20 million-fold difference in weight between Brandt’s bat and

the blue whale. This is an intriguing result, given that bats are

known to be extremely long-lived relative to their size, whereas

mice of similar size are rather short-lived, yet all the examples

above are results of the same, relatively simple model. It must

be emphasized that these results are an illustrative example only,

and not intended to be a test of the theory. Nevertheless, they do

demonstrate two things: that the theory can produce results in the

observed mammalian range from minimal but realistic data, and

that it is in principle straightforward to put the theory to empirical

test using a much larger dataset. A challenge for rigorous com-

parative tests of theory will be sourcing data that corresponds to

the distant evolutionary past and is not influenced by human in-

tervention. For example, contemporary survival and population

size data collected for conservation purposes may be misleading

in this context. However, b and f can be considered intrinsic traits

of the organism, more robustly reflecting values that have deter-

mined selection in the distant past.

An empirical question that has already been partially an-

swered is whether life span scales with effective population size,

as suggested by equations 2–3. This question was addressed in

a study by Lohr et al. (2014), who compared rates of ageing

and longevity in populations of Daphnia magna. Lohr et al. also

developed a model to account for finite population effects, but

the model was framed in terms of mutations of small effect,

very different from the model presented here with mutations of

large effect related to the drift barrier. Nevertheless, the empiri-

cal results of Lohr et al. confirmed the expectation that life span

scales with population size. Because the current model is framed

in terms of effective population size (rather than census popu-

lation size), a further prediction is that species with more frac-

tured population structures should have shorter life spans than

those with continuous population structures (e.g., island versus

mainland species), and any process that alters effective popula-

tion size should in principle have the same effect. For example,

species with strong sexual selection may have decreased effec-

tive population size, and hence potentially decreased life span

relative to similar species where reproduction is more evenly dis-

tributed among individuals. Regarding the often-contested rela-

tionship between extrinsic mortality and longevity, equation 2

indicates that juvenile and adult mortality are expected to have

opposite effects on the evolution of longevity (in line with the re-

sults of Caswell & Shyu 2017) and should therefore be analysed

separately.

NEGLIGIBLE SENESCENCE

Recent research has uncovered much diversity in patterns of age-

ing and suggests that some organisms have negligible senescence

(Jones et al. 2014; Jones & Vaupel 2017). Can the present models

clarify our understanding of such extreme longevities? The most

immediate answer suggested by equations 2–3 is that species with

long juvenile periods, large population sizes, low adult mortality,

and low rates of recruitment (arising from low fecundity and/or

high juvenile mortality) can all be expected to have long maxi-

mum life spans. But more generally, equation 2 and its discrete

counterpart can be thought to set a null model for understand-

ing limits to longevity for simple life histories, whereas analyz-

ing special cases can shed light on the diversity seen in nature.

Equations 2–3 arise from a specific life -history model that ap-

proximates, for example, many mammal species, but the general

framework presented here is in agreement with the claim that

senescence is not inevitable (Jones & Vaupel 2017). An analo-

gous derivation to that for equation 2 can be applied to alternative

life histories. Consider, for example, a species with adult extrinsic

mortality risk that decreases with age (e.g., due to indeterminate

growth and associated decreased predation risk). Figure 3A illus-

trates results for this kind of life history for which an analytical

equivalent of equation 2 can be derived (see legend to Fig. 3, and

derivation in the Supporting Information). The results show that

longevity in such an organism can in principle be maintained sig-

nificantly beyond the ages suggested by equations 2–3 (the low-

est curve in Fig 3A corresponds to eq. 2). Similar examples could

be constructed for many alternative life histories, for example,

where fecundity increases with age.
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Some organisms with clonal reproduction have much re-

duced senescence, one of the most famous examples being the

apparently immortal hydra that reproduce clonally via forming

buds as well as via gametes (Martinez 1998; Schaible et al. 2015).

Theory suggests that the extreme longevity of clonal organisms

could be because clonally produced offspring can begin their life

in quite a different developmental stage than those starting their

life as gametes (Caswell 1985, Galipaud & Kokko 2020)—in a

sense, newborn clones can be “older” than those born via a ga-

metic reproductive pathway. Let us consider an extreme example

of this in the context of our model and return to the case of test

tubes that carry a stopwatch, started at birth, and connected to

a self-destruct device that shatters the tube when its stopwatch

reaches a given reading. What happens if, instead of starting the

stopwatch at birth, the parent passes on a stopwatch with an iden-

tical reading to its own? The outcome is of course that the read-

ings would accumulate in lineages, eventually any reading would

be reached, and all tubes would shatter. In biological terms, any

lethal mutation, no matter how late-acting would be exposed to

selection and could not be fixed in the population, resulting in

selection maintaining immortality. Clonal reproduction could be

a biological counterpart where the stopwatch might not be reset,

or is reset only partially. It seems feasible that this could be the

case when an offspring is produced from a physical outgrowth

of the parent in an essentially unbroken lineage of somatic cells

(e.g., budding). In such a case, it seems far from obvious that age

would be entirely “reset,” whereas in sexual reproduction devel-

opment starts anew from gametes after fertilisation. If biological

age is carried down a clonal lineage, late-acting deleterious muta-

tions are exposed to natural selection and extremely high longevi-

ties can be maintained. This is simulated in Figure 3B, where

gametic reproduction alternates with budding reproduction. The

more budding dominates the life cycle, the longer the resulting

maximum life span.

Admittedly, this example relies on strong assumptions about

differences in clonal reproduction and gametic reproduction,

where the latter “rejuvenates” and the former does not. Whether

such a dichotomy is true in specific cases remains an open ques-

tion and is subject to many complicating factors (see Galipaud

& Kokko 2020 for a recent discussion), but in extreme cases it

seems plausible. We typically take it for granted that a sexually

reproduced offspring is born at “age 0” and does not inherit its

parents’ age. At the other extreme, making a truly physically ex-

act copy of a parent in every detail would inevitably (by definition

of a physically exact copy) pass on any physical factors associ-

ated with age. Reproduction by budding may fall somewhere in

between these examples, where the offspring begins to develop

from a physical fragment of the parent, but is not a physically ex-

act copy in its entirety. The example of Figure 3B is intended to

be a proof of principle, rather than an exact model of a specific

biological system. It shows that if gametic reproduction “rejuve-

nates” the progeny and budding reproduction does not, then or-

ganisms with significant periods of budding reproduction in their

lifecycle can maintain arbitrarily long maximum life spans. Con-

versely and intriguingly, this example suggests that we may be

mortal because our “clock is reset” at birth. If such rejuvena-

tion did not take place in newborns, deleterious late-acting genes

would be strongly selected against, preserving a nonsenescent life

history.

When the population is divided into castes or classes with

longevity evolving independently in different classes, and we are

interested in longevity of the reproductive class, adult extrinsic

mortality μ in equation 2 must also be of the reproductive class.

This can have major implications for maximum life span x. For

example, in eusocial insects extrinsic mortality of queens can be

extremely low, which can result in the evolution of very long

queen life spans (Keller & Genoud 1997). In some eusocial or-

ganisms, castes are not irreversibly determined, and all females

have a chance of becoming the reproductive individual. This is

the case, for example, in the eusocial and very long-lived naked

mole-rat (Ruby et al. 2018). In the context of the present model,

the longevity of such species can be explained by the fact that

at any given time only the queen in a single colony of many fe-

males reproduces, which in turn implies that per-female birth rate

(corresponding to f in the model), and hence population turnover

rate is low. Therefore maximum life span predicted by equation 2

is again high, consistent with observation. It should, however,

be noted that eusocial organisms are likely to have reduced Ne

(Romiguier et al. 2014), which has a reducing effect on maximum

life span. An analysis including estimates of Ne will therefore be

necessary to confirm whether equation 2 can predict life spans of

eusocial organisms.

In summary, an explicit consideration of Medawar’s verbal

model (Medawar 1952) with mutations of large effect and finite

population size exposes a clear and simple connection between

the evolution of maximum life span and the drift barrier. This link

in turn reveals a quantitative aspect of the evolution of senescence

that remains inaccessible with models that assume mutations of

small effect and infinite population size. The model predicts max-

imum life spans that are in the observed range for mammals,

and makes clear, empirically testable predictions for comparative

studies and potentially also for experimental evolution.
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