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Abstract Recent studies have revealed the importance of
self-consistency in evolutionary models, particularly in the
context of male–female interactions. This has been largely
ignored in models of the ancestral divergence of the sexes,
i.e., the evolution of anisogamy. Here, we model the
evolution of anisogamy in a Fisher-consistent context,
explicitly taking into account the number of interacting
individuals in a typical reproductive group. We reveal an
interaction between the number of adult individuals in the
local mating group and the selection pressures responsible
for the divergence of the sexes. The same underlying model
can produce anisogamy in two different ways. Gamete
competition can lead to anisogamy when it is relatively
easy for gametes to find each other, but when this is more
difficult and gamete competition is absent, gamete limita-
tion can provide another route for anisogamy to evolve. In
line with earlier models, organismal complexity favors
anisogamy. We argue that the early contributions of Kalmus
and Scudo, largely dismissed as group selectionist, are valid
under certain conditions. Linking their work with the
contributions of Parker helps to explain why precisely

males keep producing more sperm than can ever lead to
offspring: sperm could evolve to provision zygotes but this
brings little profit for the effort required, because sperm
would have to be equipped with provisioning ability before
it is known which sperm will make it to the fertilization
stage. This insight creates a logical link between paternal
care under uncertain paternity (where again investment is
selected against when some investment never brings about
genetic benefits) and gamete size evolution.

Keywords Anisogamy . Sperm competition . Parental care .

Sex roles

Introduction

Sexual reproduction can occur without distinct males and
females. The two sexes, with the labels “male” and “female”,
only exist if gametes of two distinct sizes fuse to form a
zygote (Bell 1982). Why maleness and femaleness exists in
the first place is a question of gamete size evolution (Lessells
et al. 2009; Jennions and Kokko 2010): males by definition
are the sex producing the small gametes (e.g., Bell 1982) in
such anisogamous species. Unicellular, sexually reproducing
organisms are usually isogametic with no separate sexes
(Parker et al. 1972), although most such organisms have
gametes of two kinds, + and −. These mating types are
morphologically indistinguishable, but fusion takes place
only between unlike types (Wiese et al. 1979; Maynard
Smith 1982; Hoekstra 1987). Hermaphroditism is a well-
known alternative, but hermaphroditic organisms still have
clearly distinct male and female functions (or “roles”).

The recent review by Lessells et al. (2009) states that
models for the evolution of anisogamy fall into three
categories: they focus on gamete competition (Parker et al.
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1972; Maynard Smith 1982; Bulmer 1994; Bulmer and
Parker 2002), sperm limitation (argued to increase egg size,
Cox and Sethian 1985; Levitan 1993; Dusenbery 2000), or
intracellular conflicts (Cosmides and Tooby 1981; Hurst
1996; Law and Hutson 1992). Lessells et al. (2009)
compiled a list of outstanding questions in the field,
recommending fruitful avenues for empirical work (on the
considerable difficulties to test between these hypotheses
empirically see also Randerson and Hurst 2001a, b). Here,
however, we shall argue that there is still much theoretical
work to be conducted as well.

The reason behind this view is the recent recognition of
the importance of the so-called Fisher condition in explain-
ing male and female roles in reproduction and parental care.
The Fisher condition states that in a given period of time,
the number of offspring sired by all males must be the same
as the number of offspring produced by all females. Queller
(1997) realized that many earlier theories of sex roles in
parental care violate this condition: they inexorably lead to
the logically impossible conclusion that, despite an even
sex ratio, males have on average more mating partners than
do females. Self-consistency has since been argued to be an
essential feature of models in evolutionary theory (Houston
and McNamara 2005; Houston et al. 2005), and subsequent
work has shown that this simple principle can lead to
complex and unexpected consequences (Kokko and Jenn-
ions 2008). In particular, the Fisher condition predicts that a
mate-limited sex should not automatically evolve to avoid
provisioning offspring: since members of this sex are (by
definition) not guaranteed a high mating rate, provisioning
offspring may be a more profitable route to fitness than
attempting ever more matings. We should therefore expect
the same to apply for theories of the evolution of the sexes:
under an even sex ratio, the average number of gametic
fusions achieved by males must be exactly the same as that
of females. The explanation for why males keep producing
more gametes than can possibly ever be fertilized has to be
answered with this in mind.

In much of the classic work on anisogamy, the numbers
of mature individuals producing gametes, and hence the
number of gametes available, is not explicitly considered
(e.g. Parker et al. 1972; Maynard Smith 1982; Bulmer
1994; Bulmer and Parker 2002). This means that we do not
know if an explicit consideration of mating difficulties of
the sex with the more numerous gametes would change the
conclusions (while so far, some models have been based on
mating difficulties of the larger gametes, classified under
“sperm limitation” in Lessells et al. 2009). Our aim is to
begin to fill in this gap by producing a model that is Fisher-
consistent, by which we mean that the Fisher condition is
taken explicitly into account (see Houston and McNamara
2005). In doing so, we also revisit the issue of the shape of
the functions that relate gamete or zygote size to its fitness.

The model

The historical sequence of events leading from isogamy
without mating types to anisogamy with mating types is
unclear, and consequently several different pathways have
been modeled in the past. We begin the construction of our
sequential invasion analysis model (Otto and Day 2007)
with the claim by Hoekstra (1987) that models of the
evolution of anisogamy should start with an ancestral
isogamous population with two mating types, although we
note that a similar model could be built for other cases too.
The same starting point was used in later revisions of
Parker et al.'s (1972) theory by Maynard Smith (1982),
Bulmer (1994), and Bulmer and Parker (2002). We mainly
use the work of Bulmer and Parker (2002) as the starting
point for our Fisher-consistent model, but we also incorpo-
rate attributes of the older models by Kalmus (1932) and
Scudo (1967). We model competition among gametes and
the scarcity (or abundance) of gametes of the opposite
mating type explicitly in continuous time (for an overview
see Fig. 1). Our continuous-time formulation applies to a
population in which the number of parents of either mating
type (+ or −) is at equilibrium, such that the local vicinity
contains Ax and Ay adult (gamete-producing) individuals of
the + and − type, respectively. (We prefer the notation x and
y for subscripts indicating mating types in equations, to
avoid confusion with the mathematical meaning of the
symbols + and −. Henceforth we will refer to the mating
types only as x and y). While we will formulate gamete

Nx Ny

Ax Ay

gamete mortality µ(mx)

zygotes form at rate NxNy

zygote survives with probability   (mx+my)

gamete mortality µ(my)

AxHx AyHy

Fig. 1 The description of the model. The number of parents of + and −
(whichwe henceforth call x and y) mating types is Ax and Ay, respectively,
and each parent produces an influx of Hx=H(mx) and Hy=H(my)
gametes per unit time into the local volume where gametes seek
fertilization opportunities. Gametes become depleted by dying (rate
μ(mx) and μ(my), respectively) and by mating via a process of random
encounters, with γ modifying the encounter rate. The survival of the
resulting zygote is a function of its size
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dynamics explicitly, we will not do the same for the number
of adults Ax and Ay. Instead, we assume that deaths of adults
occur independently of their gamete production strategy
and are compensated for by a corresponding number of new
recruits into the adult population. These assumptions allow
us to state that parental fitness is maximized when the
instantaneous rate of fitness gain is maximized, which will
depend on the rate of gamete formation and the subsequent
success of these gametes.

We assume that both mating types (x and y) have a
budget M per time unit to spend on gamete production. A
parent that produces gametes of size m can produce a
number H(m)=M/m of them per unit time. We assume that
M/m is sufficiently large in comparison to the rate of
gamete fusion, and the mortality rates of adults, zygotes,
and gametes that the population does not become limited by
lack of recruits; values that would lead to a persistent
decline of at least one mating type Ax or Ay in the
population would not sustain a population and we thus
exclude such cases. In other words, despite considering
gamete limitation, we assume it is not so severe that the
population cannot persist (this is in keeping with reality as
sperm-limited populations are argued to be common in
broadcast spawners, Bode and Marshall 2007).

As the local vicinity contains Ax and Ay adult individ-
uals, it follows that the total rate of gamete production in
the locality is AxH(mx)=AxM/mx and AyH(my)=AyM/my.
Our explicit accounting of the numbers of adults allows us
to consider cases where, e.g., sperm competition (or more
broadly, competition among gametes) does not occur: this
is achieved by setting Ax=Ay=1. To derive the fitness
gradients for calculating the evolutionary trajectories of
gamete sizes, we consider how (if at all) the fitness of a
single focal (mutant) individual changes with a small
increase or decrease in gamete size.

Since we consider here finite local population sizes,
gametes of the same mating type as the focal individual will
determine the depletion rate of gametes of the opposite
mating type. It follows that gamete availability for each
mating type is dependent on the gamete sizes of both
mating types, as well as their mortality rates. This also calls
for a critical re-examination of the functions for zygote and
gamete survival. Bulmer and Parker (2002) use a function
derived from the work of Vance (1973) and Levitan (2000)
for zygote survival. The function is based on two main
assumptions: (1) instantaneous zygote mortality rate is
constant and independent of zygote size; (2) the time
required for a zygote to develop from fertilization to
adulthood is inversely proportional to zygote size. From
these assumptions, it follows that larger zygotes are more
likely to survive the entire process from fertilization to
adulthood as they spend less time experiencing constant
mortality. We refer to Vance (1973) and Levitan (2000) for

the exact derivation for the survival function that ensues,
and simply give it here as

f mx;my

� � ¼ e�
b

mxþmy ð1Þ

Note that this survival is a probability, rather than a rate.
The parameter β scales the relationship between survival
and size such that large values of β only permit high
survival for very large zygotes. β is therefore interpreted as
the “complexity” or size of the organism: complex,
multicellular organisms in particular will experience a
survival advantage to the reproductive stage if they, already
as zygotes, are well provisioned (Bulmer and Parker 2002).

While one could conceivably question the assumption of
size-independent mortality, our approach does not as such
affect these assumptions. Therefore, we model zygote
survival identically with earlier work, which is also the
approach adopted by Bulmer and Parker (2002), and accept
Eq. (1) as our description of zygote survival.

These authors then state that the same relationship is
probably realistic for the probability of a gamete surviving
until fertilization. This, however, would require conditions
analogous to the two mentioned above: (1) instantaneous
gamete mortality rate should be constant, and independent
of gamete size; (2) the time required for a gamete to find
and fuse with another gamete should be inversely propor-
tional to gamete size. The first condition is again
reasonable, at least as a first approximation, although not
universally accepted (Dusenbery 2006). The second, how-
ever, is debatable.

One could argue that the time for a gamete to find
opposite gametes is indeed shorter for large gametes
because they present a target that is larger in cross-
sectional area (Lessells et al. 2009). Nevertheless, the
assumption that the time required for a gamete to be
fertilized is inversely proportional to gamete size seems
rather arbitrary. That said, there are probably other
combinations of time and survival that would lead to a
fitness function that has similar biologically reasonable
properties of a minimum viable size and a saturating shape
as the ones used in earlier models. Our main critique is thus
not the shape itself, but the fact that any gamete survival
function of a fixed shape is ill suited to capturing the idea
that the time to find a gamete of the opposite type must also
depend on the number of gametes of the opposite types.
Therefore, it is preferable to derive the fitness of each
gamete based on explicit tracking of gamete numbers,
mortalities, and zygote-forming possibilities.

Explicit accounting of the fate of gametes over time is
also required because gamete survival (over any given time
unit) will matter less to gametes of a mating type that will
mate much sooner than another type, as such a gamete will
then proceed to the stage in the life cycle where zygote
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rather than gamete survival matters. Thus, we need a
function to describe the instantaneous mortality rate of
gametes. As mentioned above, a reasonable first approxi-
mation is that it is relatively independent of gamete size.
However, realistically, there must be a lower limit for
gamete size corresponding to nuclear size and minimum
possible cytoplasm (Parker et al. 1972). Therefore we seek
a function for instantaneous mortality (not a probability as
in Eq. 1) that is approximately constant across most of the
size range, but increases steeply at the minimum gamete
size threshold. There are several candidates for such a
function, and if they lead to the same conclusions, this
makes the model more robust. We base the results shown
here on the function

mðmÞ ¼ ϕe
a
mð Þk ð2Þ

where ϕ is the minimum gamete mortality rate, α is the
(approximate) minimum gamete size below which mor-
tality increases sharply, and k determines the steepness of
the rise of the mortality rate at the minimum size
threshold. Here, m refers to either mx or my for the two
different gamete sizes produced by the two mating types.
As k increases, μ will approximate a step function more
and more closely, thus the interpretation of α as an
absolute minimum size for viability is better when k is
large, while with low k, there is no such step-wise
threshold but α nevertheless scales the size below which
survival is very low. Note that from instantaneous
mortality rates we can obtain survival probabilities over
a specific time period by calculating survival over a time
span of T units as e�TmðmÞ. Thus, we can phrase the same
results using survival rather than instantaneous mortality:
using, e.g., k=100, gamete survival is essentially an all-
or-nothing affair, whereas with lower values of k we can
set it to be a more gradually increasing function of gamete
size (Fig. 2a). This way, we can see that our approach
allows for survival functions of very similar shape to
earlier theory (Fig. 2b presents the Bulmer and Parker
2002 assumption) while allowing for more flexibility. The
more important improvement in our model compared with
earlier theory is explicit accounting of time. Our model
does not assume that the probability of surviving over any
prespecified time span (e.g., one time unit, as depicted in
Fig. 2a) equals the probability of surviving to fertiliza-
tion. The latter has to be computed taking into account
additional information on the time it takes to find a
gamete of the opposite mating type. In our model this
probability is determined through the time dynamics of
the model, and it is affected by gamete sizes of both
mating types, as well as the encounter rate γ.

We assume gametes to behave similarly to randomly
colliding particles, which are removed from the particle
pool after a successful collision. We begin by following
Kalmus (1932) and use statistical mechanics on particle
collisions to determine the population-wide rate of zygote
formation (see also Dusenbery 2006 for further similar
derivations). From the perspective of one individual
gamete of type, say, x, the rate of encountering gametes
of the opposite type is assumed to increase linearly with their
density Ny, multiplied by the encounter rate coefficient γ that
describes the ease with which gametes find each other. When
there is a total number Nx per unit volume of gametes that
experience such encounters, the overall rate of encounters in
the entire population becomes γNxNy where Nx and Ny

denote the equilibrium density of gametes in the locality
(which without loss of generality is assumed to have a
volume of unit size). The parameter γ can be used to adjust
the level of gamete limitation in the model. Note that
similarly as an instantaneous mortality rate can exceed 1, the
rate γNxNy can exceed the local number of gametes in a
continuous-time model, without this being a mistake. If a
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Fig. 2 The gamete mortality function used in this model, rephrased as
survival probability over one unit of time (a), and the gamete survival
function used in Bulmer and Parker (2002), which has no explicit time
scale (b). The approach in a allows for survival functions of similar
shape to earlier theory while allowing explicit accounting of time
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larger number of gametes are removed from a pool of
gametes per time unit than there are gametes in this pool,
this simply means that gamete numbers deplete very
quickly. The high depletion rate applies over an infinitesi-
mally short time period only, thus preventing the removal
of too many gametes. The rate γNxNy then instantaneously
decreases to account for the fast decrease in available
numbers.

Before asking evolutionary questions about selection to
change gamete size, we need to derive equations that
govern the number of gametes available for fertilizations
per unit volume, Nx and Ny. The above assumptions imply
that the dynamics of gamete numbers Nx and Ny are
governed by (1) a continual input of AxH(mx) and AyH(my)
per time unit, respectively, reflecting gamete output by
parents; (2) an instantaneous mortality rate of μ(mx) for each
x gamete and μ(my) for each y gamete, which leads to a loss
μ(mx)Nx and μ(my)Ny of the gametes present in the local
population; and (3) fertilizations (collisions of opposite
mating type gametes) which remove gametes of either type
at a rate γNxNy. The numbers Nx thus increase (decrease)
over time if AxH(mx)−μ(mx)Nx−γNxNy is positive (negative).
A similar equation, with x- and y-indices reversed, holds for
Ny. The gamete numbers are at equilibrium when there is no
net change, i.e., the rate of change over time is zero:

dNx
dt ¼ AxHðmxÞ � mðmxÞNx � gNxNy ¼ 0
dNy

dt ¼ AyHðmyÞ � mðmyÞNy � gNxNy ¼ 0

(
ð3a–3bÞ

The total rate of offspring produced by each mating type
is γNxNyf(mx, my), i.e., the fertilization rate multiplied by
the survival probability of the zygotes. As this term is
identical for the two mating types, the Fisher condition is
fulfilled.

However, Eqs. (3a–3b) describe the situation only when
all individuals within a mating type are producing gametes
of the same size. To determine the evolutionary dynamics
of the system, we expand the equations to accommodate a
mutant individual, which we denote with a “hat”. For

example, m̂y refers to the gamete size of a mutant of mating
type y, whereas N̂ y refers to the density of available
gametes produced by this mutant. The equations below are
derived for the case where a single mutant individual of
mating type y produces gametes of size m̂y. All other y-
individuals produce gametes of size my, and all x-individuals
produce gametes of size mx. Switching all x- and y-indices
gives the equivalent equations for a mutant x-individual.

dNx

dt
¼ AxHðmxÞ � mðmxÞNx � gNxðNy þ N̂ yÞ ¼ 0

dNy

dt
¼ ðAy � 1ÞHðmyÞ � mðmyÞNy � gNxNy ¼ 0

dN̂y

dt
¼ Hðm̂yÞ � mðm̂yÞN̂ y � gNxN̂y ¼ 0

8>>>>>><>>>>>>:
ð4a–4cÞ

Again, the Fisher condition is fulfilled because the total
rate of offspring production for both mating types is
gNxNyf ðmx;myÞ þ gNxN̂ yf ðmx;m̂yÞ.

The latter term in this equation is the fitness of the
mutant y-individual:

Ŵ y ¼ gNxN̂ yf ðmx;m̂yÞ ð5Þ

To proceed with the sequential invasion analysis, we
must derive the fitness gradients, i.e., the derivative of the
mutant individual's fitness with respect to the mutant
gamete size for both mating types. We also derive the
second derivatives and the convergence stability matrix to
determine the evolutionary stability and convergence
stability (Eshel 1983; Otto and Day 2007) of equilibria.
The calculations and resulting equations are lengthy, and
we refer the interested reader to Appendix 1 for details;
here we show only the final equations for the fitness
gradient of mating type y (again we get the equivalent
equation for the opposite mating type by exchanging all x-
and y-indices).

@Ŵ y

@m̂y
m̂y¼my

��� ¼ Hðm̂yÞ � N̂ ymðm̂yÞ
� �

@f ðmx; m̂yÞ
@m̂y

þ f ðmx; m̂yÞ dHðm̂yÞ
dm̂y

� N̂ y
dmðm̂yÞ
dm̂y

� mðm̂yÞ @ N̂ y

@m̂y

� �	 

m̂y¼my

��� ð6Þ

where

@ N̂ y

@ m̂y
¼�

gNx g N̂ yþmðmxÞ
� �

þ gNyþg N̂ yþmðmxÞ
� �

mðmyÞ
� �

�dHðm̂yÞ
dm̂y

þN̂ y
dmðm̂yÞ
dm̂y

� �
g2Nx

2mðmxÞþ gNyþg N̂ yþmðmxÞ
� �

mðmyÞmðm̂yÞþgNx gNymðmyÞþg N̂ ymðm̂yÞþmðmxÞ mðmyÞþmðm̂yÞ½ �
� � ð7Þ
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and

Nx m̂y¼my

��� ¼
AxgHðmxÞ�AygHðmyÞ�mðmxÞmðmyÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AxgHðmxÞmðmxÞmðmyÞþ �AxgHðmxÞþAygHðmyÞþmðmxÞmðmyÞ½ �2

q
2gmðmxÞ

Ny m̂y¼my

��� ¼ ðAy � 1ÞðN̂ y m̂y¼my

��� Þ

N̂ y m̂y¼my

��� ¼
�AxgHðmxÞþAygHðmyÞ�mðmxÞmðmyÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AxgHðmxÞmðmxÞmðmyÞþ �AxgHðmxÞþAygHðmyÞþmðmxÞmðmyÞ½ �2

q
2AygmðmyÞ

8>>>>>>><>>>>>>>:
ð8a–8cÞ

The fitness gradients are derived with the assumption that
offspring disperse far enough to be outside the locality where
the parents resided. In this case we can use the derivative of
absolute fitness as the fitness gradient: we compare a parent's
fitness against the entire population. If the offspring did not
disperse, local fitness differences would determine the course
of evolution (fitness of the mutant relative to the individuals it
interacts with and influences the fitness of, see e.g. Johnstone
2008 for an example).

We use the fitness gradient to search numerically for
evolutionary equilibria and to plot evolutionary trajectories, the
latterassumingthatevolutionarychangewithineachmatingtype
is proportional to the fitness gradient of this mating type. The
second derivatives and the convergence stability matrix (see
Appendix 1) can then be used to check the evolutionary
stability and convergence stability of the equilibria.

Although the model allows the local population sizes of
both mating types to be defined independently, in this study
we focus on the case Ax=Ay=A. We thus exclude a priori
biases that would result in a skewed adult mating type ratio.
Considering them would require specifying processes that
could lead to such an asymmetry, and this is beyond the
scope of our current work.

In the following we will show representative examples of
evolutionary trajectories using the fitness gradient approach
(Eqs. 6, 7, and 8a–8c, for details see Appendix 1). In these
examples we systematically change only one parameter at a
time. We also determined the evolutionary and convergence
stability of each equilibrium that these examples yield. We
then corroborated the insight thus gained by examining a large
set of parameter combinations and computing evolutionary
equilibria numerically using the fitness gradient approach. The
randomness of our exploration of the parameter space avoids
the danger that the initial examples might have presented a
biased subset of possible evolutionary equilibria.

Results

In line with earlier models, organismal complexity favors
anisogamy

Our model repeats two key predictions of earlier models
(e.g. Parker et al. 1972; Bulmer and Parker 2002):

increasing organismal complexity favors the evolution of
anisogamy, and simultaneously complexity is predicted to
increase the degree of anisogamy by increasing egg size
(and thus the egg/sperm volume ratio). As in Bulmer and
Parker (2002), we assume that a large value of β reflects
complexity: zygotes then need relatively larger reserves to
increase their chances of survival until adulthood. Although
our definition of gamete mortality is explicit as a rate over
time and thus our definition of α is somewhat different
from theirs, a large difference between β and α in both
models implies qualitatively the same statement: that a
viable zygote requires a large investment in comparison to
the minimum requirements of a gamete. It is thus reassuring
that we repeat the finding that β>4α is a minimum
condition for the evolution of anisogamy; no matter what
the other parameter values are, anisogamy will not evolve
unless β/α>4 (Fig. 3, 4). However, in a departure from
Bulmer and Parker (2002), Fig. 4 shows that β>4α is not a
sufficient condition to guarantee the divergence of gamete
sizes, as a large number of cases with this condition
fulfilled remain isogamous (Fig. 4; for specific examples of
such cases see Fig. 5a–c). Anisogamous solutions are
characterized by either the x or the y mating type evolving
to a large size (the exact size increases with the complexity
parameter β, Fig. 3b–c) while the opposite mating type
evolves to a value close to the minimum viable size for a
gamete.

Gamete competition is a route to anisogamy

Figure 3 was derived assuming A=20, so that local
interactions contain many parents of each mating type;
likewise Fig. 4 contains mostly cases with A>1. This
implies strong competition between gametes. By reducing
A to low levels gamete competition can be diminished (top
left panels in Fig. 5), and low values predict a return to
stable isogamy (despite the complexity condition β>4α
remaining fulfilled in Fig. 5a). Intermediate values of A can
yield multiple stable equilibria: an isogamous solution as
well as two anisogamous ones with either x or y types
evolving to become females (clearest in Fig. 5b with A=2).
The isogamous basin of attraction diminishes with increas-
ing A, until very small deviations from isogamy are
sufficient to trigger disruptive selection towards anisogamy
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(Fig. 5c) and finally the isogamous equilibrium becomes
convergently unstable (Fig. 5d). Thus anisogamy invading
an ancestral isogamous population becomes more likely
with increasing gamete competition (Fig. 5a–d). The
existence of gamete competition (A>1) does not immedi-
ately produce anisogamy as the sole solution, although
competition is sufficient to maintain anisogamy once

evolved (Fig. 5b). This is in agreement with the results of
(Parker 1982).

Gamete limitation also produces anisogamy

Starting from the same situation as Fig. 5a, evolution can
also proceed to anisogamy even in complete absence of
gamete competition (A=1). This outcome can be achieved
in three ways: by reducing γ, the encounter rate of gametes
(Fig. 5e); by reducing M, the gamete production budget per
time unit (also shown in Fig. 5e); or by increasing ’, the
minimum mortality rate experienced by gametes (Fig. 5f).
This is an intriguing finding because there is no gamete
competition involved (A remains at 1 throughout the
sequence 5a–e–f). Instead, for any given availability of
gametes of the opposite mating type, these changes in γ, ’,
and M all have the effect of decreasing the number of
gametes that reach a suitable gamete to fuse with before
dying. If at the same time the developmental requirements
of the zygote are high (β>>α), then the chances of
simultaneously reaching a reasonable number of fusions
and giving the zygotes good probabilities for survival can
best be maximized when one mating type specializes in
zygote provisioning, and the other specializes in producing
a large number of gametes. As with Figs. 3 and 4, this
result can also be corroborated by a random search of the
parameter space. By fixing the value of A at 1 and letting all
other parameters vary randomly, we confirm the result that
in the absence of gamete competition the mortality rate
experienced by gametes must be high in comparison to the
gamete encounter rate for anisogamy to evolve (Fig. 6).
Similar figures can be produced for the pairs γ-M and ’-M.

If there is gamete competition (high A) then anisogamy
prevails regardless of the values of ’, γ, and M (not
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Fig. 4 Evolutionary endpoints for the gamete size ratio as a function of
β/α in a set of 1,800 randomly chosen parameter combinations. The
parameters are picked from the following uniform distributions: 0<α<
5; 0<β<20; 0<γ<10; 0<’<10; 0<M<1000; 0<k<100; 0<A<10
(integer values only for k and A). Here Ax=Ay=A, which imposes a 1:1
sex ratio of adults. The gamete size ratio was allowed to evolve to
equilibrium with each random parameter combination, starting from
nearly isogamous initial values: my=(β+α)/2, mx=1.1my. Despite the
fact that our definition of α somewhat differs from earlier studies, the
approximate minimum requirement for the evolution of anisogamy is β/
α>4, as found in Bulmer and Parker (2002). Beyond this ratio,
increasing β further leads to an approximately linear increase of the
gamete size ratio. However, all parameter combinations do not lead to
anisogamy even when β>4α (see Fig. 5a–c for examples of why this is
not always a sufficient condition)
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Fig. 3 In line with earlier results, the model predicts that increasing
organismal complexity (parameter β) selects for anisogamy. Anisog-
amy always evolves with two possible equilibria, with either the x or
the y type evolving to a large size (female). Egg size increases with β,
a β=3.5, b β=10, c β=20. Other parameters: A=20 (there is gamete
competition), α=1, γ=1, ’=1, k=100, M=100. Note that in a

deterministic model such as this, isogamy is always an equilibrium
due to symmetry, but not necessarily a stable equilibrium. Stable
equilibria are indicated with stars, unstable equilibria with open dots.
Given suitable conditions (b,c), small deviations easily lead to
anisogamy. Numerical values for the equilibria and stability analysis
are shown in Table 1 of Appendix 1
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shown). Our findings are also robust with respect to the
precise value of k which measures how accurately gamete
survival matches the assumption of independence of its
size.

Discussion

The modeling of anisogamy (the emergence of males and
females after sexual reproduction has become established)
has proceeded from arguments that derive gamete sizes that
lead to a maximum number of gametes finding each other
(Kalmus 1932) to an explicit individual-level consideration
of how much to provision a zygote when the opposite
mating type provisions zygotes as well (Parker et al. 1972;
Maynard Smith 1982; Bulmer 1994; Bulmer and Parker
2002). Additionally, modeling has considered several
alternative explanations, such as a eggs evolving to a large
size because smaller eggs are difficult targets for sperm and
might remain unfertilized (Cox and Sethian 1985; Levitan
1993; Dusenbery 2000; for a review of further hypotheses
that are beyond our current focus see Lessells et al. 2009).
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1,200 parameter combinations with a procedure identical to Fig. 4,
with the exception that gamete competition was excluded by setting
Ax=Ay=A=1. Dots and stars indicate isogamous and anisogamous
equilibria respectively. Gamete encounter rate increases on the x-axis,
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limitation is strongest in the upper left corner. The figure indicates the
robustness of the result that in the absence of gamete competition,
gamete limitation is an alternative path to anisogamy
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producing gametes in the locality, a A=1, b A=2, c A=5, d A=20
(other parameters: α=γ=’=1, β=20, k=100, M=100). As competi-
tion increases from a to d, the initial stability of the isogamous
solution becomes increasingly sensitive to small deviations in gamete
sizes until in d the smallest deviations trigger evolution towards one or
the other anisogamous solution. But anisogamy evolution can also be

triggered in the absence of any gamete competition if gametes fusions
occur at a low rate: this can be achieved by reducing γ to 0.1 which
decreases gamete encounter rates (e), by reducing M to 10 which
decreases the gamete production rate (e, the evolutionary trajectories
and equilibria are identical in these two cases) or by increasing gamete
depletion through mortality, (f) ’=3. Other parameters in (e–f) as
above, with A=1. Stable equilibria are indicated with stars, unstable
equilibria with open dots. Numerical values for the equilibria and
stability analysis are shown in Table 1 in Appendix 1
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The contribution of Parker and his co-workers was of
undisputed fundamental importance as it removed worries
that argumentation might be based on group selection.
Simultaneously, however, some valuable aspects of earlier
work have been lost. Kalmus (1932) applied classical
statistical mechanics on the collision of particles to
maximize the number of successful gamete unions with
various degrees of anisogamy. Scudo (1967) added gamete
mortality and depletion due to previous gamete fusions to
the same framework. These insights remain valid even
though the group-level fitness argumentation has caused
these old models to be largely dismissed in more recent
updates of Parker's ideas (Maynard Smith 1982; Bulmer
1994; Bulmer and Parker 2002). Gamete fusion and
depletion rates and the total numbers of zygotes formed
are not explicitly derived in these later models.

This has two implications: gamete limitation or depletion
is not accounted for explicitly, from which it follows that
the Fisher condition is not accounted for. For example,
consider the following type of fitness equations of x- and y-
individuals used in several models (e.g. Maynard Smith
1982; Bulmer 1994; model (d) in Bulmer and Parker 2002)

Wx mxð Þ ¼ M

mx
f ðmx þ myÞ

Wy my

� � ¼ M

my
f ðmx þ myÞ

8>><>>:
This implies that wx

wy
¼ my

mx
, or equivalently wx ¼ my

mx
wy.

Now, assuming an anisogamy ratio (of gamete sizes) of, say
1:4, we have wx=4wy, which clearly violates the require-
ment that male and female average fitness must be equal if
the sex ratio is unity.

There is a conceivable counterargument for this critique:
since we are considering mating types that have already
diverged before the evolution of anisogamy, there is only
competition for fertilizations within each mating type.
Therefore only the relative fitnesses within a mating type
matter for the end result, not the relative fitnesses between
the two mating types. In other words, the absolute values of
fitness could be argued not to matter as dividing the fitness
of the more fit type by (in this case) four would restore
equality without changing the shape of the fitness function.
Our results show, however, that the matter is not quite that
easily resolved. An explicit treatment of gamete depletion is
required to derive how many fertilization opportunities are
left locally for mutants that, say, decrease their own gamete
size and thus produce more proto-sperm. If the number of
adults in the local vicinity is small (low A in our model), it
is inconsistent to assume that the success of each proto-
sperm remains constant across all sperm sizes of the focal
mutant. This is why applying a single correction factor
(dividing by, say, 4) will not resolve the issue unless the

population is well mixed such that gamete competition is
ubiquitous and strong enough so that no focal individual
has a significant impact on local gamete depletion. The
strength of gamete competition and gamete depletion is
thus worthwhile to consider explicitly.

Parker et al. (1972) and later models by Maynard Smith
(1982), Bulmer (1994), and Bulmer and Parker (2002)
assumed, at least implicitly, that competition is strong and
depletion negligible. Parker later modeled what would
happen in a limited population of external fertilizers after
anisogamy has already evolved (Parker 1982), although the
main aim of this extension was to model the stability of
anisogamy once internal fertilization has evolved. Our
current contribution shows that it is worthwhile to keep
investigating the numbers of (proto)females and (proto)
males in each mating group in broadcast spawners too, as it
is by no means guaranteed that primitive broadcast
spawning isogamous species experienced limitless gamete
competition (Levitan 2010, see also Bode and Marshall
2007, Crean and Marshall 2008). We show that consid-
erations of local competition are probably also relevant for
broadcast spawners, as our explicit gamete depletion model
predicts that isogamous solutions do not disappear imme-
diately as soon as local interactions involve more than one
individual of each mating type.

Given this background, it is perhaps not surprising that
our model produces results identical to Bulmer and Parker
(2002) when gamete competition is strong (large A): for
example, our results are compatible with the finding that
anisogamy is favored when the complexity of organisms
increases (β>4α). A focus on the Fisher condition makes it
necessary, however, to give a clearer, rephrased description
of why exactly sperm can evolve to become “parasites” of
eggs instead of contributing to zygote viability. This is an
insightful way of phrasing the trade-off (e.g. Pizzari and
Parker 2009), but when it is combined with recent modeling
of post-zygote care (Kokko and Jennions 2008) it raises a
new question: why precisely do proto-sperm keep evolving
smaller when in a post-zygotic parental care context
difficulties of males finding mates select for males who
provide more care (all else being equal)? In other words,
why does the Fisher condition not produce frequency-
dependent selection that makes the smaller gametes evolve
towards the size of the larger ones, in a similar manner to it
producing frequency dependence on primary sex ratios
(Fisher 1930) and frequency dependence on care that has to
be overcome through other mechanisms, e.g. uncertain
paternity, to explain sex-biased care (Kokko and Jennions
2008)?

One answer is that the mathematics work out that way
(for this line of reasoning see e.g. Parker 1982, or p. 210 in
Pizzari and Parker 2009): Parker's models as well as our
results show this to be the case. It is nevertheless useful to
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sketch a heuristic answer to why precisely selection
becomes disruptive. When either sex could benefit by
producing either many or well provisioned gametes (but
between these goals there is a trade-off), why is the sex that
is already overproducing gametes the one that keeps being
selected to invest in ever more gametes rather than
somewhat better provisioned ones? The verbal answer is
illuminating as it shows that there is an important parallel
between paternity uncertainty for sperm and for males
tending their young. The sex that overproduces gametes
will have difficulties having them fuse successfully, and
this selects against equipping each “lottery ticket” with
much provisioning ability because the provisioning deci-
sion has to be made before it is known which sperm will
lead to positive fitness. The uncertain fate of each sperm
makes it impossible to concentrate provisioning ability on
those few that end up successful, and this is precisely
analogous to a male's situation who has a brood of young
and care has to be divided among the young without
knowledge which ones carry the father's genes. The
principle of little investment as a result of uncertain
parentage (Queller 1997) thus extends to little investment
in each proto-sperm as a result of highly uncertain returns
of trying to improve the fate of each of them.

The situation is very different when gamete competition
becomes weak (small A). In such a case, the fate of each
gamete is far more certain, particularly if gametes survive
relatively well (low mortality ’), if gametes encounter each
other frequently (large γ) and if gametes are produced at a
high rate (large M). This is analogous to a male who is
relatively certain of parentage; his situation reverses to
comparing a certainty of existing young vs. his uncertain
success of finding new mates, and this favors care by the
mate-limited sex (Kokko and Jennions 2008). These
conditions indeed predict that isogamy evolves. The
evolving patterns are interesting because intermediate
parameter values predict that isogamy can coexist with
anisogamy, and ancestral conditions then determine which
equilibrium is maintained—this implies that phylogenetic
inertia may play a significant role: reaching e.g. Fig. 5c
from the right (large A that decreases) would predict that
anisogamy will be retained, while reaching it from the left
(small A that increases) predicts that isogamy is still stable,
assuming that each mutation only has a small effect on
gamete size.

The heuristic of uncertain investment can also help
understand why regions of isogamy and anisogamy can
coexist (the clearest example being Fig. 5b). If gamete sizes
differ from each other relatively little, the relative overpro-
duction of gametes by one sex remains limited. The problem
of most gametes being destined to a dead end thus does not
act with full force on either sex. Consequently, the relatively
high chances of each gamete making it to the zygote stage

makes investment in provisioning profitable for both sexes,
and the system returns to isogamy. But if there is a sufficient
deviation in current gamete sizes and consequently their
numbers, then uncertainty (low average success of each
gamete) will hit the overproducing and underinvesting sex
hardest, selecting further against investing in each gamete.

There above explanation views our findings from the
perspective of parental investment theory. One can, equally
well, consider an approach more often used in deriving sex
allocation patterns (West 2009). In the absence of other
adults of the same mating type (A=1), gametes produced by
the same parent compete with each other—a form of
competition between relatives. This diminishes the returns
of producing many gametes as they simply hamper each
other’s success (analogous to local mate competition; see
also Schärer 2009). If A>1, much of competition happens
between unrelated gametes, and the returns from gamete
numbers do not diminish at the same rate for the parent
producing them.

Our model also reveals another set of conditions that can
lower the chances of each gamete making it to the zygote
stage. In addition to evolving through gamete competition
in a relatively large local population (the assumption of
Parker et al. 1972), anisogamy can also arise in the absence
of gamete competition if gametes do not survive well, if
gamete encounter rates become low and/or if gametes are
produced at a low rate. This route implies gamete
limitation. It is a qualitatively different explanation from
gamete competition discussed above, yet again the low
investment in proto-sperm can be explained by a low effort
in each gamete that has an uncertain future. The reduced
size and increased number of proto-sperm then makes it
easier for proto-eggs to become fertilized, which for
mothers decreases the uncertainty that they face about the
fate of eggs, and selects for increased investment in each.
Thus both gamete limitation and gamete competition, while
being superficially very different routes to anisogamy, can
be understood using a similar framework of uncertain
investments that influences parental care decisions too
(Queller 1997; Kokko and Jennions 2008).

Note that by solely relying on this investment principle
our model is a different version of gamete limitation than
those discussed by Lessells et al. (2009); in typical gamete
limitation models (Cox and Sethian 1985; Levitan 1993;
Dusenbery 2000) larger eggs are assumed to be more likely
to found by sperm. We assume no such effect, instead
selection for large egg size is a simple result of higher
maternal investment when each proto-egg has higher
chances of success (due to evolution of numerous sperm).
This form of disruptive selection could, obviously, interact
with selective processes that favor large “targets” that are
more likely to be found and fertilized than smaller gametes
of the same mating type (review: Lessells et al. 2009).
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In general, our model should be seen as a first step in
taking the Fisher condition into account in all types of
anisogamy models—not as a statement that the modeled
processes are the only fundamental ones. In addition to
assuming that the size of a “target” cell does not impact
the likelihood that it is found, we have also made several
other simplifying assumptions. The modeling approach we
have used shows that the equilibria cannot be invaded by
mutant strategies that are close to the equilibrium values,
but it does not guarantee that large-effect mutations cannot
invade. We have not considered the impact of any type of
stochasticity in either the number of adults or the number
of gametes. For example, we assume negligible spatial
variation in the number of adult types. We consequently
also assume no within-individual variation in gamete size,
which could in principle be adaptive in unpredictable
environments (Marshall et al. 2010). Given lack of
theoretical work examining effects of stochasticity, we
do not know if local variation in fertilization prospects
forms a type of unpredictability that could select for such
variation in gametic investment. Current empirical evi-
dence is likewise scant. On the female side, there are some
examples where within-brood egg size variation has been
argued to reflect environmental variability (but not
variation in fertilization prospects per se, Crean and
Marshall 2009). On the male side, a broadcast spawner
Stuela plicata has been shown to adaptively adjust sperm
size across densities of sperm competitors (Crean and
Marshall 2008). This does not yet, however, imply that
there are multiple local optima for sperm size within a
local population, and we did not find evidence for
disruptive selection within a mating type in our theoretical
work either. Future work could fruitfully relax our
assumption of equilibrium numbers of adults and gametes
to investigate this question.

Finally, it is also worth commenting on the oldest model
of anisogamy, Kalmus (1932). This model was published
decades before biologists were trained to realize that
individuals or their genes can be in conflict with each
other. Kalmus' model has been largely dismissed as group
selectionist, yet this model is surprisingly relevant to this
day in the special case of A=1. When there is only one
individual of each mating type present, both “paternal” and
“maternal” fitness are maximized when parents behave in a
way that maximizes the number of viable zygotes, even
though each parent is acting “selfishly” in its own best
interests. This can again be seen as a consequence of the
Fisher condition: when A=1, fitness of the only male in the
locality must be exactly the same as the fitness of the only
female (even though they are competing with individuals in
other localities). Therefore maximizing one maximizes the
other, and the group selectionist argument by Kalmus
converges with our individual selection model when A=1.

In that conflict-free case the analysis of Kalmus (1932) is
valid to this day. Incorporating the Fisher condition into
models of the evolution of anisogamy shows that the
selection pressures that can lead to the divergence of
gamete sizes form a continuum from Kalmus' principle of
maximizing the number of successful zygotes, to the
gamete competition principle of Parker et al. (1972). Which
type prevails in nature is an interesting question for further
study.
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Appendix 1

Our aim is to find the fitness gradients @Ŵ y
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for evaluating the direction of evolution, evolutionary stability,
and convergence stability respectively. We derive here the
equations for the case where the mutant individual is of
mating type y. Equivalent equations for type x are obtained
simply by exchanging the indices x and y in all equations. A
“hat” (such as in m̂y) is used to denote the mutant individual.
For gamete numbers we will use the notation Nx, Ny, and N̂ y

instead of the longer forms Nxðmx;my; m̂yÞ, Nyðmx;my; m̂yÞ;
and N̂ yðmx;my; m̂yÞ. However, it is important to keep in mind
that these are functions of all three variables when carrying
out the differentiations below.

Note that although in the main text we use fixed
functions for gamete production rate, gamete mortality
rate, and zygote survival probability, the equations below
are given in a general form, and can flexibly accommodate
alternative forms for these functions. The model also
allows independent values for Ax and Ay, but in the main
text we limit ourselves to cases with an even adult sex
ratio (Ax=Ay).

All the equations that follow are derived from the time
dynamics Eqs. (A1a–A1c). For their biological interpreta-
tion, see the main text concerning Eqs. (3a–3b) and (4a–
4c). Despite the fact that some of the resulting equations are
relatively complex and difficult to interpret by themselves,
the full biology of the system is already contained in Eqs.
(A1a–A1c) together with the functions for gamete produc-
tion, gamete mortality, and zygote survival. The following
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equations are simply tools to determine the behavior of the
system.

dNx
dt ¼ AxHðmxÞ � mðmxÞNx � gNxðNy þ N̂ yÞ ¼ 0
dNy

dt ¼ ðAy � 1ÞHðmyÞ � mðmyÞNy � gNxNy ¼ 0
dN̂y

dt ¼ Hðm̂yÞ � mðm̂yÞN̂ y � gNxN̂ y ¼ 0

8>><>>:
ðA1a–A1cÞ

The fitness of the mutant individual is given by its rate
of fertilizations (gNxN̂ y, or alternatively Hðm̂yÞ � mðm̂yÞN̂ y

from Eq. A1c) multiplied by the survival probability
f ðmx;m̂yÞ of its zygotes:

Ŵ y ¼ gNxN̂yf ðmx;m̂yÞ ¼ ðHðm̂yÞ � mðm̂yÞN̂ yÞf ðmx;m̂yÞ ðA2Þ

Therefore the selection differential is
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and the second derivative
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Everything in equations (A3) and (A4) is straightforward

to derive, with the exception of @Nx

@ m̂y
;

@Ny

@ m̂y
;

@ N̂ y

@ m̂y
and @ N̂ y

@ m̂2
y
.

These can be found by using implicit differentiation with
respect to m̂y on equations (A1a–A1c). Differentiating once
leads to the equations

gðNy þ N̂ yÞ @Nx

@m̂y
þ mðmxÞ @Nx
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þ gNx

@Ny
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8>>>><>>>>: ðA5a–A5cÞ
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and after differentiating twice we have
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Now we can solve @Nx

@ m̂y
;
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; and @ N̂ y
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from Eqs. (A5a–

A5c):

@Nx

@ m̂y
¼

gNx gNxþm myð Þð Þ �dH m̂yð Þ
d m̂y

þ N̂ y
dm m̂yð Þ
d m̂y

� �
g2N2

x m mxð Þþ gNyþg N̂ yþm mxð Þ
� �

m myð Þm m̂yð ÞþgNx gNym myð Þþg N̂ ym m̂yð Þþm mxð Þ m myð Þþm m̂yð Þ½ �
� �

@Ny

@ m̂y
¼ �

g2NxNy �dH m̂yð Þ
d m̂y

þ N̂ y
dm m̂yð Þ
d m̂y

� �
g2N2

x m mxð Þþ gNyþg N̂ yþm mxð Þ
� �

m myð Þm m̂yð ÞþgNx gNym myð Þþg N̂ ym m̂yð Þþm mxð Þ m myð Þþm m̂yð Þ½ �
� �

@ N̂ y

@ m̂y
¼ �

gNx g N̂ yþm mxð Þ
� �

þ gNyþg N̂ yþm mxð Þ
� �

m myð Þ
� �

�dH m̂yð Þ
d m̂y

þ N̂ y
dm m̂yð Þ
d m̂y

� �
g2N2

x m mxð Þþ gNyþg N̂ yþm mxð Þ
� �

m myð Þm m̂yð ÞþgNx gNym myð Þþg N̂ ym m̂yð Þþm mxð Þ m myð Þþm m̂yð Þ½ �
� �

8>>>>>>>>>><>>>>>>>>>>:
ðA7a–A7cÞ

and @2 N̂ y

@ m̂2
y
from equations (A6a–A6c):

@2 N̂ y

@ m̂2
y
¼

�ðgNx g N̂ yþmðmxÞ
� �

þ gNyþg N̂ yþmðmxÞ
� �

mðmyÞÞ �d2Hð m̂yÞ
d m̂2y

þ N̂ y
d2mð m̂yÞ
d m̂2y

þ2
dmð m̂yÞ
d m̂y

þg @Nx
@ m̂y

� �
@

^
Ny

@ m̂y

� �
þ2g2 N̂ y

@Nx
@ m̂y

gNx
@Ny

@ m̂y
þmðmyÞ @Ny

@ m̂y
þ@

^
Ny

@ m̂y

� �� �
g2N2

x mðmxÞþ gNyþg N̂ yþmðmxÞ
� �

mðmyÞmð m̂yÞþgNxðgNymðmyÞþg N̂ymð m̂yÞþmðmxÞ mðmyÞþmð m̂yÞ½ �Þ
: ðA8Þ

Next, we solve equations (A1a–A1c) for Nx, Ny, and N̂ y

when m̂y ¼ my:

Nxj m̂y¼my
¼

AxgHðmxÞ�AygHðmyÞ�mðmxÞmðmyÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AxgHðmxÞmðmxÞmðmyÞþ �AxgHðmxÞþAygHðmyÞþmðmxÞmðmyÞ½ �2

q
2gmðmxÞ

Ny

��
m̂y¼my

¼ Ay � 1
� �

N̂ y m̂y¼my

���� �
N̂ y

���
m̂y¼my

¼
�AxgHðmxÞþAygHðmyÞ�mðmxÞmðmyÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AxgHðmxÞmðmxÞmðmyÞþ �AxgHðmxÞþAygHðmyÞþmðmxÞmðmyÞ½ �2

q
2AygmðmyÞ

8>>>>>>><>>>>>>>:
: ðA9a–A9cÞ
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Finally we get @Ŵ y

@ m̂y m̂y¼my

��� by sequentially plugging Eqs.

(A9a–A9c) into (A7c), and then plugging this result

together with (A9c) into (A3). Similarly @2 Ŵ y

@ m̂2
y

m̂y¼my

��� is

calculated by the sequence (A9)→(A7)→(A8)→(A4).
An analytic expression for the convergence stability

matrix C can be found by following steps similar to the
ones described above, but both the methods and the
resulting equations are more complex. We omit them from
this appendix, but the equations are available from the
authors upon request.

We now have the tools to find the equilibrium points and
evolutionary trajectories for gamete sizes, and to determine
their stability. The existence of a closed form analytic
solution for the equilibrium points depends on the form of
zygote fitness, gamete mortality, and gamete production
functions used. With the functions we use in the main text,
analytic solutions are not possible. However, we can use the

following equation to find the equilibriums and plot the
evolutionary trajectories to an arbitrary level of accuracy:

mxiþ1

myiþ1

� �
¼ mxi

myi

� �
þ

@ Ŵ x

@ m̂x m̂x¼mxi

���
@ Ŵ y

@ m̂y m̂y¼myi

���
0B@

1CAΔ ðA10Þ

where Δ is a sufficiently small number.
Once the equilibria m

»
x and m

»
y are found, the following

conditions must be satisfied:

1. @ Ŵ x

@ m̂x m̂x¼m
»
x

��� ¼ 0; @ Ŵ y

@ m̂y m̂y¼m
»
y

��� ¼ 0; this means there is no

directional selection on gamete size
2. @2bWx

@bm2
x
bmx¼m

»
x

��� � 0; @2bWy

@bm2
y
bmy¼m

»
y

��� � 0; this shows that the

equilibrium is an ESS.

3. The real parts of the eigenvalues of the matrix C must
be negative to show convergence stability.

Table 1 Conditions for the equilibria in Figs. 3 and 5

m
»
x m

»
y

@Ŵ x

@ m̂x m̂x¼m
»
x

��� @ Ŵ y

@ m̂y m̂y¼m
»
y

��� @2 Ŵ x

@ m̂2
x

m̂x¼m
»
x

��� @2 Ŵ y

@ m̂2
y

m̂y¼m
»
y

��� Eigenvalue 1 Eigenvalue 2 Stability

3a (I) 1.0295556 1.0295556 0.0000000 0.0000000 −220.1571560 −220.1571560 −290.5661482 −228.8912094 ESS, CS

3b (I) 2.5629265 2.5629265 0.0000000 0.0000000 −0.0332809 −0.0332809 −0.7948520 0.2258166 ESS, not
CS

3b (A) 7.7643734 1.0472158 0.0000000 0.0000000 −0.0523215 −307.5952457 −0.0522994 −307.6528428 ESS, CS

3c (I) 5.1248802 5.1248802 0.0000000 0.0000000 −0.0035626 −0.0035626 −0.0979423 0.0483636 ESS, not
CS

3c (A) 17.8442571 1.0471633 0.0000000 0.0000000 −0.0054256 −157.9421049 −0.0054252 −157.9472522 ESS, CS

5a (I) 8.7251872 8.7251872 0.0000000 0.0000000 −0.0304892 −0.0304892 −0.0392724 −0.0217061 ESS, CS

5b (I) 6.4733466 6.4733466 0.0000000 0.0000000 −0.0304003 −0.0304003 −0.0514911 −0.0401946 ESS, CS

5b (A) 17.8463470 1.0477984 0.0000000 0.0000000 −0.0053972 −78.1954535 −0.0053960 −78.1895663 ESS, CS

5c (I) 5.5233488 5.5233488 0.0000000 0.0000000 −0.0149510 −0.0149510 −0.0793415 −0.0039228 ESS, CS

5c (A) 17.8445040 1.0472940 0.0000000 0.0000000 −0.0054164 −131.1748599 −0.0054158 −131.1769317 ESS, CS

5d (I) 5.1248802 5.1248802 0.0000000 0.0000000 −0.0035626 −0.0035626 −0.0979423 0.0483636 ESS, not
CS

5d (A) 17.8442571 1.0471633 0.0000000 0.0000000 −0.0054256 −157.9421049 −0.0054252 −157.9472522 ESS, CS

5e (I) 7.1922359 7.1922359 0.0000000 0.0000000 −0.0091769a −0.0091769a −0.0228255a 0.0044718a ESS, not
CS

5e (A) 17.9403142 1.0550288 0.0000000 0.0000000 −0.0048372a −7.3920755a −0.0048251a −7.3920876a ESS, CS

5f (I) 7.2727273 7.2727273 0.0000000 0.0000000 −0.0097619 −0.0097619 −0.0229472 0.0034234 ESS, not
CS

5f (A) 17.9285515 1.0564173 0.0000000 0.0000000 −0.0048910 −5.9459726 −0.0048756 −5.9459880 ESS, CS

All values are presented to seven decimals, although the values were computed to a much higher accuracy

The leftmost column refers to figures, with the additional capital letters in brackets (I) and (A) referring to the isogamous and anisogamous
equilibria respectively

All equilibria are evolutionarily stable strategies (ESS), but some isogamous equilibria are not convergence stable (CS)
a These values refer to the case γ=0.1 in Fig. 5e. For the alternative of M=10, the marked values must be divided by 10. Stability is not affected, as this
does not change the sign. Other values remain unchanged.
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