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Abstract

Adaptation is often described in behavioral ecology as individuals maximizing their in-

clusive fitness. Under what conditions does this hold and how does this relate to the gene-

centered perspective of adaptation? We unify and extend the literature on these questions to

class-structured populations. We demonstrate that the maximization (in the best-response

sense) of class-specific inclusive fitness obtains in uninvadable population states (meaning

that all deviating mutant go extinct). This defines a genuine actor-centered perspective on

adaptation. But this inclusive fitness is assigned to all bearers of a mutant allele in a given

class and depends on distributions of demographic and genetic contexts. These distributions,

in turn, usually depend on events in previous generations and are thus not under individual

control. This prevents, in general, from envisioning individuals themselves as autonomous

fitness-maximizers, each with its own inclusive fitness. For weak selection, however, the

dependence on earlier events can be neglected. We then show that each individual in each

class appears to maximize its own inclusive fitness when all other individuals exhibit fitness-

maximizing behavior. This defines a genuine individual-centered perspective of adaptation

and justifies formally, as a first-order approximation, the long-heralded view of individuals

appearing to maximize their own inclusive fitness.

Keywords: adaptation, inclusive fitness, game theory, social behavior, maximizing behavior.

Introduction

One striking hallmark of living systems is their functional organization. From molecular, cellular,

and physiological structures within individuals to behavioral interactions between them, organ-

isms in nature display a purposefulness in form and a goal-directedness in action that has been

marveled at by generations of biologists (Darwin, 1859; Fisher, 1930; Williams, 1966; Dawkins,

1996; Grafen, 2007). This outward functionality is so unequivocal that humanity has attributed

purpose to animals and plants since the mists of time.

Can this purposefulness be characterized? It is well-understood that the functionality of

organisms is born out of natural selection. This causes organisms to become adapted to their
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biotic and abiotic environments over evolutionary time. Over short time scales, mutations are

limited and allele-frequency changes, resulting from differences in organismic forms and behav-

iors, involve selection among a limited number of alternative variants present in the population.

Since to each trait combination of an organism there is an associated reproduction and survival

schedule, the process of genetic adaptation is often depicted as the maximization of individual

fitness. Survival and reproduction, however, also depend on the environment in which individuals

reside, and in particular on the traits of conspecifics. An organism’s environment thus varies in

response to changes in trait composition in the population induced by natural selection. This

prevents a net increase in individual fitness over evolutionary time, even supposing that at all

times alleles increasing survival and reproduction are favored by evolution. Indeed, the goalposts

of the survival and reproductive games of life are shifting as evolution proceeds. And even with

fixed goalposts, increase in survival and reproduction may be prevented by multilocus effects in

the presence of recombination, as highlighted in some classical criticisms of fitness maximization

(e.g., Moran, 1964; Ewens, 2004; Bürger, 2000; Ewens, 2011).

Over long time scales, an organism can be regarded as adapted to a particular environment

if no alternative trait combination or behavioral schedule can be produced by mutation, which

would result in further allele frequency change (Fisher, 1930; Williams, 1966; Grafen, 1988; Reeve

and Sherman, 1993; Dawkins, 1996). In this long-term perspective, the maximization of the

geometric growth ratio of a mutant allele when rare–referred to here as invasion fitness–in a large

population where individuals express a resident allele, provides a condition of uninvadability of

mutant traits (all deviating mutants from some feasible set of traits go extinct). Uninvadability

is a defining property of an evolutionary stable population state in which the resident trait

combination is a best-response to any mutant deviation (Eshel, 1983; Metz et al., 1992; Ferrière

and Gatto, 1995; Eshel et al., 1998; Metz, 2011). It is in terms of this notion of best-response

that maximization of (invasion) fitness can actually be conceived in the long-term evolutionary

perspective and this holds regardless of the underlying genetic details (Eshel and Feldman, 1984;

Liberman, 1988; Eshel, 1996; Hammerstein, 1996; Weissing, 1996; Eshel et al., 1998).

Invasion fitness is the per capita number of mutant copies produced by the whole mutant

lineage descending from an initial mutation over a life-cycle iteration, when the mutant repro-

ductive process has reached stationarity in a resident population. This shows that invasion

fitness is a property of a collection of interacting individuals, and gives no reason to say that in

an uninvadable population state the fitness of any of these individuals is maximized (in the best-

response sense). It has even been argued that any focus on individual survival and reproduction

to understand adaptation is misleading and should be abandoned altogether (Dawkins, 1978).

The gene-centered perspective of adaptation (Hamilton, 1963, 1996; Dawkins, 1976, 1982; Haig,

1997b, 2012) has in fact distanced itself from ideas of maximization of individual survival and re-

production long ago, and focuses instead on the differential transmission of alleles to understand

adaptation.

In spite of the logical primacy of the gene-centered perspective, trying to interpret natu-

ral selection in individuals terms appears necessary for anyone observing individuals rather than

genes. Hamilton (1964) attempted to draw a bridge between the gene and the individual-centered
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perspective of adaptation by defining inclusive fitness, a quantity that is assigned to a represen-

tative carrier of an allele, so that natural selection proceeds as if this quantity is maximized.

While this inclusive fitness is not a distinct property of each individual in a population, individ-

ual inclusive fitness maximization has nevertheless been argued to have at least some heuristic

value (e.g., Maynard Smith, 1982; Dawkins, 1978; Grafen, 1984, 2007; West and Gardner, 2013),

and is a working assumption in behavioral ecology (McNamara et al., 2001; Alcock, 2005) and

evolutionary psychology (Alexander, 1990; Buss, 2005). It is also a perspective often endorsed

in social evolution theories (Bourke, 2011; West and Gardner, 2013). For example, one may say

that sterile workers maximize their inclusive fitness by helping a colony queen to raise offspring.

Here, it is acknowledged that workers, being sterile, do not maximize their individual fitness, but

rather the survival and expected reproduction of related individuals.

Despite the attractiveness of the individual-centered perspective of adaptation, there has been

few formal models supporting it and/or delineating the conditions under which individuals can be

regarded as autonomous agents maximizing their own objective function (i.e., maximizing their

own maximand). For instance, Grafen (2006a) considers that individuals maximize an inclusive

fitness, which, formally, does not depend on the behavior of other conspecifics and thus appears on

our reading not to cover social interactions in any broad sense. It has also been shown that, in age-

structured population without social interactions and in group-structured populations with social

interactions, individuals appear to maximize a weighted average individual fitness (respectively

Grafen, 2015 and Lehmann et al., 2015), which is distinct from inclusive fitness. More generally,

connections between individual fitness, inclusive fitness, and individual maximization behavior

have been discussed in the literature on kin selection, evolutionary stable traits, and adaptive

dynamics (e.g., Hines and Maynard Smith, 1978; Michod, 1982; Maynard Smith, 1982; Eshel,

1991; Mesterton-Gibbons, 1996; Eshel et al., 1998; Day and Taylor, 1996; Frank, 1998; Day

and Taylor, 1998; Rousset, 2004; Lehmann and Rousset, 2014a; Akçay and Van Cleve, 2016;

Okasha and Martens, 2016; Eshel, 2019). But these discussions often do not emphasize enough

the distinction between the gene-centered and the individual-centered perspective of adaptation,

and generally do not cover the case of class-structured populations (e.g., queen and worker, male

and female, young and old individuals).

Our goal in this paper is to formalize and push forward, as far as is consistent with the

gene-centered perspective, the individual-centered approach according to which individuals may

maximize their own inclusive fitness in an uninvadable population state. To that aim, we use the

common framework of evolutionary invasion analysis and proceed as follows in four steps. We

start by presenting a model of evolution in a diploid group-structured population with limited

dispersal and class-structure within groups. In this model, we then consider three perspectives on

adaptation, formalized by three fitness measures, all of which are maximized (in the best-response

sense) in an uninvadable population state. First, we consider a “recipient-centered perspective”,

which is formalized as a weighted mean of the fitness of individuals who bear an allele. Second, we

consider an “actor-centered perspective”, which is formalized as an exact class-specific version of

inclusive fitness. This maximand is assigned to all bearers of an allele in a given class. Finally, we

consider a “rational actor-centered perspective”. This is the only perspective that fully captures
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the idea that individuals maximize their own inclusive fitness, and is formalized as a class-specific

inclusive fitness that can be assigned to individuals without knowing their genotype.

By formalizing these three perspectives on adaptation and discussing similarities and differ-

ences thereof, we unify and extend previous results on the relationship between maximization

behavior and the concept of adaptation sensu Reeve and Sherman (1993, p. 9), i.e., “A phenotypic

variant that results in the highest fitness among a specified set of variants in a given environ-

ment”. This allows us to provide a full connection between evolutionary invasion analysis, the

different perspectives on inclusive fitness theory, and game-theoretic approaches. Readers who

find the technical details in the following text challenging may nevertheless have a look at the

expression for inclusive fitness (eq. 4) and read the Discussion. Therein, results are summarized

with a number of take-home messages about the interpretation of adaptation in terms of fitness

maximization. Finally, readers interested in how selection on traits can be decomposed into

direct effect on actors and indirect effects on recipients, but not on whether individuals do really

maximize their own inclusive fitness, should read the section “The actor-centered perspective of

adaptation”, but can skip the more complicated section “The rational actor-centered perspective

of adaptation”.

The model

Assumptions

In order to formalize and compare the different perspectives on adaptation in a simple way but

retain key biological population structural effects, we endorse two sets of well-studied assump-

tions.

Demographic assumptions

First, we assume that evolution occurs in a population structured into an infinite number of

groups (or demes or patches), each with identical environmental conditions, and connected to each

other by random and uniformly distributed, but possibly limited, dispersal (i.e., the canonical

demographic island model of Wright, 1931). Demographic time is discrete and during each

demographic time period, reproduction, survival, and dispersal events occur in each group with

exactly n individuals being censused at the end of a time period (after all relevant density-

dependent events occurred). Each of the n individuals in a group belongs to a class (e.g.,

queen and worker, male or female, young or old) and nc denotes the number of classes, which is

assumed fixed and finite. The number of individuals in each class can differ within a group (but

this difference is the same for all groups).

Each individual in each group can express a class-specific trait that affects its own survival,

reproduction, and dispersal and possibly those of group neighbors. Let us focus on a focal group

where individuals are labelled from 1 to n and let xi denote the trait expressed by focal individual

i from that group. When this individual is of class a, its trait is taken from the set Xa of feasible

traits available to an individual of class a (i.e., xi ∈ Xa). We collect the class-specific traits
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expressed by all of the n− 1 neighbors of i into the vector x−i of group-neighbor traits. We then

let wua(xi, x−i, x̄) denote the expected number of surviving class-u offspring per haplogenome

produced over a demographic time period by a class-a individual i with trait xi ∈ Xa when group

neighbors have trait profile x−i in a population where the average individual trait profile across

classes is x̄ ∈ X (here X denotes the set of feasible traits across all classes; see Supplement A,

eq. A.3, for a formal definition of fitness and Table 1 for a summary of notation).

We refer to wua as the individual fitness function as it determines the number of successful

gametes per haploid set of an individual (Grafen, 1985). Individual fitness thus gives the average

number of replicate gene copies produced by an individual per homologous gene and so the unit

of measurement is here gene copy number. In writing individual fitness as wua(xi, x−i, x̄) we

made, for simplicity of analysis and presentation, a number of assumptions on fitness. First,

individual fitness depends here on the focal’s own phenotype only through the trait of the class

in which the focal resides. This thus excludes interdependence among own traits throughout

the lifespan of the focal when it can change class (such as in an age-structured population when

traits affect body size and thus may have effects on different age classes). Second, the focal’s

individual fitness depends on the trait of each neighbor only through the neighbor’s class-specific

trait. This thus also excludes interdependence among traits throughout the lifespan of neighbors

that can change class (such as in an age-structured population when traits affect body size and

transfer of resources among individuals depends on body size). Finally, the effects of individuals

from different groups on a focal individual’s fitness is mean-field; that is, it depends only on the

population average trait. While making these assumptions on fitness do not allow us to cover all

biological scenarios of interest (see section “Scope of our results” for a discussion of the restrictive

assumptions of our model and how to relax them), our model does cover the evolution of traits of

arbitrary complexity in disjoint classes (i.e. when the class of an individual is fixed at birth), like

workers and queens or males and females. As such, our model applies in broad generality to the

paradigmatic biological scenarios for which inclusive fitness theory has been initially developed.

Evolutionary assumptions

No assumptions so far have been made on the genetic composition of the population and each

individual may express a different trait and thus be phenotypically distinct from any other

individual. In order to understand which traits are favored over the long term by evolution in this

population, we now turn to our second set of assumptions. We place ourselves in the framework of

an evolutionary invasion analysis (“ESS approach”, e.g., Eshel and Feldman, 1984; Tuljapurkar,

1989; Parker and Maynard Smith, 1990; Metz et al., 1992; Charlesworth, 1994; Ferrière and

Gatto, 1995; Eshel, 1996; Caswell, 2000; Otto and Day, 2007; Metz, 2011). Accordingly, we

consider a population that is monomorphic for some resident trait and aim at characterizing

the conditions according to which a mutant allele changing trait expression is unable to invade

the population. For this, we let resident individuals (necessarily homozygotes if diploid) have

the vector y = (y1, y2, ..., ync ) ∈ X of traits, one for each class of individuals, where ya is the

trait of a (homozygote) individual of class a. Let a heterozygote mutant individual have trait

vector x = (x1, x2, ..., xnc ) ∈ X . We assume that heterozygote traits are convex combinations
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(“weighted averages”) of homozygote traits, which means that we rule out over-, under-, and

strict dominance, but otherwise allow for arbitrary gene action. This allows us to write the trait

za(xa, ya) of mutant homozygotes of class a as a function of the traits xa of heterozygote and ya

of resident homozygotes of that class (Supplement eqs. A.13–A.14 for a formal definition). This

also covers the haploid case where we simply assign trait x to mutant and trait y to residents.

So, for both haploid and diploid populations, traits are fully specified by x and y.

Characterizing adaptation by way of uninvadability

With the assumptions of the last section, the fate (extinction or spread) of a mutant allele with

heterozygote trait x introduced into a monomorphic resident class-structured population with

homozygote trait y can be determined by the invasion fitness W(x, y). This is the geometric

growth ratio of the mutant allele when rare. Henceforth, the mutant allele cannot invade the

population when

W(x, y) ≤ 1. (1)

Suppose now that a given resident trait, say x∗ = (x∗1 , x∗2 , ..., x∗nc ), is uninvadable. Namely, it

is resistant to invasion by any alternative trait from the set of all possible traits X (i.e., eq. 1

holds for any mutant given the resident x∗). This trait x∗ must then be a best response to

itself, meaning that if we vary invasion fitness W(x, x∗) by varying x, the uninvadable trait

x∗ must maximize invasion fitness with respect to x ∈ X . This means that x∗ results in the

highest invasion fitness among all alternatives traits given in the set X of feasible traits, for the

resident population at the uninvadable state. Hence, x∗ qualifies as an adaptation in the sense

of Reeve and Sherman (1993, p. 9), i.e., “A phenotypic variant that results in the highest fitness

among a specified set of variants in a given environment” with “fitness” being invasion fitness

and “a specified set of variants” being X . This definition of adaptation is useful for two reasons.

First, it has a direct formal encapsulation as uninvadability. Second, it captures the apparent

purposefulness of traits as an outcome of cumulative natural selection, which has forcefully been

argued as being the defining feature of adaptation (Fisher, 1930; Williams, 1966; Grafen, 1988;

Dawkins, 1996).

The above characterization of adaptation is gene-centered, since it is obtained in terms of the

fitness of mutant alleles. In order to assess whether individuals maximize their inclusive fitness,

however, we must characterize adaptation in terms of individual-centered concepts. For that

purpose, we contrast three individual-centered perspectives on adaptation:

Perspective (1), recipient-centered. Here, we provide a representation of invasion fitness

expressed in terms of the class-specific fitness components (the wua functions introduced

above) of a typical carrier of the mutant allele. This perspective directly flows out from the

evolutionary model and is recipient-centered because we consider the fitness of individuals

bearing the mutant allele and how this fitness is affected by the behavior of others. Hence,

behavioral effects are grouped by recipients.
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Perspective (2), actor-centered. Behavioral effects, however, are the outcomes of actors ex-

pressing traits. We thus ask whether it is possible to obtain a class-specific representation

of fitness that is maximized (in the best-response sense) at uninvadability and where be-

havioral effects are grouped by the actor. That is, can we define a (class-specific) inclusive

fitness that is maximized for each class in an uninvadable population state?

Perspective (3), rational actor-centered. Here, we go one step further than the actor-centered

perspective. We ask whether it is possible to obtain an actor-centered representation of

fitness where the trait of each individual is different and where this fitness is still maximized

at uninvadability, independently for each individual in each class. This is the (behavioral

ecology) question of whether we can we look at adaptation as if each individual is an au-

tonomous decision-maker having free choice of action and as if these actions are guided by

a striving to maximize a measure of inclusive fitness.

Perspective (1) obtains when an allele’s fitness is viewed as a (possibly weighted) mean of

the fitness of individuals who bear the allele. It is therefore a straightforward translation of the

gene-centered perspective in individual-centered terms; in the context of this paper, it is hardly

distinguishable from the gene-centered perspective. Perspective (2) changes the focus from the

own fitness of allele bearers to their accumulated fitness effects on different recipients. This

is the classic inclusive-fitness interpretation introduced by Hamilton (1964). However, in that

interpretation, a single value (the class-specific inclusive fitness) is still assigned to all bearers of

the allele in a given class. By contrast, only perspective (3) may capture the idea of individuals

maximizing their inclusive fitness, and thus it is perspective (3) that seems most often invoked

in behavioral ecology to understand adaptation. We now develop each perspective in turn to

assess their relative levels of generality. We formally describe these perspectives and all arguments

subtending our analysis in an extensive Supplement, which fully details, generalizes, and discusses

more in depth technical concepts. The Supplement also contains some additional material and

references as our analysis connects to many different ideas and intertwined concepts (for instance

inclusive fitness itself can be formalized in different ways, see Supplement B). The main text

presents the key formalization and results of our analysis.

The recipient-centered perspective of adaptation

Average direct fitness

In Supplement A, we provide the relationship of invasion fitness to the individual fitness com-

ponents wua by suitably averaging over the distribution of class states in which a carrier of the

mutant allele can reside. We denote this distribution by the vector φ(x, y) whose ath entry is

the probability φa(x, y) that a random copy of the mutant allele finds itself in class a. Invasion

fitness of the (heterozygote) mutant x in a resident y can then be written

W(x, y) =
1

V(x, y)

nc

∑
a=1

wDFa(x, y)φa(x, y), (2)
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where the average direct fitness wDFa(x, y) of a class-a mutant (with “DF” standing for direct

fitness) is a weighted average ∑nc
u=1 vu(y)wDFua(x, y), over descendants of class u, of the expected

number wDFua(x, y) of u-type offspring produced (per haplogenome) by an individual of class

a bearing a copy of the mutant allele; vu(y) is the neutral reproductive value of a gene copy

in class u (i.e., the asymptotic contribution to the gene pool of a single class-u gene copy in a

monomorphic resident population); and V(x, y) is the average of the vu(y) reproductive values

over the φ(x, y) distribution, thus giving the asymptotic contribution, to the gene pool, of a

randomly sampled mutant copy that is assigned the total offspring (reproductive) values of a

resident gene copy. Hence, invasion fitness can be represented as the average direct fitness of a

copy of the mutant allele relative to the average direct fitness this allele copy would have if it

was assigned the individual fitness components of resident individuals.

We can express wDFua(x, y) as an average E(xi ,x−i)∼qD
a (x,y)

[
wua(xi, x−i, y)

]
over the distribu-

tion qD
a (x, y) of group trait profiles (xi, x−i) experienced by a mutant gene copy [in a diploid

population in particular, the trait xi of the carrier of that gene copy of class a can be either that

of a homozygote or heterozygote (xi ∈ {za(xa, ya), xa}), while the trait xj of any neighbor j of

class s may takes values in {zs(xs, ys), xs, ys}]. The distribution qD
a (x, y) accounts for correlated

phenotypic effects within groups due to identity-by-descent experienced by a carrier of class a
of the mutant allele. Hence, the qD

a (x, y) distribution captures kin selection effects experienced

by a class-a individual, which occurs whenever the fecundity and survival of an individual is

affected by the genetic trait expressed by one or more other individuals who are genetically re-

lated to the actor in a nonrandom way at the loci determining the trait (Michod, 1982, p. 40).

Invasion fitness depends on the average direct fitness of each class and thus on the collection

qD(x, y) = (qD
a (x, y))a∈C of class-specific genotype distributions. In particular,

wDFa(x, y) =
nc

∑
u=1

vu(y)E(xi ,x−i)∼qD
a (x,y)

[
wua(xi, x−i, y)

]
, (3)

which means that the average direct fitness of a class-a mutant is the neutral reproductive value-

weighted average of the average, over the distribution of trait profiles (xi, x−i) experienced by

a mutant gene copy, of the expected number, given the group genotypes, of u-type offspring

produced per haplogenome by an individual of class a bearing a random copy of the mutant

allele (see Box 1 for an example of average direct fitness).

The importance of genetic contexts

The expression for invasion fitness W(x, y) (eqs. 2–3) makes explicit that invasion fitness is the

average individual fitness component wua over a distributions of demographic states (captured

by φ(x, y)) and genetic states (captured by qD(x, y)) of a copy of the mutant allele. Importantly,

these two distributions depend on mutant and resident traits. As such, invasion fitness depends

on the fitness of a collection of individuals taken over multiple generations and represents the

average replication ability of a randomly sampled allele from the mutant lineage. This focus on

gene replication epitomizes the gene-centered perspective of evolution. Accordingly, it is not the
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individual fitness of a single individual (or a single gene copy) in a given demographic and genetic

context that matters for selection, but the average of such individual fitnesses over a distribution

of contexts (Dawkins, 1978; Haig, 1997b, 2012). Natural selection on an allele thus depends not

only on how it changes the immediate survival and reproduction of its carriers (changes in wua),

but also on changes in the probabilities of contexts (Kirkpatrick et al., 2002, p. 1728) in which

the allele at a given locus can be found [as measured by φ(x, y) and qD(x, y)]. Indeed, an allele

can reside, say in a worker or a queen, be inherited from a mother or a father, and is likely to

be in a genome with many other loci with different allele combinations. The importance of such

contexts of alleles for their evolutionary dynamics has been much emphasized in populations

genetics (e.g., Altenberg and Feldman, 1987; Kirkpatrick et al., 2002; Roze, 2009). There are

even mutations that spread through selection only by way of their effects on changes of the

contexts in which they are found. Typical examples are modifier alleles involved in the evolution

of recombination or migration, which may spread by increasing their chance of being in a genetic

context with higher survival or reproduction, despite the modifier having no direct physiological

effect on reproduction and/or survival in a given context (e.g., Altenberg and Feldman, 1987;

Kirkpatrick et al., 2002; Roze, 2009). From now on, we refer to φ(x, y) and qD(x, y) as the

contextual distributions.

The actor-centered perspective of adaptation

Inclusive fitness

What is missing to understand how selection targets traits in the representations of invasion

fitness given by average direct fitness, eqs (2)–(3), is twofold. First, it is a simple and intuitive

quantification of the effect of limited dispersal (and thus kin selection), which summarizes the

variation on fitness introduced by the distribution over genetic contexts (the qD(x, y) distribu-

tion). Second, it is a quantification of the contribution to fitness of trait expressions in the

different classes of individuals who really contribute to allele transmission. For instance, in the

social insect example described in Box 1, a male has positive individual fitness but its trait is not

under selection, while a worker has zero individual fitness, but its trait is affected by selection.

Then, can one identify the force of selection on the actor’s trait in a fitness measure? In other

words, we aim to find an inclusive fitness wIFa(x, y) for a class-a carrier of the mutant allele in a

resident y population, which, by varying the class-specific trait xa ∈ Xa maximizes the function

wIFa with respect to that trait and for any actor class a in an uninvadable population state x∗.
Hence, such maximization means that x∗a results in the highest class-a inclusive fitness among all

traits values in Xa in an uninvadable population at x∗.
In Supplement B, we show that

wIFa(x, y) = va(y) +
nc

∑
u=1

vu(y)

[
−cua(x, y) +

nc

∑
s=1

rs|a(x, y) bus←a(x, y)

]
(4)
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satisfies this maximization problem. Here, extending an established population genetics termi-

nology, −cua(x, y) is the average effect on the number of class-u mutant gene copies produced

by a single class-a individual when expressing a copy of the mutant instead of the resident allele

(originally, the average effect of an allele substitution on a quantitative trait; e.g., Fisher, 1941,

Ewens, 2004, p. 63), and bus←a(x, y) is the average effect on the expected number of class-u
offspring produced (per haplogenome) by all class-s neighbors in a group, and stemming from

a single class-a gene copy switching to expressing a copy of the mutant instead of the resident

allele. These costs and benefits hold regardless of the number of group partners, and have been

reached by using a multiplayer and class-specific generalization of the two-predictor regression

of individual fitness used in the exact version of kin selection theory (Queller, 1992; Frank, 1997;

Gardner et al., 2011; Rousset, 2015; see Supplement B for further considerations on regressions

and inclusive fitness). As such, −cua(x, y) and bus←a(x, y) describe additive effects on fitness

resulting from two distinct gene substitutions, as if each was independently brought up by mu-

tation. Each such effect accounts for changes in individual fitness when everything else is held

constant, in particular holding constant the average effects of interactions between individual

traits (although those will be modified by an allelic substitution).

Finally, inclusive fitness (eq. 4) depends on

rs|a(x, y) =
rn s|a(x, y)

rfa(x, y)
, (5)

which is the relatedness between a class-a actor and a class-s recipient. Here, rfa(x, y) is the

probability that, conditional on an haplogenome in a focal individual of class a carrying the

mutant allele (hence the subscript “f”), a randomly sampled homologous gene in that individual

is mutant, and rn s|a(x, y) is the probability that, conditional on an individual of class a carrying

the mutant allele, a randomly sampled homologous gene in a (non-self) neighbor of class s is

a mutant allele (hence the subscript “n”). Hence, relatedness rs|a(x, y) can be interpreted as

the ratio of the probability of indirect transmission by a class-s individual of a mutant allele

taken in a class-a individual to the probability that the individual transmits itself this allele

to the next generation. In the absence of selection, this is equivalent to the standard ratio

of probabilities of identity-by-descent (Hamilton, 1970, p. 1219, Lehmann and Rousset, 2014b,

eq. A.5). Relatedness is expressed in terms of the class-specific mutant copy number distribution

(the qD
a (x, y) distribution) and as such summarizes the statistical effects of limited dispersal on

mutant-mutant interactions.

The subunits of adaptation

Class-specific inclusive fitness wIFa(x, y) is the reproductive value of a class-a individual aug-

mented by the average effect of that individual switching to expressing a copy of the mutant

allele on the reproductive-value weighted number of mutant gene copies produced by all recipi-

ents of its action(s). Thus all behavioral effects are grouped by actor in eq. (4) and we emphasize

that this holds also within classes (see Supplement B for proofs and for details on the connection
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to the neighbor-modulated formulation of inclusive fitness). Crucially, inclusive fitness is defined

at the allele level and this is consistent with the original formulation of this concept (Hamilton,

1964, pp. 3-8). But our own formulation (eq. 4) extends it to class-structured populations, and

further shows that it holds regardless of the complexity of the evolving trait and the strength of

selection on the mutant allele.

The fundamental difference between average direct fitness wDFa(x, y) (eq. 3) and inclusive

fitness wIFa(x, y) (eq. 4) is that the direct fitness is non-null only for individuals who reproduce,

while the inclusive fitness effect is non-null only for individuals whose trait affects their own

individual fitness and/or that of other individuals in the population (see the concrete social

insect example in Box 2). As a result, in an uninvadable population state the inclusive fitness of

each class appears to be maximized with respect to the class-specific xa trait, while the average

direct fitness wDFa(x, y) does not.

Inclusive fitness also makes explicit that a fitness comparison is made between expressing or

not the mutant allele, since this involves comparing successful number of gene copies gained and

lost through behavioral interactions. Hence, inclusive fitness allows one to fasten attention on

the pathways determining fitness costs and benefits (Grafen, 1988). This is particularly salient in

the case of classes, where a fitness measure can be attached not only to reproductive individuals

but also to, say sterile workers, which can thus be seen as contributing to the fitness of their

gene lineage. The inclusive fitness formulation thus shifts attention from those individuals that

are passive carriers of alleles to those individuals whose trait actively affects the transmission of

alleles. In other words, the unit of adaptation is the gene (Dawkins, 1978, 1982; Haig, 2012), and

its subunits are the replicate gene copies expressed differently in particular classes of individuals,

whose traits can be regarded as the outcomes of maximizing a class-specific inclusive fitness.

The rational-actor perspective of adaptation

Fitness as-if

Class-specific inclusive fitness wIFa(x, y) (eq. 4) seems satisfying from a population genetics point

of view to understand selection on traits affecting relatives. Many behavioral ecologists, however,

observe individual behavior instead of genes. What is then missing to understand how selection

targets traits in the class-specific representation of inclusive fitness wIFa(x, y) is a prediction

of adaptive traits among the alternatives that an individual can potentially express, given the

actions of social partners. The simplest and most widely used concept for the prediction of

individual behavior is that of a Nash equilibrium trait profile, compared to which no individual

can get a higher “payoff” by a unilateral deviation of behavior (see e.g., Luce and Raiffa, 1957,

Fudenberg and Tirole, 1991 or Mas-Colell et al., 1995). Here, an individual is envisioned as an

autonomous decision-maker, “freely choosing” its action independently of each other individual

and with a striving to maximize payoff. In a Nash equilibrium, the individual then makes the

best decision for itself in terms of payoff, based on all others individuals making the best decisions

for themselves. Our aim now is to find such a payoff for a focal individual of class a, denoted

11

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/624775doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/624775
http://creativecommons.org/licenses/by-nc-nd/4.0/


wIa(xi, x−i, x̄). Here we use the same notation as before for individual traits, but xi is to be

understood as any trait value that a given individual i could express instead of the (genetically

determined) trait that it actually expresses. We refer to wIa as the fitness as-if function of an

individual of class a, because the individual acts as if it maximizes this function in an uninvadable

state by choosing the appropriate trait value xi ∈ Xa (see eq. C.1 and Supplement C for more

details on the construction of fitness as-if).

The previously considered invasion fitness, class-specific average direct fitness, and class-

specific inclusive fitness do not fulfill the role of a fitness as-if since they depend on mutant

and resident traits. The fundamental difference between fitness as-if wIa maximization and,

say inclusive fitness wIFa maximization, is that each individual can vary its own trait in fitness

as-if, independently of each other individual. By contrast, inclusive fitness is maximized with

respect to a mutant trait and this implies that it takes into account correlated changes in the

traits expressed by co-bearers. In this respect, the previous perspectives were all gene-centered,

while the rational-actor perspective is distinctly individual-centered. In reaching a definition of

a fitness as-if, we will still need to take correlated trait changes into account, by adjusting the

function definition rather than by allowing its argument x−i to vary with xi.

A general rational actor-centered maximand?

Supplement C shows that it is possible, in theory, to construct an inclusive fitness as-if maximand

that individuals appear to maximize in an uninvadable population state (see eq. C.28). This

maximand, however, requires that the contextual distributions are written in terms of the actor’s

trait and the average in the population. It is thus as if the actor controlled the genetic and

demographic contexts it experiences. In reality, however, the contextual distributions cannot be

under the actor’s control. These distributions do not depend on the actor’s behavior, but on

the reproduction and survival of ancestors that determine the present genetic and demographic

contexts. This precludes, in our understanding, a general rational actor-centered representation

of adaptation.

If the contextual distributions, φ(x, y) and qD(x, y), were to be independent of the mutant

trait, then a fitness as-if could be constructed with these distributions exogenous to an individual’s

own behavior. There are least two ways to achieve exactly this and both hinge on weak-selection

approximations implying that, to first-order, the distribution of genetic and class contexts will

no longer be dependent on the mutant allele. Such first-order approximations are reached either

by assuming that the phenotypic effects of the mutant is small (“small-mutation” weak selection,

in which case the individual fitness functions wua are assumed differentiable with respect to trait

values), or that parameters determining both mutant and resident phenotypic effects on fitness

are small (“small-parameter” weak selection). In both cases, the contextual distributions depend

at most on the resident trait (φ(x, y) ∼ φ(y) and qD(x, y) ∼ qD(y), see Supplement C.5.1 for

more details). The key implication is that under weak-selection a mutant allele will not affect

the genealogical and/or demographic class structure to which it is exposed and this structure

can thus be held constant. This was a central assumption endorsed by Hamilton (1964, p. 34),
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and has been used to obtain a representation of individual maximizing behavior in the absence

of social interactions in age-structured populations (Grafen, 2015; Lessard and Soares, 2016) and

in the presence of social interactions in group-structured populations (Lehmann et al., 2015).

These two cases can be generalized by the results provided in Supplement C, and we now present

a fitness as-if that takes the form of inclusive fitness.

Maximization of inclusive fitness as-if under weak selection

Assuming weak selection, we show in Supplement C that the inclusive fitness as-if function wIa

of a class a individual defined by

wIa(xi, x−i, x̄) = va(x̄) +
nc

∑
u=1

vu(x̄)

[
−cIua(xi, x−i, x̄) +

nc

∑
s=1

rs|a(x̄) bIus←a(xi, x−i, x̄)

]
(6)

is maximized in an uninvadable population state. In this inclusive fitness as-if, −cIua(xi, x−i, x̄)

is an average effect on the number of class-u offspring produced by a single class-a individual

and bIus←a(xi, x−i, x̄) is an average effect of a single class-a individual on the number of class-

u offspring produced by all class-s neighbors. These average effects, costs to self and benefits

to others, are now weak-selection approximations of the exact costs and benefits obtained by

performing a general regression of the individual fitness of i when in class a on the frequency in

itself and its neighbors of a hypothetical allele determining trait expression, whereby the effects of

switching trait expression can be assessed. This allele is taken to have the same distribution as the

mutant allele in the population-genetic model and ensures that the inclusive fitness as-if (eq. 6)

of a class a individual aligns, at uninvadability, with the class-specific inclusive fitness of the

population genetic model (eq. 4). The key difference between the cost cIua(xi, x−i, x̄) in the as-if

and the cost −cua(x, y) in the population-genetic model (recall eq. 4) is then that all individuals

within groups have distinct traits in the rational-actor perspective (and likewise for the benefits

bIus←a(xi, x−i, x̄) versus bus←a(x, y)). As such, the probability rs|a(x̄) that, conditional on being

in class a, a random actor and a random class-s recipient in its group share the same allele is

constant with respect to the actor’s trait. Hence, it is equivalent to the standard relatedness in a

monomorphic population with trait x̄ (sometimes called pedigree relatedness) and is independent

of actor genotype.

Eq. (6) provides an inclusive-fitness representation of fitness as-if that individuals from each

class appear to maximize in an uninvadable population state (see Supplement C.5.2 for a proof

of this result). It may be felt to be a stretch to define the inclusive fitness as-if, which is not a

population genetic quantity. Such an elaborate construction may nevertheless be needed to assign

a coherent meaning to the untold number of statements found in the literature that individuals

maximize their own inclusive fitness (rather than the inclusive fitness, eq. (4), of an allele in

the population genetic model). Of particular note here is that our construct can be assigned

to individuals without knowing their genotype. On the other hand, its representation (eq. 6)

still makes explicit that individuals in each class adjusting their behavior will strive to do so by

maximizing their genetic contribution to the next generation and by treating others according
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to the degree of genetic relatedness between actor and recipient.

Scope of our results

We have identified a rational actor-centered maximand, which individuals appear to maximize

in uninvadable population states under weak selection (or if, for other reasons, the φ and qD

contextual distributions are independent of selection). This result, as well as the actor-centered

maximand (eq. 4), were obtained assuming simplifying demographic assumptions; in particular,

constant group size and abiotic environment, no isolation-by-distance, and discrete time. We now

confront each of these the assumptions in turn. First, the number of individuals in each class and

thus group size as well as abiotic environments are all likely to fluctuate. To cover these cases,

it suffices to follow the recommendation of McPeek (2017), which describes common practices in

theoretical evolutionary biology (e.g., Brown and Vincent, 1987; Taper and Case, 1992; Geritz

et al., 1998; Dercole and Rinaldi, 2008; Lion, 2018), to write individual fitness wua not only as

a function of an individual’s trait and that of its interaction partners (group and average popu-

lation members), but also as a function of relevant endogenous variables (e.g., population size,

abiotic environment, cultural knowledge); namely, those variables whose distributions or values

are influenced by individual traits and thus result in environmental feedbacks on fitness. For weak

selection, these distributions or values can then be approximated as a function of the resident

traits (see Ronce et al., 2000; Rousset and Ronce, 2004 for concrete examples of fitness func-

tions and distributions covering both demographic and environmental fluctuations, in particular

examples where the number of individual in each class can fluctuate between groups, as well as

examples where the total number of individuals within groups can fluctuate, respectively). Then,

an inclusive fitness as-if under individual control can be defined; the implication being that there

are now more contexts to consider relative to the case with no fluctuations (e.g., different group

sizes and environments, different number of individuals across classes in different groups), and

individuals face a maximization problem under the constraint that the endogenous distributions

or values of contexts are evaluated at the uninvadable trait state. Likewise, taking isolation-

by-distance into account calls for an extension of the number of contexts and relatednesses to

be considered. But given the contexts and the relatednesses, their distributions or values can

again be approximated as function of the resident strategies under weak selection (see Rousset

and Billiard, 2000 for such constructions for isolation-by-distance) and again an inclusive fitness

as-if under individual control can be defined. We also assumed discrete time but comparison of

our results (in particular to those of the continuous time model of Grafen (2015, eq. 38) suggests

that here again, only a redefinition of contexts is needed to cover fitness as-if under continuous

time.

Our results also relied on specific assumptions about trait expression. While traits themselves

can be arbitrary complex (e.g., they can be of arbitrary dimension, combining both discrete and

continuous trait values, be reaction norms), we assumed that there is no kin recognition or

discrimination based on using genetic cues (most models in the literature do not allow for this

case either). Yet, other forms of kin discrimination, such as different behaviors expressed toward
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sisters, cousins, etc., are readily accounted by our results once sisters, cousins, etc., are recognized

as different classes of actors. Our model also does not cover complicated conditional class-specific

traits expressions, such as when an individual helps its mother as long as she is alive and upon

her death starts to help its siblings. Including such biologically relevant cases and more generally

conditional trait expression based on individual recognition again calls for an extension of the

number of contexts to be considered in the definition of fitness as-if. Finally, we assumed a

resident monomorphic population, but this population could be polymorphic with any finite

number of genotypes coexisting in equilibrium. Here, previous results (Eshel and Feldman, 1984;

Liberman, 1988; Eshel et al., 1998) suggest, again, that an extension of the number of contexts

will allow to define a corresponding fitness as-if. In conclusion, all the above scenarios involve

considering more complicated φ and qD contextual distributions, so that explicit extensions of

our results under these scenarios will need care for the definitions of contexts, fitnesses and

relatedness. Such demographic, genetic, and behavioral extensions could be very welcome to

generalize both class-specific inclusive fitness (eq. (4)) and class-specific inclusive fitness as-if

(eq. (4)), but are unlikely to alter our conclusions, since they all rely only on broadening the

number of contexts (be it demographic or genetic).

Discussion

Summary and take-home messages

The evolutionary literature provides contrasting messages about the relationship between adap-

tation and individual behavior as the outcome of fitness maximization. We here combined core

elements of evolutionary invasion analysis, inclusive fitness theory, and game theory in order to

get a hold on the conditions under which individuals can be envisioned as maximizing their own

inclusive fitness in an uninvadable population state (i.e., a population where all deviating mutants

go extinct). In particular, we considered three individual-centered perspectives on adaptation

(Fig. 1), and defined two class-specific inclusive fitness maximands. The first inclusive fitness

maximand is assigned to bearers of a mutant allele, but here only identically to all bearers in a

given class, rather than identically to all bearers of an allele as in Hamilton (1964). Our second

maximand is assigned to each individual in the population separately, and is a generalisation of

our class-specific inclusive fitness, that a behavioral ecologist can directly assign to any observed

individual without knowing genotypes. Instead of depending on genotype, it has to depend on

the traits expressed by all social partners. This “behavioral” inclusive fitness nevertheless re-

duces to the class-specific inclusive fitness of a mutant allele when the resident population is an

uninvadable population state and under a weak-selection approximation. We thereby defined a

rational actor-centered inclusive fitness that is maximized at an evolutionary equilibrium. Our

formal analysis leads to the following main take-home messages.

Message (1): actor-centered inclusive fitness maximization obtains generally. Uninvadable

traits can be characterized in terms of mutant alleles attempting to maximize (in the best-

response sense) their own transmission across generations. We showed that the traits
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expressed by individuals in each class maximize class-specific inclusive fitness in an un-

invadable population state (eq. 4). This provides a genuine actor-centered perspective of

adaptation.

Message (2): inclusive fitness is a gene-centered fitness measure. Selection on a mutant

allele depends on both the individual fitness of its carriers and the distributions of class and

genetic contexts in which these carriers reside. Since these distributions are properties of

a lineage of individuals over multiple generations, the class-specific inclusive fitness is not

the fitness of a single individual, but that of an average class-specific carrier of a mutant

allele sampled from the distributions of genetic contexts it experiences.

Message (3): rational actor-centered inclusive fitness maximization under weak selection.

For weak selection, the distributions of class and genetic contexts, and thus relatedness,

can be taken to be unaffected by selection (Hamilton’s 1964 original modeling assump-

tion). In this case, we showed that each individual in each class appears to maximize its

own inclusive fitness (eq. 6) in an uninvadable population state. This provides a genuine

individual-centered perspective of adaptation that can be assigned to an individual without

knowing its genotype.

Message (1) follows from the fact that alleles are the information carriers of the hereditary

components of organismic features and behavior. As emphasized by Dawkins (1979, p. 9), alleles

do not act in isolation but in concert with all other alleles in the genome and in interaction with

the environment to produce the organism. But uninvadability can be deduced from unilateral

deviation of allelic effects alone. This logic can be transposed down at the class level so that

adaptation in the long-term evolutionary perspective can be envisioned as the maximization

of the class-specific inclusive fitness of a mutant allele that holds for any trait complexity and

selection strength. This inclusive fitness consists of the class-specific reproductive value of an

allele augmented by the inclusive fitness effect, which is a decomposition of the force of selection,

in terms of direct and indirect effects on transmission of replica copies of this allele. The inclusive

fitness effect in class-structured populations is commonly represented, to the first-order, as an

average effect on the reproductive value weighted-number of offspring produced by a recipient of a

given class (Taylor, 1990; Frank, 1998; Rousset, 2004). Our class-specific inclusive fitness, which

collects effects by actors of a given class, better embodies the notion of class-specific inclusive

fitness and holds generally. Further, since any (indirect) effect that an actor from a given class

has on the survival and reproduction of a relative in another class is not an effect on the actor’s

own fitness, the maximization of class-specific average direct fitness is generally not compatible

with uninvadability, in contrast to class-specific inclusive fitness.

Message (2) follows from the fact that the selection pressure on a social trait depends on

what carriers and other individuals are doing. One cannot say what is the best to do for one

individual, without specifying the actions of other individuals in present and past generations.

This applies to inclusive fitness as well, and shows that the fitness effects under the control of an

allele (the set of all copies of an allele) may include changes of class (demographic) and genetic
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contexts. As such, inclusive fitness is a gene-centered fitness measure (consistent with Hamilton’s

original definition), whose components, like relatedness, cannot be under the control of a single

individual. This precludes a general interpretation of uninvadability as individuals maximizing

their inclusive fitness. The usual individual-centered characterization of Nash equilibrium in the

social sciences (e.g., Luce and Raiffa, 1957; Fudenberg and Tirole, 1991; Binmore, 2007) bears

similar limitations as a characterization of human (evolved) behavior.

Message (3) follows from the fact that when selection is weak, the dependence of the inclusive

fitness of an allele on the frequency of this allele across generations can be simplified and the

outcome of evolution can be regarded as individuals maximizing their own inclusive fitness for a

given distribution of genetic-demographic contexts. This warrants the view of individuals from

different classes as autonomous decision-makers, each maximizing its own inclusive fitness.

We finally delineate two implications highlighted by our analysis.

Is it empirically expected that −c + rb > 0?

First, in any population that is subject to density-dependent regulation and that is in an un-

invadable state, the average individual fitness, and the average inclusive fitness, are equal to

one. In practice, populations will not be exactly at uninvadable states, but, when they depart

from such states, they are not expected to depart in any consistent way in terms of expressing

social behavior (e.g., the trait level expressed by individuals could be as well below or above the

uninvadable one). Hence, in contrast to the hypothesis considered by Bourke (2014), we do not

necessarily expect a tendency for the inclusive fitness effect (“rb− c”, the difference between the

baseline fitness of “1” and inclusive fitness) of a “more social” act to be positive even when kin

selection operates through positive indirect effects (rb > 0). This argument applies to the class-

specific inclusive fitness as well (the difference between wIFa(x, y) and the reproductive value in

eq. 4, which will be zero at uninvadability).

Bourke (2014) reviewed a number of studies that have attempted to test kin selection by

quantifying the inclusive fitness effect, and he documented only a weak tendency for a positive

bias. This meta-analysis was framed as a test of Hamilton’s rule, and it could then be seen

as providing little support for kin selection theory. But the inclusive fitness effect, rb− c, and

more generally the class-specific inclusive fitness effect, should be negative for any mutant trait

in an uninvadable population state. This is so, since by definition, the inclusive fitness effect

is the effect of a mutation away from an uninvadable population state on an invasion fitness

maximized at this state. Hence, the results of Bourke’s (2014) meta-analysis could actually be

seen as evidence that populations are generally close to some evolutionary equilibrium, where

the inclusive fitness effect tends to vanish.

By contrast to the inclusive fitness effect (rb − c in the absence of classes), the indirect

fitness effect, rb will be non-zero when kin selection operates at an evolutionary equilibrium. In

testing kin selection theory, a difference should thus be made between attempting to measure the

inclusive fitness of an allele, which, at an equilibrium, is not informative about the importance

of kin selection, and the indirect fitness effect, which for all conditions quantifies how the force of
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selection on a mutant depends on relatedness. Nevertheless, the inclusive fitness of a particular

class of individuals (eq. 4) is itself informative about the importance of kin selection, since it

assigns fitness contributions even to individuals that do not reproduce.

So, when do individuals maximize their inclusive fitness?

The second and more significant implication of our results is to support the common conception

in behavioral ecology and evolutionary psychology, of adaptation as the result of interacting in-

dividuals maximizing their own inclusive fitness (e.g., Alexander, 1979, 1990; Alcock, 2005; Buss,

2005; Grafen, 2007, 2008; Davies et al., 2012; West and Gardner, 2013; Crespi, 2014). Insofar as

evolutionists think about adaptation in this way, they should keep in mind the underlying weak-

selection assumption (points 2 and 3), the assumption that the population needs to be close to an

uninvadable state, and, the definition of inclusive fitness for which it holds (eq. 6). Namely, it is

a function of the traits of an individual and of its social partners all assumed distinct, yet which

coincides with the allelic inclusive fitness of an allele at an evolutionary equilibrium. Previous

work has been able to justify that individuals appear to be to maximize their inclusive fitness

only for behaviors that do not involve any phenotypic interactions (Grafen, 2006a)1, whereby

ruling out social interactions in any broad sense.

While Fisher (1930) and Hamilton (1996, p.27–28) have emphasized the importance of weak

selection for the evolutionary process, weak-selection approximations are still sometimes vilified

in evolutionary biology (as reviewed by Birch, 2017). The value of approximations, however, can

only be assessed by their impact on a field. Humans were landed on the Moon using Newtonian

mechanics (Wakker, 2015)–a first-order approximation to the real (relativistic) mechanics of

the solar system (Okun, 2012). Thus, technological and scientific achievements regarded as

paradigmatic are as dependent on approximations as is the individual-centered version of inclusive

fitness. A number of unique predictions about social behavior have been made by focusing on

individual inclusive fitness-maximizing behavior, from conflicts over sex-ratios and resources

within families to inbreeding tolerance and genomic imprinting (e.g., Trivers and Hare, 1976;

Haig, 1997a; Alcock, 2005; Macke et al., 2011; Davies et al., 2012; Szulkin et al., 2013). Our

analysis justifies formally this long-heralded view.
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Notations Meaning and references to the Supplement

xi, x−i, x̄ Respectively, trait of individual i, its group neighbor’s trait profile, and the
average trait over all individuals in the population.

x, y Trait of a mutant and a resident individual in a haploid population. In a diploid
population, y is the trait of a homozygote resident, x the trait of heterozygote,
and z(x, y) that of homozygote mutant (eq. A.14).

wus(xi, x−i, x̄) Expected number of surviving class-u offspring per haplogenome produced by an
individual of class-s (possibly including self) over one demographic time period
(eq. A.3).

vs(y) Neutral reproductive value of single gene copy in class s (eq. A.18).

W(x, y) Invasion fitness of a mutant gene copy (eqs. A.6, A.15, A.23).

V(x, y) Average of the vu(y) reproductive values (eq. A.20).

wDFa(x, y) Average direct fitness of a class-a mutant gene copy (eqs. A.24, A.28).

wDFua(x, y) Average (over the qD
a (x, y) distribution) of the expected number of u-type

offspring produced (per haplogenome) by an individual of class a bearing a copy
of the mutant allele (eq. A.29).

wIFa(x, y) Inclusive fitness of a class-a mutant gene copy (eq. B.38).

wIa(x, x−i, x̄) Fitness as-if of a class-a individual (eqs. C.10, C.28, C.34).

φs(x, y) Probability that a mutant gene copy resides in a class s individual (eq. A.21).

φ(x, y) Distribution for φs(x, y).

qD
a (x, y) Conditional distribution of identity for a gene-copy in class a. The qD

a (x, y)
distribution accounts for correlated phenotypic effects within groups due to
identity-by-descent and thus captures the kin selection effects experienced by a
class-a individual (eqs. A.10, A.17).

rs|a(x, y) Conditional relatedness, with a class-s individual, of a gene copy taken in a
class-a individual (eq. B.24). Under weak selection this is written rs|a(y); namely,
as a function of only the resident population.

rn s|a(x, y) Conditional identity with a gene copy randomly taken in a class-s individual, of a
gene copy taken in a class-a individual (eq. B.24).

rfa(x, y) Conditional identity with a gene copy randomly taken in a class-a individual, of
a gene copy taken in that same individual (eq. B.24).

cua(x, y) Average effect on its own fitness through class-u offspring of a gene substitution
in a class-a individual (eq. B.14).

bus←a(x, y) Average effect of a gene substitution in a single class-a individual on the fitness
of all class-s recipients (eq. B.31) through class-u offspring.

cIua(xi, x−i, x̄) Average effect of a class-a individual on its own fitness as-if (eq. C.13) through
class-u offspring.

bIus←a(xi, x−i, x̄) Average effect of a single class-s individual on the fitness as-if of all class-a
recipients (eq. C.13) through class-u offspring.
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Box 1: Social insect example. Let us thus consider a seasonal population of diploid social insects

(e.g., termites rather than ants) who allocate resources to the production of three classes of individuals,

reproductive males, reproductive females (queens), and workers. The life cycle is as follows. (1) At the

beginning of the season each group is occupied by exactly a single mated queen that initiates a colony by

producing workers that help produce sexuals. (2) At the end of the season, all reproductive individuals

disperse at the same time and individuals of the parental generation die. (3) Random mating occurs,

all queens mate exactly with one male and then compete for vacated breeding slots to form the next

generation. Under these assumptions, successful gene copies must pass through the single mated female

in each group; and the expected number of class-u offspring produced by a class-a mutant individual per

haplogenome can be written wDFua(x, y), where trait x = (xf, xm, xo) collects, respectively, the traits of

females, males, and workers. The trait for the resident is y = (yf, ym, yo), whereby the invasion fitness of

the mutant can be written as in eq. (2) with the direct fitnesses given by

wDFf(x, y) = vf(y)wDFff(x, y) + vm(y)wDFmf(x, y)

wDFm(x, y) = vf(y)wDFfm(x, y) + vm(y)wDFmm(x, y)

wDFo(x, y) = 0, (B.1)

and the distribution of class states in which a carrier of the mutant allele can reside being φ(x, y) =

(φf(x, y), φm(x, y), φo(x, y)). A worker does not reproduce and henceforth has a zero direct fitness, but its

class frequency is non-zero (φo(x, y) 6= 0; the explicit expression for φf(x, y), φm(x, y), and φo(x, y), are

given in the Supplement, eq. A.32) and it helps its parents to reproduce. Formally, the worker affects the

reproduction of its male and female parents through the dependence of individual fitness on trait vector

x = (xf, xm, xo).
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Box 2: Individual and inclusive fitness for social insect example. As an example of the individual

fitnesses in eq. (B.1), making the (evolutionary) role of workers more explicit, let us assume that each

female produces exactly one worker, which increases colony productivity according to its trait xo. We also

consider that the female trait xf determines the sex-ratio, and nothing else. Finally, we consider that the

male trait does not affect any fitness component. Since the worker is heterozygote with probability 1/2
and homozygote for the resident with probability 1/2, the expected number of (reproductive) daughters

of a mutant female can be written as

wDFff(x, y) =
(1 + P(xo)) xf

2 (1 + P(yo)) yf
× 1

2
+

(1 + P(yo)) xf
2 (1 + P(yo)) yf

× 1
2

. (B.2)

Here, xf is the proportion of offspring that become female. The worker affects the relative fecundity of a

female, which is assumed to be given by 1 + P(·), where P(·) is some function of worker trait. In other

words, the worker trait increases offspring production of the queen relative to some baseline. The first

term in eq. (B.2) is for the case where the worker is heterozygote and the second when it is homozygote

resident. The denominators in eq. (B.2) reflects female production by other colonies that are monomorphic

for the resident allele and the 2 reflects the fact that we measure fitness per haplogenome. Likewise, the

number of sons produced by a female is

wDFmf(x, y) =
(1 + P(xo)) (1− xf)

2 (1 + P(yo)) (1− yf)
× 1

2
+

(1 + P(yo)) (1− xf)

2 (1 + P(yo)) (1− yf)
× 1

2
. (B.3)

While male trait does not impact fitness, the mutant allele may still occur in a male and the mutant

male fitness components will depend on the worker trait, which affects offspring production by the male’s

mate(s), whereby

wDFfm(x, y) =
(1 + P(xo))

2 (1 + P(yo))
× 1

2
+

1
4

and wDFmm(x, y) =
(1 + P(xo))

2 (1 + P(yo))
× 1

2
+

1
4

. (B.4)

For this model, the inclusive fitness effects of a female, male, and worker carrying the mutant in a population

at the equilibrium sex-ratio of x∗f = 1/2 are, respectively,

wIFf(x, y) = vf(y)

wIFm(x, y) = vm(y)

wIFo(x, y) = vf(y)

(
P(xo)− P(yo)

1 + P(yo)

)
+ vm(y)

(
P(xo)− P(yo)

1 + P(yo)

)
(B.5)

(see Supplement B.3 for a proof).
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A recipient experiences different contexts, whether 
none, one or both of its neighbors express the mutant 
allele (blue) rather than the resident one (red). 
Averaging fitness effects over all contexts (with
probabilities ,     , … defining the contextual
distribution) produces the average direct fitness of a 
mutant (eq.2-6).

(A) Recipient-centered

An actor likewise expresses effects in different 
contexts, whose distribution determines the cost 
and benefits in the inclusive fitness effect (eq.4).  
The higher relatedness, the more mutants (blue) 
in the distribution of recipient alleles.

(B) Actor-centered

An actor in the context of two recipients 
expressing different traits (orange and yellow) 
can imagine itself expressing effects on 
recipients whose alleles may be replaced by its 
own allele (green). This defines a distribution 
which determines the cost and benefits in the 
inclusive fitness as-if (eq.6). 

(C) Rational actor-centered

Distribution of 
alleles of actors

=
q1

q2

q3

Possible contexts of the focal,
i.e. alleles of neighbors

Distribution of 
alleles of recipients

q1
q2

q3

=

q1
q2

q4
q3 =

Same contexts as in (A)

q1 q2

Figure 1: Three perspectives on adaptation
The three perspectives are here illustrated in groups of three haploid individuals, and ignoring
any class structure. In the “recipient-centered” perspective (panel A), interactions between group
members are described by arrows representing effects of group neighbors on the fitness of a focal
recipient carrying a mutant allele. In the “actor-centered” perspective (panel B) and “rational-
actor centered” perspective (Panel C), interactions between group members are described by
arrows representing effects of a focal actor on the fitness of average group recipients.
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Supplement A: Invasion fitness as average direct fitness

In this Supplement, we derive the expressions for the average direct fitness given in the main text,

eqs. (2)–(3). As explained therein, we limit our discussion to a population that is divided into

an infinite number of groups that are all of constant size n and connected by random dispersal

with reproduction occurring in discrete time periods (i.e., Wright’s 1931 canonical island model of

dispersal). In each group, there is a finite number of classes and we use the following notations (see

also section “Demographic assumptions” of the main text): na denotes the number of individuals

in class a, C denotes the set of classes (e.g., workers and queens, males and females; n = ∑a∈C na

and |C| = nc), and Xa denotes the feasible trait set of an individual of class a ∈ C with the total

trait set being X = ∏a∈C Xa (products of sets are taken as Cartesian products throughout).

In such a population, a resident trait x∗ is uninvadable if it is a best response to itself, meaning

that if we can vary invasion fitness W(x, x∗) by varying the mutant trait x in the set X of feasible

traits,2 an uninvadable trait must be a trait maximizing invasion fitness for the resident at x∗

(formally invasion fitness is the function W : X 2 → R+ with W(y, y) = 1 for all y ∈ X ). It then

follows that an uninvadable trait x∗ satisfies

x∗ ∈ arg max
x∈X

W(x, x∗), (A.1)

which means that x∗ belongs to the set of traits resulting in the highest invasion fitness among

all alternatives given in the set X of feasible traits, for the resident population at x∗ (in eq. A.1,

x∗ belongs to a set because an uninvadable trait is not necessarily unique).

Since (even assuming the island model) notations and concepts, to express the function W in

terms of individual-centered components in the presence of class-structure and diploidy, become

rapidly complicated, we will progressively introduce different cases (haploid, diploid, etc.), con-

cepts, and notations. We start by defining formally the central building block of our analysis,

which is individual fitness.

A.1 Building blocks

A.1.1 Individual fitness

In the absence of class-structure, we define the individual fitness function as

w : X ×X n−1 ×X → R+, (A.2)

such that w(xi, x−i, x̄) is the expected number of successful offspring produced (per haplogenome)

by a focal individual i ∈ I = {1, 2, .., n} with trait xi ∈ X , where neighbors in group I have

trait profile x−i ∈ X n−1 in a population where the average trait over all individuals is x̄ ∈ X .

2We assume that X is a locally convex Hausdorff space; namely, it is a nonempty, compact, and convex set
in a topological vector space (Alipantris and Border, 2006, p. 55). We are not aware of any applications in
evolutionary biology that is not covered by this case (e.g., it covers discrete finite trait sets, infinite-dimensional
reaction norms or function-valued traits, combination of thereof, etc.), and is the space for which general results
concerning function maximization exists (Alipantris and Border, 2006, pp. 581-585).
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The expectation is over all within-generation stochastic effects on settled offspring number in

the descendant generation and conditional on realized trait profile (xi, x−i, x̄) in the parental

generation.

In the presence of class-structure, and following the assumptions and explanations of the main

text, the individual fitness functions is defined as

wus : Xs ×∏
a∈C
X na−δas

a ×X → R+ ∀(u, s) ∈ C2, (A.3)

such that wus(xi, x−i, x̄) is the expected number of successful class-u offspring produced over a

demographic time step by individual i ∈ I when in class-s (per haplogenome) with trait xi ∈ Xs

in a group where neighbors have trait profile x−i ∈ ∏a∈C X na−δas
a (which has dimension n− 1

owing to the fact that δas is the Kronecker delta) in a population where the vector of average

traits is x̄ ∈ X .

A.1.2 Distinct and indistinct individuals

The formulation of the fitness functions (eqs. A.2–A.3) allows for a characterization of the pop-

ulation where each individual in a group can be distinguished from each other. This means that

the trait profile (xi, x−i) in a focal group, i.e., its state, belongs to the set of all ordered trait pro-

files (i.e., all ordered group states are considered; for instance, in the absence of class-structure,

this is X n). In an evolutionary invasion analysis, however, we consider that only two alleles

–mutant and resident– segregate in the population and so there can be a maximum number of

only two types of individuals in each class in a haploid population (or three types in diploids:

one heterozygote and the two homozygotes). Hence, we have group states with n individuals,

where each member belongs only to one among a finite number of genotypic types. This allows

for an alternative characterization of the population, where one counts the number of individuals

bearing identical traits in a group and thus individuals are no longer distinguished (i.e., only

unordered groups states are considered).

To illustrate these concepts, consider a haploid population without class structure with indi-

viduals either expressing a mutant trait x ∈ X or expressing a resident trait y ∈ X . Since each

individual in a group is either mutant or resident, there is a total number of 2n ordered groups

states. Since neighbors are exchangeable, the individual fitness of an individual i with given trait

xi is identical for all permutations of neighbors’ traits in x−i. Thus,

w(xi, x−i, x̄) = w(xi, xk, x̄) ∀x−i ∈ Sk, (A.4)

where xk = (x, x, . . . y, y, . . . ) is the vector of dimension n− 1 with the first k− 1 entries equal to

x and the subsequent n− k entries equal to y, and Sk is the set of all distinct permutations of

xk. The number of distinct permutations is the binomial coefficient

B(n, k) =

(
n− 1
k− 1

)
. (A.5)
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In the class-structured case, permutation-invariance is on the trait profile of neighbors belonging

to the same class. Permutation-invariance is not an assumption, it is part of what allows one to

determine whether different neighbors belong to the same class of actors. When permutation-

invariance does not hold, individuals belong to different classes.

These considerations show that one can characterize a group state in a class-structured pop-

ulation from the perspective of an individual i either by distinguishing all individuals (ordered

group states) or by not distinguishing individuals in identical states (unordered group states).

While in evolutionary analysis individuals are usually not distinguished because this is often

mathematically simpler (an exception being the Price equation, Price, 1970; Frank, 1998), dis-

tinguishing them is fundamental to the rational actor-centered perspective of adaptation. As

such, we develop the invasion fitness by distinguishing individuals when this will be needed for

the analysis of the indivdual-centered perspective, but start by not distinguishing individuals to

frame the model into the classical approach and to introduce concepts in a progressive way.

A.2 Average direct fitness without classes

A.2.1 Haploids

Indistinct individuals. In the absence of within-group class structure (homogeneous individ-

uals), the invasion fitness can be written

W(x, y) =
n

∑
k=1

w(x, xk, y)qk(x, y), (A.6)

which takes the form of average direct fitness. Indeed, here w(x, xk, y) is the individual fitness

given by eq. (A.4) and qk(x, y) is the probability that a randomly sampled mutant individual

from the mutant lineage descending from the initial mutant resides in a group with k mutants

(∑n
k=1 qk(x, y) = 1).

The qk(x, y) probability is evaluated under the assumption that the mutant is overall rare in

the population, and that the growth of the mutant lineage descending from a single initial copy

has reached stationarity. That is,

qk(x, y) =
kuk(x, y)

∑n
j=1 juj(x, y)

, (A.7)

where u = (u1, u2, ..., un) is the right eigenvector associated to the leading eigenvalue W(x, y) of

the matrix A(x, y) describing the growth of the mutant when it is overall rare in the population:

A(x, y)u(x, y) = W(x, y)u(x, y). (A.8)

The jkth entry of A(x, y), denoted by ajk, gives the expected number of groups with j ≥ 1
mutants descending over one time step from a group with k ≥ 1 mutant, and uj(x, y) is the
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stationary probability that there are j mutants in a group, conditional on there being at least

one mutant. A proof of eq. (A.6) follows by left-multiplying eq. (A.8) with a vector n whose

entry j is equal to the number j of mutants, noting that ∑n
j=1 jajk = w(x, xk, y)k is the expected

number of successfull mutant copies produced over one time step by all mutant gene copies in

a group in state k, and rearranging terms; see Lehmann et al. (2016) for a detailed proof and a

more detailed characterization of the multitype branching process underlying mutant dynamics.

Distinct individuals. We now make the link to characterizing invasion fitness by considering

all ordered groups states. To obtain this representation, we note that from eq. (A.4), we can

write

w(x, xk, y) =
1

B(n, k) ∑
x−i∈Sk

w(x, x−i, y), (A.9)

where on the right-hand side we have distinguished all trait profiles in the focal group with k− 1
neighbors bearing the mutant allele. Let us now further define

qD
k (x, y) =

qk(x, y)

B(n, k)
, (A.10)

which is the probability that, conditional on an individual carrying the mutant allele, an ordered

neighbor trait profile x−i ∈ S = {x, y}n contains exactly k − 1 individuals also carrying the

mutant (hence ∑n
k=1 ∑x−i∈Sk

qD
k (x, y) = 1 and the superscript D stands for a reminder that the

distribution is over profiles of traits for distinct individuals). On substituting eqs. (A.9)-(A.10)

into eq. (A.6), we can write the invasion fitness of a mutant allele with trait x introduced into a

haploid resident population with trait y as

W(x, y) =
n

∑
k=1

∑
x−i∈Sk

w(x, x−i, y)qD
k (x, y) ∀(x, y) ∈ X 2, (A.11)

which is the average fitness over all ordered trait profiles in a group.

Writing explicitly the sums appearing in eq. (A.11) and detailing the permutation under the

more general diploid and class-structured model will be cumbersome and we now present an

alternative and more compact representation of invasion fitness. To that end, let us collect all

qD
k (x, y) probabilities into the vector qD(x, y), which is the distribution of ordered group states

experienced by an individual with trait x and that has sample space in S = {x, y}n. With this,

we can write invasion fitness as

W(x, y) = Ex−i∼qD(x,y)[w(x, x−i, y)] , (A.12)

where the notation ∼ specifies that variable x−i follows distribution qD(x, y).
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A.2.2 Diploids

When individuals are diploid, we need to take into account that they can be homozygote for the

mutant allele. To do this, it will be convenient to build on our notations for mutant and resident

traits introduced for a haploid population. For a diploid population, we let y ∈ X be the trait of

an individual that is homozygote for the resident allele and x ∈ X be the trait of an individual

that is heterozygote for the mutant allele. Let z ∈ X denote the trait of a homozygote mutant

and assume that the trait of an heterozygote is obtained as the following convex combination of

the trait of the two homozygotes:

x = αy + (1− α)z (A.13)

for the scalar α ∈ (0, 1). Hence, we rule out over-, under-, and strict dominance, but otherwise

allow for arbitrary gene action. Eq. (A.13) guarantees that for all y ∈ X and z ∈ X , we have

x ∈ X and it allows us to express conveniently the trait of a homozygote mutant as a function

z : X 2 → X of heterozygote and resident homozygote traits, where

z(x, y) = y +
x− y
1− α

. (A.14)

For arbitrary group size n, the invasion fitness of a mutant allele with heterozygote trait x
introduced into a resident diploid population with homozygote trait y can be written as

W(x, y) = E(xi ,x−i)∼qD(x,y)[w(xi, x−i, y)] , (A.15)

where xi ∈ {z(x, y), x}. Each component xj of the neighbor trait profile x−i = (x1, , ..., xi−1, xi+1, ...xN)

takes values in the set {z(x, y), x, y}. The expectation in eq. (A.15) is over the distribution

qD(x, y) of ordered group profiles of traits, determined by the distribution of contexts of copies

of the mutant allele. The sample space of the distribution of ordered group profiles of strategies

is S = {z(x, y), x} × {z(x, y), x, y}n−1. Eq. (A.15) shows that invasion fitness can, as in the

haploid case and regardless of the mating system, be expressed as an average of the direct fitness

components w(·, ·, ·) over a distribution qD(x, y), but which is generally more involved than in

the haploid case. Indeed, for the diploid case, the matrix A(x, y) defining the closed“dynamically

sufficient” system determining the fate of the mutant when rare (recall eq. A.8) has entries ajk,

which gives the expected number of groups in state j descending over one time step from a group

in state k, and where a state specifies the number of homozygote and heterozygote individuals in

a group. More specifically, j = (jy, jx, jz), where jy denotes the number of homozygote residents,

jx the number of heterozygotes, and jz the number of homozygote mutants in a group. The state

space of the process is G = {j : jy + jx + jz = n and jx + jz > 0} and the stationary distribution

satisfying eq. (A.8) is u(x, y) = (uj(x, y))j∈G .

A proof of eq. (A.15) then follows by left-multiplying eq. (A.8) with a vector n whose entry j is

equal to the number jx + 2jz of mutant gene copies in that state and rearranging terms by noting

that ∑j∈G (jx + 2jz) ajk = w(x, xk, y)kx + w(z(x, y), xk, y)2kz is the expected number of success-
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ful mutant copies produced over one demographic time step by all mutant gene copies in a group

in state k, and where xk denotes the vector of neighbor group profiles when a group is in state k.

With this, W(x, y) = ∑k∈G [w(x, xk, y)kx + w(z(x, y), xk, y)2kz] uk(x, y)/ [∑k∈G (kx + 2kz) uk(x, y)]

regardless of the assumptions on the mating system. Expanding therein the individual fitnesses

in terms of ordered group profiles (like in eq. A.9) one obtains eq. (A.15). The distribution

qD(x, y) of ordered group states experienced by a typical copy of the mutant allele will thus be

expressed in terms of u(x, y), of the numbers kx and 2kz, and combinatorial terms. We skip the

explicit expression of qD(x, y) since it requires to define notations to take into account that a

mutant allele copy can be in a homozygote or an heterozygote individual (see eq. A.16 for an

example) but the logic to obtain qD(x, y) is as in the haploid case (see eq. A.7 and eq. A.10).

As an example of eq. (A.15), let us consider the case n = 2, then

W(x, y) = w(x, y, y)q0,he(x, y) + w(x, x, y)q1,he(x, y) + w(x, z(x, y), y)q2,he(x, y)

+ w(z(x, y), y, y)q0,ho(x, y) + w(z(x, y), x, y)q1,ho(x, y) + w(z(x, y), z(x, y), y)q2,ho(x, y),
(A.16)

where qj,he(x, y) is the probability that, given a gene copy is mutant, its carrier is heterozygote and

its group neighbor has j copies of the mutant (j = 0, 1, 2, then indicate the cases, respectively, for

the neighbor to be homozygote resident, heterozygote, and homozygote mutant), while qj,ho(x, y)

is the probability that, given a gene copy is mutant, its carrier is homozygote and its group

neighbor has j copies of the mutant. For this case, the distribution over group contexts is given

by

qD(x, y) = (q0,he(x, y), q1,he(x, y), q2,he(x, y), q0,ho(x, y), q1,ho(x, y), q2,ho(x, y)), (A.17)

whose elements sum up to one and could be expressed in terms of probabilities of identity in

state of alleles in pairs of individuals (Michod, 1982, Fig. 1).

A.3 Average direct fitness with classes

A.3.1 Haploids

In the presence of classes, the trait x of the mutant in a haploid population is taken as a vector

of actions (or stream of actions), one for each class the individual may belong to, so we write

x = (x1, x2, ..., xnc ) ∈ X , where xa is the trait of a mutant individual when of class a. Likewise,

we have y = (y1, y2, ..., ync ) ∈ X . Using eq. (A.3), we let wus(xs, xk, y) be the expected number

of class-u offspring produced by a class-s mutant when in a group in state k = (k1, ..., knc ), which

is the vector of the number of individuals carrying the mutant allele in each class, with ka being

the number of mutants in class a, whereby xk is a vector that has (ks − 1) entries with trait

xs, ka entries with trait xa for each a 6= s, while all remaining entries are for the corresponding

element of the resident trait vector y.

A central quantity in our analysis is the reproductive value vs(y) of a single gene copy residing
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in an individual of class s in a monomorphic resident population (neutral reproductive value),

which satisfies

vs(y) = ∑
u∈C

vu(y)wus(y, x0, y) (A.18)

(e.g., Taylor, 1990; Frank, 1998; Rousset, 2004; Grafen, 2006b; Lehmann et al., 2016), where 0

indicates the value of k with no mutants at all. With these definitions, the invasion fitness of

a mutant allele with trait x in a resident population with trait y can be written as a sum over,

respectively, possible group states, offspring classes, and parent classes:

W(x, y) =
1

V(x, y) ∑
k∈I

∑
u∈C

∑
s∈C

vu(y)wus(xs, xk, y)qk,s(x, y), (A.19)

where qk,s(x, y) is the probability that a randomly sampled member of the mutant lineage finds

itself in class s and in a group in state k; I = (I1 × · · · × Inc ) \ 0 is the set of possible group

states with Iu = {0, 1, ..., nu} being the set of the number of mutant alleles in class u; and

V(x, y) = ∑
s∈C

vs(y)φs(x, y), (A.20)

where

φs(x, y) = ∑
k∈I

qk,s(x, y) (A.21)

is the probability that a randomly sampled gene copy from the mutant lineage resides in a class-s
individual. Hence, V(x, y) is the total (neutral) reproductive value of a randomly sampled mutant

gene copy from its lineage. Owing to eq. (A.18), V(x, y) can be seen as the average reproductive

value of a mutant gene copy that would have its fitness components assigned those of a resident

copy (instead of expressing mutant fitness components, the wus(xs, xk, y)’s, it expresses resident

fitness components, the wus(ys, x0, y)’s).

Eq. (A.19) is in terms of unordered neighbor profiles charaterized by k. In this formalism,

invasion fitness W(x, y) still satisfies eq. (A.8), if the matrix A(x, y), describing the growth of

the mutant lineage when rare in the population, now has entries ajk giving the expected number

of mutant copies in context j that descend from a mutant copy in context k, and the qk,s(x, y)

distribution is then expressed in terms of the leading right eigenvector u(x, y) = (uk(x, y))k∈I

of this matrix; namely,

qk,s(x, y) =
ksuk(x, y)

∑k∈I ∑s∈C ksuk(x, y)
. (A.22)

A detailed proof of eq. (A.19) can be found in Lehmann et al., 2016, Appendix F. It follows

by left-multiplying eq. (A.8) with a vector n whose entry j is equal to the reproductive value-

weighted number ∑u∈C juvu(y) of mutant gene copies in context j. This yields n · A(x, y)u(x, y) =
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∑k∈I ∑j∈I ∑u∈C juvu(y)ajkuk = W(x, y) n · u, wherein the central expression can be simplified

(and the whole expression rearranged) by noting that ∑j∈I juajk = ∑s∈C wus(x, xk, y)ks is the

expected number of successful mutant copies in class u produced over one demographic time step

by all mutant gene copies in a group in state k.

We now write eq. (A.19) as

W(x, y) =
1

V(x, y) ∑
s∈C

wDFs(x, y)φs(x, y), (A.23)

where

wDFs(x, y) = ∑
u∈C

∑
k∈I

vu(y)wus(xs, xk, y)qk|s(x, y) (A.24)

is the expected reproductive value-weighted fitness of a class s mutant gene copy and

qk|s(x, y) =
qk,s(x, y)

φs(x, y)
(A.25)

is the probability that, conditional on an individual carrying the mutant allele and of class s, the

individual resides in a group in state k. Eq. (A.24) is the sum of the reproductive values of the

descendants of an individual of class s, including its potentially surviving self. We thus refer to

wDFs(x, y) as the average direct fitness of a class s individual, and, for a panmictic population, this

quantity was previously called Williams’ reproductive value (Grafen, 2015, p. 8). Hence, invasion

fitness eq. (A.23) is the total average direct fitness of a mutant relative to the reproductive value

that individual would have if it expressed the resident trait.

However, any non-null vector of weights could have been chosen in eq. (A.19) and eq. (A.23)

to compute the geometric growth rate, which is so because the right-hand side eq. (A.19) is ob-

tained by rearranging the leading eigenvalue-eigenvector equation, where the leading eigenvector

can be normalized by any non-null vector (see Lehmann et al., 2016, Appendix B and C for

more details). We can in particular choose the unit vector (1, 1, ..., 1), whereby invasion fitness

becomes the average of the individual fitnesses of a randomly sampled mutant from its lineage. In

eq. (A.19), we choose reproductive-value weights for two reasons. First, average direct fitness is

then expressed with the same weights as is inclusive fitness (see next section “Inclusive fitness”),

given that for inclusive fitness there is no choice but to use the reproductive-value weights. Sec-

ond, the reproductive-value weights play a pivotal role in the forthcoming weak-selection analysis

(section “Individual maximands under weak selection”), where they allow to obtain meaningful

expressions for the different average fitnesses, a feature that follows from the well-established

fact that the reproductive-value weights are also the unique weights that would allow to apply

eqs. (A.23) when the mutant is no longer rare to predict the direction of average allele frequency

change by a scalar fitness measure at all allele frequencies under weak selection (e.g., Rousset,

2004; Grafen, 2006b).

Finally, we note that we could normalize the reproductive values such that V(x, y) = 1,
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however this would induce the vu(y)’s to become a function of the mutant, since the φs(µ, y)

probabilities in eq. (A.20) depend on the mutant. We would like to avoid this here, otherwise

differentiation of W(x, y) requires differentiating the reproductive values, and so we need a no-

tation distinguishing the case where reproductive values depend on the mutant from the case of

weak selection (investigated below), where this dependence drops out. In order to have a uni-

form notation throughout the main text, we normalize the vu(y)’s such that the average neutral

reproductive value of a randomly sampled resident individual is one:

V(y, y) = ∑
s∈C

vs(y)φs(y, y) = 1, (A.26)

where vs(y)φs(y, y) can be recognized as the reproductive value of class s in a monomorphic

resident population (e.g., Taylor, 1990; Rousset, 2004) and so eq. (A.26) is the standard normal-

ization of the reproductive values.

A.3.2 Diploids and social insects

In order to generalize eq. (A.24) to diploidy, we let za(xa, ya) ∈ Xa be the trait of an ho-

mozygote mutant of class a when the profile of heterozygote mutant traits across classes is

x = (x1, x2, ..., xnc ) ∈ X and the trait profile of a homozygote resident individual is y =

(y1, y2, ..., ync ) ∈ X (following eqs. A.13–A.14, we assume that for each a, za(xa, ya) is obtained

by assuming that heterozygote traits are a convex combination of the homozygotes’ traits). With

this, let z(x, y) = (z1, z2, ..., znc ) ∈ X denote the profile of homozygote mutants. Then, the in-

vasion fitness of a mutant allele with heterozygote (multidimensional) trait x introduced into a

resident diploid population with homozygote trait y can be written as

W(x, y) =
1

V(x, y) ∑
s∈C

wDFs(x, y)φs(x, y), (A.27)

where

wDFs(x, y) = ∑
u∈C

vu(y)wDFus(x, y) (A.28)

and

wDFus(x, y) = E(xi ,x−i)∼qD
s (x,y)

[
wus(xi, x−i, y)

]
, (A.29)

which is the expected reproductive value-weighted fitness of a class s mutant gene copy. Here,

xi ∈ {zs(xs, ys), xs} if individual i is of class s and each component xj of the neighbor trait profile

x−i = (x1, ..., xi−1, xi+1, ...xN) takes values in {za(xa, ya), xa, ya} if the corresponding individual j
is of class a. In eq. (A.29), the couple (xi, x−i) follows the distribution qD

s (x, y) of ordered focal

group trait profiles determined by the distribution of contexts of copies of the mutant allele in
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individuals of class s. The distribution of trait profiles has sample space

Ss = {zs(xs, ys), xs} ×∏
a∈C
{za(xa, ya), xa, ya}(na−δsa), (A.30)

since among the neighbors of an individual of class s we have na individuals of class a 6= s and

ns − 1 class-s individuals. An algebraic proof of eqs. (A.27)–(A.29) follows by combining the line

of arguments used to derive the invasion fitness for diploids without classes (eq. A.15) and that

for haploids with classes (eq. A.19).

A special case of eq. (A.29) is when there is only a single adult individual per group under

complete dispersal and random mating. In that case, a mutant individual can only be heterozy-

gote (as long as the mutant is rare). As a concrete example, we work out the model of a seasonal

population of social insects presented in Box 1, where x = (xf, xm, xo), which collects, respec-

tively, the traits of females, males, and workers so that the set of classes is C = {f, m, o}. Since

we are interested in considering the three classes of individuals demographically, the census stage

of fitness is taken right before dispersal (end of stage (1) of the life cycle). When the mutant

allele is rare, the dynamics of the number of mutant allele copies in females, males, and workers

in the population between successive census stages can be described by the matrix

A(x, y) =


wDFff(x, y) wDFfm(x, y) 0

wDFmf(x, y) wDFmm(x, y) 0

wDFof(x, y) wDFom(x, y) 0

 , (A.31)

From this matrix, the probabilities that a randomly sampled copy of the mutant allele is in

a female, male, or worker, are respectively

φf(x, y) =
wDFff (wDFff + wDFmm)

X
, φf(x, y) =

wDFmm (wDFff + wDFmm)

X
and φo(x, y) =

wDFffwDFof
X

,

(A.32)

where X = (wDFff + wDFmm)2 + wDFffwDFof. The reproductive values are vo(y) = 0, vf(y) > 0
and vm(y) > 0, and the invasion fitness is given by

W(x, y) =
1

V(x, y)
[wDFf(x, y)φf(x, y) + wDFm(x, y)φm(x, y)] . (A.33)

The two direct fitnesses appearing in this equation are given by eq. (B.1) of the main text.

Supposing there is only one worker in the colony (e.g., assumptions in the main text), then, in

a monomorphic population, we have φf(y, y) = φm(y, y) = φo(y, y) = 1/3 and the reproductive

values, normalized so as to satisfy eq. (A.26), are

vo(y) = 0, vf(y) =
3
2

, vm(y) =
3
2

. (A.34)
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Supplement B: Inclusive fitness

The main aim of this Supplement is to derive from invasion fitness the expression for the inclusive

fitness of a class-a individual given in the main text (eq. 4) and then to show that it is maximized

for the class-specific trait xa in an uninvadable state x∗. As in the previous section, we do so by

progressively introducing the different concepts. Before delving into the calculations, it is worth

recalling that “inclusive fitness” can be regarded as achieving two related decompositions of the

force of selection on a mutant allele. First, it is a partition of selection into direct and indirect

fitness effects (the “cost” and “benefit” of Hamilton’s rule, e.g., Hamilton, 1964; Frank, 1998;

Rousset, 2004), where the indirect effects are weighted by relatedness coefficient(s). This allows

to usefully classify behaviors in different categories (“selfishness”, “altruism”, “spite”, etc.) and

is most easily achieved in an evolutionary model by a neighbor-modulated representation where

fitness effects are grouped by recipient of actions (e.g., Hamilton, 1970, Frank, 1998, Rousset,

2004, Fig. 7.1). Second, and as further explained in the main text, one may seek to go one step

further and group the indirect fitness effects by actor. We will refer to this as the actor-centered

approach to inclusive fitness.

For a model with arbitrary strength of selection on a mutant allele without class structure,

a general expression for the decomposition into direct and indirect effects has been reached

for the case n = 2 by performing a two-predictor regression of the fitness of a representative

individual from the population, on the mutant allele frequency it carries and on the frequency

of the mutant in its neighbors (Queller, 1992; Frank, 1997; Gardner et al., 2011), thus reaching

a neighbor-modulated representation of “inclusive fitness”. Importantly, it has been shown that

such a two-predictor regression automatically yields an actor-centered representation of such

effects (Rousset, 2015).

Alternatively, one may perform a single-predictor regression of the individual fitness of a

carrier of the mutant on the frequency of the mutant allele among its neighbors, which may be

more in line with certain empirical estimates of inclusive fitness where only the social neigborhood

of an individual expressing a particular behavior is varied (Krakauer, 2005; Dobson et al., 2012).

A single-predictor regression was also used in Lehmann et al. (2016, Box.1) as a justification

to derive an exact decomposition of the force of selection into direct and indirect effects for

haploid class-structured populations. The single-predictor regression, however, only leads to a

neighbor-modulated representation of direct and indirect effects.

In order to obtain a general actor-centered representation of fitness effect for diploid class

structured populations and avoid confusions between approaches, we first delineate in the case of

haploids the differences between the partitions of fitness by single and two-predictor regressions,

and by neighbor-modulated and inclusive fitness effects. In a second time, we turn to the general

class-structured populations analysis.

B.1 Inclusive fitness for haploids without classes

We start by deriving a decomposition into direct and indirect effects from invasion fitness (eq. A.6)

for the haploid case and without class structure. To that end, we use the relatedness coefficient
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defined as

r(x, y) =
n

∑
k=1

(
k− 1
n− 1

)
qk(x, y), (B.1)

which is the probability that a randomly sampled neighbor of a mutant (itself randomly sampled

from its lineage when rare) also carries the mutant allele (when n = 2, we have r(x, y) = q2(x, y)).

B.1.1 Regression with respect to neighbors

For a one-predictor regression, we aim to write the individual fitness of a mutant x in a group

with trait profile xk as

w(x, xk, y) = 1− γ(x, y) + β(x, y)

(
k− 1
n− 1

)
+ residual, (B.2)

where 1−γ(x, y) is the intercept of the regression, β(x, y) is the additive effect on a focal’s fitness

of allele frequency in neighbors, and (k− 1)/(n− 1) is the frequency of the mutant allele among

neighbors of a mutant. The “cost” (γ) and “benefit” (β) of this single predictor are determined by

minimizing over the qk(x, y) distribution the expected mean-square difference between individual

fitness w(x, xk, y) and the regression. Thus, for all (x, y) ∈ X 2, we minimize the sum of squares

Q(γ, β, x, y) =
n

∑
k=1

[
1− γ + β

(
k− 1
n− 1

)
− w(x, xk, y)

]2
qk(x, y), (B.3)

with respect to γ and β, which are practically obtained by setting ∂Q(γ, β, x, y)/∂γ=0 and

∂Q(γ, β, x, y)/∂β=0, and solving for γ and β, which are thus obtained as functions of x and

y (i.e., γ = γ(x, y) and β = β(x, y)). It follows directly by averaging the regression over the

qk(x, y) distribution, that we can write invasion fitness in terms of the so-obtained coefficient as

W(x, y) = 1− γ(x, y) + r(x, y)β(x, y) (B.4)

for relatedness defined in eq. (B.1).

B.1.2 Regression with respect to focal and neighbors

For the two-predictor regression, the additional predictor variable for the fitness of an individual

is its own allelic type. To take this into account in a least-squares regression framework, we

need to consider a population where the average mutant frequency is no longer rare. We denote

by p this frequency, and by a slight abuse of notation, we denote by w(x, xk, p) the individual

fitness of a mutant in a group with a total number k of mutant neighbors, in a population where

the mutant frequency is p. More generally, whenever we will consider fitness at all mutant

frequencies, we will replace the last argument of the fitness function with the mutant frequency

in the population). Fitness w(y, xk+1, p) likewise stands for the fitness of an individual carrying

the resident allele in the same context of a group including k mutants (hence xk+1 is any vector
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of dimension N − 1 with k entries equal to x and N − k entries equal to y). The sum of squares

characterizing the regression of the expected number of offspring of a mutant x with frequency

p in a resident y population is:

Q(c, bN, x, y, p) =

(
n

∑
k=1

[
1− c + bN (k− 1)− w(x, xk, p)

]2
qk(x, y, p)

)
p

+

(
n−1

∑
k=0

[
1 + bN k− w(y, xk+1, p)

]2
q̃k(x, y, p)

)
(1− p), (B.5)

where c and bN are regression coefficients (the superscript N will from now on stand as a reminder

that the regression is, by construction, neighbor-modulated, and we also regress on the number

rather than the frequency of mutant neighbors, as this will be useful later), qk(x, y, p) is the

probability that, given an individual is a mutant with trait x in a population where the frequency

of mutants is p and residents play trait y, it will reside in a group where there are k mutants

(this probability can be obtained from the full dynamical system for a non-rare mutant, but

since we do not need to compute this probability explicitly, we do not specify this dynamical

system). Likewise, q̃k(x, y, p) is the probability that, given an individual is a resident with trait

y in a population where the frequency of mutants with trait x is p, it will reside in a group with

k mutants (again this probability can be obtained from the full dynamical system for a non-rare

mutant). Minimizing the quadratic form Q(c, bN, x, y, p) (by solving ∂Q(c, bN, x, y, p)/∂c = 0
and ∂Q(c, bN, x, y, p)/∂b = 0) we then obtain the regression coefficients c = c(x, y, p) and bN =

bN(x, y, p), which depend on the population allele frequency.

When the mutant is rare (p → 0), the fitness of a mutant is w(x, xk, p) → w(x, xk, y) (same

as in eq. A.6) and the regression thus predicts this fitness as

w(x, xk, y) = 1− c(x, y) + bN(x, y) (k− 1) + residual, (B.6)

where the residual and the cost and benefit will depend on mutant trait, resident trait, and are

limits as p → 0 of frequency-dependent terms, i.e., c(x, y) = limp→0 c(x, y, p) and bN(x, y) =

limp→0 bN(x, y, p). When the mutant is rare, we also have that qk(x, y, p)→ qk(x, y) because in

that case the mutant frequency dynamics within groups is described by the mean matrix A, which

is also the matrix of the linearized dynamical system around p = 0, and so qk(x, y, p) = qk(x, y) +

O(p) for all k. The residuals are orthogonal to the regressors when regression coefficients minimize

the quadratic form (Cox and Wermuth, 1996, section 3.3.2). Here the regressors include both an

intercept and the focal allele frequency, and then the expectation of the residuals is zero whether

an individual carries the mutant or the resident allele. Thus, the residuals disappear from the

average of expression (B.6) over the conditional distribution qk(x, y, p) of k given an individual

carries the mutant allele, and we can then write invasion fitness as:

W(x, y) = 1− c(x, y) + r(x, y) (n− 1) bN(x, y) (B.7)
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for the relatedness coefficient defined in eq. (B.1). We now give an interpretation of this result.

The interpretation of −c(x, y) is the additive marginal effect on the number of successful gene

copies produced by an individual when it expresses the mutant instead of the resident allele,

while bN(x, y) can be interpreted in the two following ways.

(1) neighbor-modulated interpretation. Here, bN(x, y) gives the average effect, on the ex-

pected number of offspring (per haplogenome) produced by a focal individual, and stem-

ming from a randomly sampled neighbor expressing a copy of the mutant instead of the

resident allele.

(2) Actor-modulated interpretation. Here, bN(x, y) gives the average effect, on the ex-

pected number of offspring (per haplogenome) produced by a randomly sampled group

neighbor, of an individual expressing a copy of the mutant instead of the resident allele.

This dual interpretation follows from the fact that the regression (e.g. eq. B.5) averages over

all contexts, mutant and resident neighbors affecting the fitness of a focal recipient, which itself

can be mutant or resident (“two-predictor regression”), and so, on average, recipient and actor

individuals can be interchanged (see Rousset, 2015 for more details on this dual perspective). As

such, eq. (B.7) provides a genuine actor-centered representation of inclusive fitness and in order

to obtain a more compact expression, we let

b(x, y) = (n− 1) bN(x, y) (B.8)

denote the additive effect, on the expected number of offspring (per haplogenome) produced by

all group neighbors, of an individual expressing a copy of the mutant instead of the resident allele.

Thereby, selection favors the mutant (W(x, y) > 1) when Hamilton’s rule is satisfied:

r(x, y)b(x, y)− c(x, y) > 0. (B.9)

B.1.3 Comparing single- and two-predictor regression

The key difference between the single and two-predictor regression version of inclusive fitness

(eq. B.3 and eq. B.5) is that only mutant fitness in different contexts (the set of w(x, xk, p)) are

taken into account into the single-predictor regression (eq. B.3), while all contexts for mutant

and residents (the set of w(x, xk, p) and w(y, xk+1, p) values) are taken into account in the two-

predictor version (eq. B.5). Technically, this implies that one has to consider explicitly the

average mutant allele frequency p in the total population to derive the two-predictor version.

Biologically, this implies that the interpretation of costs and benefits differ. Indeed, while the

variable β in eq. B.4 and b in eq. B.7 and are both regression coefficients of fitness to mutant

frequency in neighbors, in general β 6= b, since the value of a regression coefficient depends on

the other predictor variables considered. Likewise, γ and c differ. This is best seen in the case

where n = 2, where the single-predictor regression line exactly describes the fitness for k = 1
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and k = 2, hence 1− γ is the fitness of a single mutant in a group. Indeed, in this case

γ(x, y) = w(y, y, y)− w(x, y, y)

β(x, y) = w(x, x, y)− w(x, y, y). (B.10)

By contrast, in the case of non-additive interactions between group members, it is known that

1− c, as given by the two-predictor regression, is not the fitness of a single mutant (e.g., Gardner

et al., 2011, eq. 7). Further, in this case already for n = 2, both c and b will depend on relatedness

coefficients (e.g., Gardner et al., 2011) and are given explicitly by

−c(x, y) =
1

1 + r(x, y)
(w(x, y, y)− w(y, y, y)) +

r(x, y)

1 + r(x, y)
(w(x, x, y)− w(y, x, y))

b(x, y) =
1

1 + r(x, y)
(w(y, x, y)− w(y, y, y)) +

r(x, y)

1 + r(x, y)
(w(x, x, y)− w(x, y, y)) .

(B.11)

In the actor-modulated interpretation, 1/[1 + r(x, y)] and r(x, y)/[1 + r(x, y)] weigh in both −c
and b the case where the neighbor of a focal individual is either resident or mutant, respec-

tively. To understand where these weights come from, let P denote the probability of an (x, x)

focal-neighbour pair in a group and Q the probability of an (x, y) focal-neighbour pair [these

probabilities reducing respectively to pr(x, y) and to p(1− r(x, y)) for vanishing p]. Then the

weights are proportional to P + Q versus P, rather than Q versus P, for the following reason.

The derivative of the sum of squares with respect to c is proportional to

Q(w(x, y, y) + c− w(y, y, y)) + P(w(x, x, y) + c− b− w(y, y, y))

= (Q + P)(w(x, y, y) + c− w(y, y, y)) + P(w(x, x, y)− b− w(x, y, y)). (B.12)

The effect of least-square regression is to predict w(x, y, y) and w(y, x, y) with identical predic-

tion residuals: w(y, x, y)− w(y, y, y)− b = w(x, y, y)− w(y, y, y) + c, and thus the derivative is

proportional to

(Q + P)(w(x, y, y) + c− w(y, y, y)) + P(w(x, x, y) + c− w(y, x, y)), (B.13)

meaning that we have represented the original term w(x, x, y)− w(y, y, y) as the effect of two

allelic substitutions, each with effect −c. This recovers the solution for −c. The same logic holds

for the weights in the expression for b and this argument holds at all allele frequencies p.

B.2 Inclusive fitness for diploids with classes

B.2.1 Multiplayer class-structured regression

We now turn to deriving an expression for inclusive fitness for diploids with class structure by

performing an extension of the two-predictor regression of the fitness of a representative gene
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copy from the population. To construct this fitness measure, we consider all possible group trait

profiles, and write for each class u of descendants and each class s of parent, the fitness (per

haplogenome) of a focal individual i with trait xi in a group with trait profile x−i as

wus(xi, x−i, y) = wus(y, x0, y)− cus(x, y)pi + ∑
j 6=i

bN
us←k(j)(x, y)pj + residual. (B.14)

Here, pi denotes the frequency of the mutant allele in individual i ∈ I [zero, one-half, or one,

so that the individual expresses, respectively, trait y, x or z(x, y)]. The function k : I → C
assigns to each individual in group I its class in C, such that k(j) = a when individual j is in

class a. The mutant allele frequencies pi in each individual are thus predictor variables of fitness

and cus(x, y) and bN
us←k(j)(x, y) are regression coefficients depending on mutant and resident trait

values. Indeed, eq. (B.14) says that we seek to obtain the predictor

ŵus

(
cus, bN

us, pi, y
)

= wus(y, x0, y)− cus(x, y)pi + ∑
j 6=i

bN
us←k(j)(x, y)pj. (B.15)

of class-u fitness of a class-s gene copy as a linear regression on the mutant allele frequency

carried by all actors on that fitness [here the vector bN
us collects all the bus←k(j) regressors and

the vector pi collects mutant frequencies pi in all individuals].

Eq. (B.14) must hold for all trait profiles (xi, x−i) ∈ {zs(xs, ys), xs, ys}×∏a∈C {za(xa, ya), xa, ya}(na−δsa)

and the regression coefficients are determined by the following argument, which generalizes the

one developed in the absence of class structure (section B.1). Let then wus(xi, x−i, p) denote the

fitness of an individual in a population where the mutant frequencies in the different classes are no

longer rare, and are collected in the vector p = (p1, ..., pnc ), where ps is the average mutant allele

frequency in class s in the population. Further, let qD
s (x, y, p) denote the ordered distribution of

group traits, determined by the distribution of contexts of copies of the mutant allele in class s.
This qD

s (x, y, p) distribution has the same sample space as qD
s (x, y) (recall eq. A.30) and general-

izes it to arbitrary allele frequency. Likewise, q̃s(x, y, p) denotes the ordered distribution of group

traits for non-rare mutant frequency, determined by the distribution of contexts of copies of the

resident allele in class s [q̃s(x, y, p) has sample space {xs, ys} ×∏a∈C {za(xa, ya), xa, ya}(na−δsa)].

With these notations, the expected sum of squares to be minimized by the regression coefficients

can be written

Qus(cus, bN
us, x, y, p) = E(xi ,x−i)∼qD

s (x,y,p)

[(
ŵus

(
cus, bN

us, pi, y
)
− wus(xi, x−i, p)

)2
]

ps

+ E(xi ,x−i)∼q̃D
s (x,y,p)

[(
ŵus

(
cus, bN

us, pi, y
)
− wus(xi, x−i, p)

)2
]

(1− ps). (B.16)

By solving ∂Qus(cus, bN
us, x, y, p)/∂cus←a = 0 and ∂Qu,s(cus, bN

us, x, y, p)/∂bN
us←k(j) = 0 for all

j 6= i, we obtain the regression coefficients cus←a(x, y, p) and bN
us←k(j)(x, y, p). These depend on
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the population state and we note that that

bN
us←k(j)(x, y, p) = bN

us←a(x, y, p) for all j when k(j) = a, (B.17)

since individuals from the same class carrying similar traits have the same effect on the recipients

of their actions. Computing the regression coefficients explicitly involves solving linear systems

of equations with complicated terms. But all in all, this is not more involved that computing

invasion fitness to begin with, since this requires computing eigenvectors (recall eq. A.8). Hence,

no computational complexity is added if the regression coefficients are to be computed explicitly.

That said, the interpretative nature of inclusive fitness does require the explicit computation of

the regression coefficients.

B.2.2 Average allele frequency

Our aim is now to evaluate the so-obtained regression coefficients under vanishing mutant allele

frequency. To do this, we need a single (scalar) measure of allele frequency such that allele

frequencies in all classes vanish simultaneously when this measure vanishes. As such a mea-

sure, we use the weighted average allele frequency p = ∑a∈C αa(y)pa in the population, where

the weights are the neutral class reproductive values (the αa(y) = va(y)φa(y, y) elements in

eq. A.26). To evaluate the regression coefficients, we then need to be able to express each class-

specific frequency pa in terms of p and φa(x, y), at least when the mutant allele is rare. For

this purpose, we recall that as long as the mutant allele is rare, its growth is characterized by

the leading eigenvalue (invasion fitness) and by the associated right eigenvector (quasi-stationary

distribution) u(x, y) of the transition matrix A(x, y) [i.e., eq. A.8]. Eigenvectors are defined up

to a constant factor, so the relationship between allele frequencies pa in each class a and the

eigenvector can be specified up to a constant, here denoted L1. We write this relationship as

pa = L1ua(x, y) (B.18)

where ua(x, y) is (up to a constant factor) the frequency of the mutant allele in class a under the

quasi-stationary distribution u(x, y). The average allele frequency is then p = L1 ∑a∈C αa(y)ua(x, y),

whereby L1 = p/ [∑a∈C αa(y)ua(x, y)] and

pa = p
ua(x, y)

∑a∈C αa(y)ua(x, y)
= p

ua(x, y)

∑a∈C ua(x, y)
∑a∈C ua(x, y)

∑a∈C αa(y)ua(x, y)
. (B.19)

From eq. (A.22), the middle fraction on the right-hand side is the probability φa(x, y) that a

randomly sampled gene copy from the mutant lineage is in class a, introduced in eq. (A.21):

φa(x, y) = ua(x, y)/ ∑a∈C ua(x, y). The last fraction in eq. (B.19) is then the inverse of the

fraction ∑a∈C αa(y) [ua(x, y)/ ∑a∈C ua(x, y)] = ∑a∈C αa(y)φa(x, y), and

pa = p
φa(x, y)

∑a∈C αa(y)φa(x, y)
. (B.20)

40

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/624775doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/624775
http://creativecommons.org/licenses/by-nc-nd/4.0/


Substituting eq. (B.20) into cus(x, y, p) and bN
us←a(x, y, p), and recalling eq. (B.17), we com-

pute the regression coefficients of eq. (B.14) as

cus←a(x, y) = lim
p→0

cus←a(x, y, p) and bN
us←a(x, y) = lim

p→0
bN

us←a(x, y, p) (B.21)

(see section B.3 for a concrete application and explicit computation of such coefficients). We

further note that, by construction, qs(x, y, p)→ qs(x, y) as p→ 0. This then allows us to define

rfs(x, y) = E(xi ,x−i)∼qD
s (x,y)[pi] , (B.22)

which is the probability that, conditional on a random gene copy of class s carrying the mutant

allele, a randomly sampled homologous gene in that individual is a mutant. For k(j) = a, we

have

rn a|s(x, y) = E(xi ,x−i)∼qD
s (x,y)

[
pj
]

(B.23)

which is the probability that, conditional on a random gene copy of class s carrying the mutant

allele, a randomly sampled homologous gene in a neighbor of class a is a mutant allele. In terms

of the rfs(x, y) and rn a|s(x, y) probabilities, we define the relatedness coefficient between a class-s
actor and a class-a recipient as

ra|s(x, y) =
rn a|s(x, y)

rfs(x, y)
. (B.24)

B.2.3 Average inclusive fitness

Now substitute eq. (B.14) into direct fitness (eq. A.29) and then into invasion fitness (eq. A.27).

Then, by dint of the reproductive values recursion (eq. A.18), the reproductive values normalizer

(eq. A.20), the relatedness coefficients (eqs. B.22–B.24), the relationship ∑j:k(j)=a bN
us←k(j)(x, y) =

bN
us←a(x, y)(na − δsa) (eq. B.17), and recalling that the residual term in eq. (B.14) cancels when

averaged over the qD
s (x, y) distribution (since they are uncorrelated with regressors), the invasion

fitness of a mutant allele introduced as a single copy in a resident population can be put under

the form

W(x, y) = 1 +
1

V(x, y)
[WIF(x, y)− 1] , (B.25)

where

WIF(x, y) = 1 + ∑
u∈C

∑
s∈C

vu(y)

[
−cus(x, y) + ∑

a∈C
bN

us←a(x, y)(na − δsa)ra|s(x, y)

]
rf,s(x, y)φs(x, y).

(B.26)
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is the inclusive fitness of the mutant allele. These two equations were previously derived for

the haploid case (rf,s(x, y) = 1 for all s ∈ C) in Lehmann et al. (2016, eqs. C.1-C.6) assuming

that 1− cu,s was the intercept and only bN
us←a were the regression coefficients of fitness, thus

performing a multiple-neighbors extension of the single-predictor regression to obtain inclusive

fitness. To obtain such coefficients it suffices to set ps = 1 in eq. (B.16) and otherwise follow the

same line of argument.

Since V(x, y) > 0, we have from eq. (B.25) that

W(x, y) ≤ 1 ⇐⇒ WIF(x, y) ≤ 1. (B.27)

Hence, trait x∗ is uninvadable if it is a best-reply to itself in terms of inclusive fitness: x∗ ∈
arg maxx∈X WIF(x, x∗). Finally, we note that if one chooses to normalize the (neutral) reproduc-

tive such that V(x, y) = 1, then one would have W(x, y) = WIF(x, y).

B.2.4 Grouping effects by actor

In eq. (B.26), the fitness effects of social interactions among individuals in the population are

grouped by recipients each class s. We now first rearrange eq. (B.26) in order to obtain a grouping

of fitness effects by actor in each class, so that WIF(x, y) reads as an average over class-specific

inclusive fitnesses (which justifies the subscript “Inclusive Fitness”). In a second, time we then

show that class-specific inclusive fitness is maximized in an uninvadable population state.

The key steps to reach the actor-centered perspective, is to note, first, that, as was the case

under the haploid model, bN
us←a(x, y) can be interpreted in the two following ways.

(1) Neighbor-modulated interpretation. Here, bN
us←a(x, y) gives the average effect, on the

expected number of class-u offspring (per haplogenome) produced by a focal individual in

class a, and stemming from a randomly sampled neighbor expressing a copy of the mutant

instead of the resident allele.

(2) Actor-modulated interpretation. Here, bN
us←a(x, y) gives the average effect, on the ex-

pected number of class-u offspring (per haplogenome) produced by a randomly sampled

group neighbor of class a, of an individual expressing a copy of the mutant instead of the

resident allele.

We will thus from now on use the second interpretation and further note that the following

equality holds

rn a|s(x, y)φs(x, y) = rn s|a(x, y)φa(x, y)
ns

na
. (B.28)

To check this result, we highlight that each side of the equation involves two ways of sampling

gene copies. First, we sample gene copies uniformly from the mutant lineage (by definition,

φs(x, y) is the probability that a gene sampled in this way is in a class-s individual), and then we

sample gene copies uniformly among class-a individuals (rn a|s(x, y) is the probability that, when

a given gene copy from a class-s individual is mutant, a given gene copy from a class-a individual
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in the same group is mutant). The expected number of pairs of gene copies in class-s and class-a
individuals within a group per copy of the mutant allele is then obtained as φs(x, y)2narn a|s(x, y)

when the first sampled gene copy is in a class-s individual, and as φa(x, y)2nsrn s|a(x, y) when

the first copy is sampled in a class-a individual, from which the above result follows.

Substituting eq. (B.28) into eq. (B.26), and rearranging we obtain

WIF(x, y) = 1 + ∑
u∈C

∑
a∈C

vu(y)

[
−cua(x, y) + ∑

s∈C
bN

us←a(x, y)(ns − δsa) rs|a(x, y)

]
rfa(x, y)φa(x, y),

(B.29)

where

−cua(x, y) + ∑
s∈C

bN
us←a(x, y)(ns − δsa) rs|a(x, y) (B.30)

is the average effect, on the number of class-u offspring (per haplogenome) produced by all group

members of class a, and stemming from an individual of class a expressing a copy of the mutant

instead of the resident allele. Eq. (B.30) is consistent with eq. (8) of Grafen, 2006a who assumed

(a) additive separable fitness effects and (b) relatedness independent of evolving trait values. To

further simplify expression (B.29), we let

bus←a(x, y) = (ns − δsa)bN
us←a(x, y) (B.31)

denote the average additive effect, on the number of class-u offspring produced (per haplogenome)

by all class-s neighbors in a group, and stemming from a single class-a individual switching to

expressing a copy of the mutant instead of the resident allele. Substituting eq. (B.31) into

eq. (B.29), we can obtain:

WIF(x, y) = 1 + ∑
a∈C

∆wIFa(x, y)rfa(x, y)φa(x, y), (B.32)

where

∆wIFa(x, y) = ∑
u∈C

vu(y)

[
−cua(x, y) + ∑

s∈C
bus←a(x, y)rs|a(x, y)

]
(B.33)

is the inclusive fitness effect of an average class-a carrier of the mutant allele.

B.2.5 Class-specific inclusive fitness maximization

We here prove that the inclusive fitness effect (eq. B.33) is maximized with respect to xa at

the uninvadable state x∗, which will allow us to define a class-specific inclusive fitness that is

equivalently maximized. In general, inclusive-fitness (eq. B.32) maximization does not implies

maximization of the summand therein for each class with respect to all mutants x ∈ X , but what
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we consider here are class-specific mutants. To that end, let x̃a = (x∗1 , x∗2 , ..., x∗a−1, xa, x∗a+1, ..., x∗nc ),

denote the trait profile of a mutation with all traits held at the uninvadable state, except for

trait xa of class a that can unilaterally deviate. Then, if the mutant x̃a appears in a population

in state x∗, we have

∆wIFv(x̃a, x∗) = 0 ∀v 6= a. (B.34)

Eq. (B.34) says that if a mutant allele changes only the trait expression of individuals of class

a, then the inclusive fitness effect of any other class v 6= a is nil. This is so since ∆wIFa(x̃a, x∗)
captures all effects of individuals of class a expressing the mutant trait xa (the “actors”) on

mutant allele transmission. A more formal proof follows from the fact that cuv(x̃a, x∗) = 0 and

bus←v(x̃a, x∗) = 0 for all v 6= a and all u and s because the u-type fitness wus of an individual of

class s is a constant with respect to the traits of individuals in any class v 6= a, since all individuals

in any class v 6= a express the same trait value x∗v . Hence, all such regression coefficients on class-

v individuals will be nil, since there is no variation in individual fitness to be explained by any

such regressor.

Substituting eq. (B.34) into eq. (B.32), the inclusive fitness of a mutant inducing an unilateral

deviation in class a in population state x∗ is given by

WIF(x̃a, x∗) = 1 + ∆wIFa(x̃a, x∗)rfa(x̃a, x∗)φa(x̃a, x∗). (B.35)

Since rfa(x̃a, x∗)φa(x̃a, x∗) > 0 for all classes and traits, we have from eq. (B.35) that

∆wIFa(x̃a, x∗) ≤ 0 ⇐⇒ WIF(x̃a, x∗) ≤ 1 for all xa ∈ Xa. (B.36)

Hence, trait x∗a preempts invasion by any mutant inducing an unilateral deviation in class a if

it satisfies x∗a ∈ arg maxxa∈Xa ∆wIFa(x̃a, x∗). Since this holds for each class in an uninvadable

population x∗, we have

∆wIFa(x̃a, x∗) ≤ 0 ⇐⇒ WIF(x̃a, x∗) ≤ 1 ∀xa ∈ Xa and a ∈ C ⇐ W(x, x∗) ≤ 1 for all x ∈ X .

In other words, the inclusive fitness effect in each class is maximized in an uninvadable population

state:

x∗a ∈ arg max
xa∈Xa

∆wIFa(x̃a, x∗) ∀a ∈ C ⇐ x∗ ∈ arg max
x∈X

W(x, x∗). (B.37)

The left-hand side can now also be written in terms of the inclusive fitness

wIFa(x, y) = va(y) + ∆wIFa(x, y) (B.38)

of a class-a individual (eq. 4 of the main text), which is thus also maximized in an uninvadable
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population state (since va(y) does not depend on the mutant trait):

x∗a ∈ arg max
xa∈Xa

wIFa(x̃a, x∗) ∀a ∈ C ⇐ x∗ ∈ arg max
x∈X

W(x, x∗). (B.39)

We finally mention that if we were to replace class-specific inclusive wIFa(x̃a, x∗) by class-

specific average direct fitness wDFa(x̃a, x∗) in the left-hand side of eq. (B.39), then eq. (B.39)

is not satisfied, unless additional assumptions are made on the form of the individual fitness

functions. This negative results points to the limitations of using average direct fitness as an

individual-centered maximand. Indeed, in the presence of indirect fitness effects, where an actor

of class a carrying the mutant allele affects the fitness of another individual carrying the mutant

(say a worker affecting the reproduction of a queen), the direct fitnesses wDFu(x̃a, x∗) for u 6= a
in expression (A.27) for invasion fitness will not be independent of the mutant trait xa of a class-a
individual. In this case, the invasion fitness of trait xa depends on these wDFu(x̃a, x∗) fitnesses

for u 6= a, even though the individual expressing trait xa is not in any class u 6= a. Hence the

biological interpretation of an individual of class a as maximizing wDFa(x̃a, x∗) at an evolutionary

equilibrium generally breaks down.

B.3 Example: inclusive fitness for social insects

We here derive the inclusive fitness effects for the social insect model (eq. B.5 in Box 2) from the

fitness functions defined in the main text (see eqs. B.2–B.4 in Box 1) and assuming the population

has reached the uninvadable sex ratio of 1/2 for this model. Because we consider only diploidy,

our “social insects” are akin to termites rather than ants. From eqs. (B.2) of Box 2, we can write

the individual fitness of a female i whose worker offspring has trait xo(i) ∈ {zo, xo, yo} as

wff

(
xo(i), yo

)
=

(
1 + P(xo(i))

)
2 (1 + P(yo))

wmf

(
xo(i), yo

)
=

(
1 + P(xo(i))

)
2 (1 + P(yo))

, (B.40)

which, once averaged over the cases where the offspring is heterozygote (with phenotype xo(i) =

xo), or homozygote resident (with phenotype xo(i) = yo), produces eqs. (B.2) of Box 2 (and

where for simplicity of presentation we only denote the traits whose variation affect fitness).

Likewise, from eq. (B.4) of Box 2, the individual fitness of a male i whose worker offspring has

trait xo(i) ∈ {yo, xo, zo} can be written

wfm

(
xo(i), yo

)
= wff

(
xo(i), yo

)
wmm

(
xo(i), yo

)
= wmf

(
xo(i), yo

)
. (B.41)

In order to evaluate the sum of squares for the regression coefficients, we need to take into

account all possible matings as this determines the number of mutant allele copies in the worker
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offspring. There is a total number of 9 matings, since a female can be homozygote mutant

(probability denoted pho,f), heterozygote (probability denoted phe,f), or homozygote resident

(probability (1− pho,f − phe,f)), and her mate can be of the same respective types (with respec-

tive probabilities, pho,m, phe,m, and (1− pho,m − phe,m)). The assumption that we consider a

population with random mating at the uninvadable sex-ratio, implies that the fitness functions

for both males and females are equivalent (e.g., eq. B.41), and that the frequency of the mutant

allele will be the same in males and females, pm = pf = p. Henceforth, we can evaluate the

genotype frequencies in terms of allele frequencies at Hardy-Weinberg equlibrium:

pho,m = pho,f = p2 and phe,f = phe,m = 2p(1− p). (B.42)

B.3.1 Regressions for female fitness components

Taking into account all matings, we write the sum of squares for female fitness through offspring

of type j ∈ {f, m} as

Qjf(cjf, bN
jf←o, bN

jf←m) = Qjf|ho(x) pho,f + Qjf|he phe,f + Qjf|ho(y)(1− pho,f − phe,f), (B.43)

where Qjf|ho(x), Qjf|he, and Qjf|ho(y) are, respectively, the sum of squares when the female is

homozygote mutant, heterozygote, and homozygote resident. Application of eqs. (B.15)–(B.16)

shows that when the female is homozygote

Qjf|ho(x) =

(
1
2
− cjf + bN

jf←o + bN
jf←m − wjf(zo, yo)

)2
pho,m

+

(1
2
− cjf + bN

jf←o +
bN

jf←m

2
− wjf(zo, yo)

)2
1
2

+

(
1
2
− cjf

bN
jf←o

2
+

bN
jf←m

2
− wjf(xo, yo)

)2
1
2

 phe,m

+

(
1
2
− cjf +

bN
jf←o

2
− wjf(xo, yo)

)2

(1− pho,m − phe,m) (B.44)

where in the present example wjf is given by eq. (B.40). The first, second, and third summand,

stand, respectively, for the case where the male mate of the focal female is homozygote mutant,

heterozygote, or homozygote resident. When the male is heterozygote, then with probability 1/2
the worker inherits a copy of his mutant allele and will be homozygote (first term in the second

summand), while with probability 1/2 the worker does not inherit a copy of the mutant allele

from its father and will be heterozygote (second term in the second summand).

When the female is heterozygote, we write the sum of squares as Qjf|he = (1/2)Qjf|he,1 +

(1/2)Qjf|he,0, where Qjf|he,1 represents the case where the worker inherits the mutant allele from

its mother and Qjf|he,0 for the case the worker does not inherit the mutant from its mother. We
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find that

Qjf|he,1 =

(
1
2
−

cjf

2
+ bN

jf←o + bN
jf←m − wjf(zo, yo)

)2
pho,m

+

(1
2
−

cjf

2
+ bN

jf←o +
bN

jf←m

2
− wjf(zo, yo)

)2
1
2

+

(
1
2
−

cjf

2
+

bN
jf←o

2
+

bN
jf←m

2
− wjf(xo, yo)

)2
1
2

 phe,m

+

(
1
2
−

cjf

2
+

bN
jf←o

2
− wjf(xo, yo)

)2

(1− pho,m − phe,m) (B.45)

and

Qjf|he,0 =

(
1
2
−

cjf

2
+

bN
jf←o

2
+ bN

jf←m − wjf(xo, yo)

)2

pho,m

+

(1
2
−

cjf

2
+

bN
jf←o

2
+

bN
jf←m

2
− wjf(xo, yo)

)2
1
2

+

(
1
2
−

cjf

2
+

bN
jf←m

2
− wjf(yo, yo)

)2
1
2

 phe,m

+

(
1
2
−

cjf

2
− wjf(yo, yo)

)2
(1− pho,m − phe,m). (B.46)

Finally, when the female is homozygote resident, we have that

Qjf|ho(y) =

(
1
2

+
bN

jf←o

2
+ bN

jf←m − wjf(xo, yo)

)2

pho,m(1
2

+
bN

jf←o

2
+

bN
jf←m

2
− wjf(xo, yo)

)2
1
2

+

(
1
2

+
bN

jf←m

2
− wjf(xo, yo)

)2
1
2

 phe,m,

(B.47)

since a worker from a homozygote resident mother can inherit the mutant allele only from its

father, and when the father is heterozygote the worker inherits the mutant with probability 1/2.

We now minimize the sum of squares Qjf(cjf, bN
jf←o, bN

jf←m) with respect to the relevant re-

gression coefficients, which requires that, for j ∈ {f, m}, we solve

∂Qjf(cjf, bN
jf←o, bN

jf←m)

∂cjf
= 0 ,

∂Qjf(cjf, bN
jf←o, bN

jf←m)

∂bN
jf←o

= 0 and
∂Qjf(cjf, bN

jf←o, bN
jf←m)

∂bN
jf←o

= 0 (B.48)

for cjf, bN
jf←o and bN

jf←m. Substituting eq. (B.42) into the so-obtained regression coefficients and
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letting p→ 0, we finally obtain that cjf = 0, bN
jf←m = 0 for j ∈ {f, m}, and

bN
ff←o =

(P(xo)− P(yo))

1 + P(yo)

bN
mf←o =

(P(xo)− P(yo))

1 + P(yo)
, (B.49)

where these regressions coefficients are the offspring production of the mutant worker minus that

of the resident worker relative to the offspring production of the mutant worker.

B.3.2 Regressions for male fitness components

We now derive the regression coefficients for the male fitness components. The model for the

male side is exactly symmetric to that of the female side and to compute the corresponding sum

of squares Qjm(cjm, bN
jm←o, bN

jm←f) for j ∈ {f, m} we only interchange m and f subscripts in all

equations of the previous section. Otherwise, the calculations carry over mutatis mutandis to

give cjm = 0, bN
jm←f = 0 for j ∈ {f, m}, and

bN
fm←o =

(P(xo)− P(yo))

1 + P(yo)

bN
mm←o =

(P(xo)− P(yo))

1 + P(yo)
. (B.50)

B.3.3 Inclusive fitness effects

Using the regression coefficients computed in the last two sections, we are now in the position

to compute the inclusive fitness effects. First, the inclusive fitness effects of females and males is

null

∆wIFf(x, y) = 0

∆wIFm(x, y) = 0. (B.51)

To obtain the inclusive fitness effect for a worker, we note that from eq. B.31,

bus←o(x, y) = bN
us←o(x, y) (B.52)

for u ∈ {f, m} and s ∈ {f, m} since the number of individuals of each class nf = nm = no = 1.

With this, eq. (B.33), and eqs. (B.49)–(B.50), we obtain

∆wIFo(x, y) = vf(y)

(
P(xo)− P(yo)

1 + P(yo)

)
+ vm(y)

(
P(xo)− P(yo)

1 + P(yo)

)
. (B.53)

Adding the reproductive values to the inclusive fitness effects shown in eq. (B.51) and eq. (B.53),

we obtain the inclusive fitnesses displayed in Box 2.
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Supplement C: Fitness as-if

C.1 Rational-actor payoff maximization

As explained in the section “Fitness as-if” of the main text, a standard concept for the prediction

of individual behavior is that of a Nash equilibrium trait profile, compared to which no individual

can get a higher “payoff” by a unilateral deviation of behavior (see e.g., Luce and Raiffa, 1957,

Fudenberg and Tirole, 1991 or Mas-Colell et al., 1995). Let us now introduce such a payoff

function for a class a individual, denoted wIa, and defined on the domain

wIa : Xa ×∏
s∈C
X ns−δsa

s ×X → R+ ∀a ∈ C, (C.1)

such that wIa(xi, x−i, x̄) is the payoff to individual i, xi ∈ Xa being now understood as any trait

value that a given individual i could express instead of the trait that it actually expresses, when

group neighbors express trait profile x−i, and in a population where the average trait expression

is x̄ ∈ X . This payoff function has exactly the same domain as the individual fitness function

(eq. A.3).

Suppose now each individual in the population is envisioned as an autonomous decision-maker,

“choosing” the trait it expresses independently of each other individual and with a striving to

maximize its payoff function wIa (hence xi can vary and is not genetically determined). Then, a

Nash equilibrium x∗ = (x∗1 , x∗2 , ..., x∗nc ) (symmetric in each class) satisfies

x∗a ∈ arg max
xi∈Xa

wIa
(
xi, x∗−i, x∗

)
∀a ∈ C, (C.2)

where x∗−i is the trait profile of all neighbors, where entry j of x∗−i is equal to x∗s if neighbor j 6= i
is of class s. In such a symmetric Nash equilibrium x∗, individuals in each class make the best

decision for themselves in terms of payoff, i.e., they maximize their payoff based on all others

doing the same.

Our aim is to elicit a representation of the payoff function wIa that individuals appear to

maximize in an uninvadable population state. We call such a payoff a fitness as-if. More formally,

a fitness as-if function wIa satisfies

x∗a ∈ arg max
xi∈Xa

wIa
(
xi, x∗−i, x∗

)
∀a ∈ C ⇐ x∗ ∈ arg max

x∈X
W(x, x∗), (C.3)

where the invasion fitness in the right-hand side is given by eqs. (A.27)–(A.29). Eq. (C.3) says

that if x∗ is uninvadable, then this equilibrium can be envisioned as a Nash equilibrium, where

each individual appears to maximize its fitness as-if, when each other individual in each class

exhibits fitness-maximizing behavior. In other words, in an uninvadable population state, it is

as if each individual maximizes its fitness as-if.

In this Supplement, we not only prove that eq. (6) of the main text satisfies eq. (C.3), but

more generally explain how to construct expressions for fitness as-if that take the form of both
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average direct fitness and inclusive fitness. Thereby, this Supplement fully connects together

traditional game theory, evolutionary invasion analysis and inclusive fitness theory.

C.2 Average direct fitness as-if

C.2.1 The instrumental distribution

We start by presenting a way to construct an average direct fitness as-if as this will pave the

way to construct inclusive fitness as-if. Since we aim that the trait of each individual and thus

of neighbors can be distinct from each other, we need to depart from the population genetic

models of the previous sections where invasion fitness was depending only on heterozygote and

homozygote mutant and resident traits, with the distribution qD(x, y) of group states describing

correlated trait expression within groups. In order to take this difference into account, we consider

that, while fitness as-if should in general consist of the same fitness components, wus, as invasion

fitness, it should be averaged over a different distribution of correlated trait expression within

groups (in particular, a distribution with a different sample space allowing for each individual

expressing a different trait). We refer to this new distribution as the instrumental distribution,

and it will be reminiscent of the so-called subjective probability distribution of the profile of

traits that neighbors play, as considered in the construction of an individual’s utility function

in game theory (e.g., Fudenberg and Tirole, 1991, Mas-Colell et al., 1995). To describe how we

obtain the instrumental distribution, we first define its sample space, beginning with a haploid

population without class structure.

C.2.2 Haploids without classes

For haploids without classes, where wI(xi, x−i, x̄) is the fitness as-if of an individual with trait

xi in a group with neighbor trait profile x−i = (x1, x2, ..., xi−1, xi+1, ..., xn) in a population with

average group trait x̄, the instrumental distribution is constructed as follows. We first consider

the sample space defined from the neighbor trait profile x−i, defined by replacing any number

of the elements of x−i by i’s trait. Thus, for any k ∈ {1, . . . , n}, we consider the set Pk(x−i) of

hypothetical neighbor trait profiles x̃−i such that exactly k− 1 components of the profile x−i are

replaced by i’s trait xi, while the remaining n− k components of x̃−i are identical to those in x−i

(this operation will capture correlated trait expression within groups). The set of all such profiles

is Si = ∪n
k=1Pk = ∏n−1

j 6=i {xi, xj}. From the perspective of individual i, we can think of x̃−i as a

hypothetical profile where neighbors’ traits have been replaced with traits similar to self, and if

such a profile were to obtain in individual i’s group, then its fitness would be w(xi, x̃−i, x̄).

Any probability distribution σ(xi, x−i, x̄) on the space Si takes values in the simplex ∆(Si)

induced by Si, and assigns probabilities σk(x̃−i; xi, x−i, x̄) such that these probabilities satisfy

n

∑
k=1

∑
x̃−i∈Pk(x−i)

σk(x̃−i; xi, x−i, x̄) = 1. (C.4)

The instrumental distribution σ(xi, x−i, x̄) is as yet undefined beyond its sample space. In
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particular, this distribution has yet no imposed relation to the probabilities of events specified

by the qD(x, y) distribution that occur in the actual reproductive process in the population under

consideration, but it retains the ability to describe within-group correlated trait expression. In

order to connect these two distributions, we note that qD(x, y) takes values in the simplex

∆(S) or ordered phenotypic groups states, which is the same as the simplex ∆(S(i)). Thus,

∆(S) = ∆(S(i)), and we can choose the instrumental distribution such that

σ(xi, x−i, x̄) = qD(xi, x̄). (C.5)

So we consider that the instrumental probabilities of events, defined by replacing elements of

the trait profile by the focal individual’s trait, are identical to the probabilities of ordered trait

profiles in the population genetic model (or equivalently, to the probabilities of joint genetic

identity in the group).

Given the instrumental distribution defined by eq. (C.5), we can define the average direct

fitness as-if of an individual with trait xi as

wI(xi, x−i, x̄) =
n

∑
k=1

∑
x̃−i∈Pk(x−i)

w(xi, x̃−i, x̄)σk(x̃−i; xi, x−i, x̄) , (C.6)

which is the average of individual fitness over the distribution σ(xi, x−i, x̄). A more compact

representation of this fitness as-if is

wI(xi, x−i, x̄) = Ex̃−i∼σ(xi ,x−i ,x̄)[w(xi, x̃−i, x̄)] , (C.7)

where the notation ∼ specifies that variable x̃−i follows the distribution σ(xi, x−i, x̄) (recall

eq. A.12).

C.2.3 Diploids with classes

We can now generalize the construction of the instrumental distribution to a diploid class-

structured population. For this case, it is useful to denote explicitly by xi,a the realized trait

of individual i ∈ I when of class a. Then, the instrumental distributions σs(xi, x−i, x̄) for the

realized profile of traits (x̃i, x̃−i) in a group when individual i is of class a is defined as follows.

First, the trait x̃i of individual i when of class a is assumed to take values in {za(xi,a, x̄a), xi,a}
and this parallels the case where in the genetic process an individual with the mutant allele can

be heterozygote or homozygote, but our assignment is here a defining feature and is not intended

to reflect any genetic reality. Second, each element x̃j of x̃−i = (x̃1, , ..., x̃i−1, x̃i+1, ...xn) is defined

to take values in the set of traits belonging to the class of the individual under scrutiny; that is,

if individual j is of class s then, by construction x̃j ∈ {zs(xi,s, xj,s), xi,s, xj,s}. The hypothetical

profile (x̃i, x̃−i) is then defined to be distributed according to σs(xi, x−i, x̄), a distribution that
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has sample space

Ss(i) = {zs(xi,s, x̄s), xi,s} ×∏
a∈C

(na−δsa)

∏
j 6=i
{za(xi,a, xj,a), xi,a, xj,a}. (C.8)

Hence, the distribution σs takes values in the set ∆(Ss(i)), which is the simplex generated by

the support Ss(i). Since the distribution qD
s (x, y) determining invasion fitness takes values in

the same simplex ∆(Ss) = ∆(Ss(i)) (recall eq. A.30), we can, as in the haploid case, set the

probabilities of events in the instrumental distribution identical to the probabilities of ordered

trait profiles in the population genetic model:

σs(xi, x−i, x̄) = qD
s (xi, x̄). (C.9)

Thus, we again define the instrumental probabilities, of events defined by replacing elements of

the trait profile by the focal individual’s trait, to be identical to the probabilities of ordered trait

profiles in the population genetic model.

Given the instrumental distribution σs(xi, x−i, x̄) so defined (eq. C.9), the average direct

fitness as-if of an individual of class a with trait xi in a group with neighbor trait profile x−i

in a population with average group trait x̄ is defined as a reproductive value-weighted sum of

expected numbers of offspring of different classes u:

wIa(xi, x−i, x̄) = ∑
u∈C

vu(x̄)E(x̃i ,x̃−i)∼σs(xi ,x−i ,x̄)[wua(x̃i, x̃−i, x̄)] . (C.10)

In order to illustrate the notation and better understand the expectation in eq. (C.10) for diploidy,

we consider the case of n = 2 without class structure (hence the neighbor trait profile is the

singleton x−i = x−i ). Then, we write the direct fitness as-if of an individual with trait xi as

wI(xi, x−i, x̄) = w(xi, x−i, x̄)σS,O(xi, x−i, x̄) + w(xi, x−i, y)σO,O(xi, x−i, x̄)

+ w(xi, z(xi, x−i), x̄)σF,O(xi, x−i, x̄) + w(z(xi, x̄), xj, x̄)σS,F(xi, x−i, x̄)

+ w(z(xi, x̄), xi, x̄)σO,F(xi, x−i, x̄) + w(z(xi, x̄), z(xi, x−i), x̄)σF,F(xi, x−i, x̄).

(C.11)

Here, the second subscript k ∈ {O, F} in σj,k(xi, x−i, x̄) denotes that the instrumental substitute

to individual i can be of two possible types, either it is “outbred” (k = O), in which case its

(objective) fitness w depends on trait xi, or it is “inbred”(k = F), in which case its fitness depends

on trait z(xi, x̄). The first subscript j ∈ {S, O, F} denotes that the instrumental substitute to the

group neighbor can express three different traits: it expresses either trait x−i (j = S for “self”),

or xi (j = O), or z(xi, x̄) (j = F). With these notations, σj,O(xi, x−i, x̄) is the instrumental

probability that, given trait profile (xi, x−i, x̄), individuals i is of type “outbred” and its neighbor

expresses the trait of type j ∈ {S, O, F}, while σj,F(xi, x−i, x̄) is the instrumental probability that

individual i is “inbred” and its neighbor expresses trait of type j. In terms of these probabilities,
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we can write the instrumental distribution of profiles experienced by individual i as

σ(xi, x−i, x̄) =
(
{σj,O(xi, x−i, x̄)}j∈{S,O,F}, {σj,F(xi, x−i, x̄)}j∈{S,O,F}

)
. (C.12)

Note that eq. (C.11) shows that fitness as-if is defined as an average over cases where in-

dividuals are “outbred” or “inbred”, i.e., have the trait of an heterozygote or homozygote, and

so varying xi varies the trait both when the substituted individual is heterozygote (given by

xi itself) and when it is homozygote (given by z(xi, xj)). This construction ultimately owes to

the fact that in the original reproductive process individuals express different traits upon being

heterozygote or homozygote (e.g., eq. A.29), a standard modeling assumption for diploids (e.g.,

Nagylaki, 1992; Gillespie, 2004; Hartl and Clark, 2007).

C.3 Inclusive fitness as-if

C.3.1 Multiplayer regression for class-structure

We now present the regression analysis underlying the construction of inclusive fitness as-if and

do so directly for diploids with class structure. To that end, we consider the same regression

model as in the population genetic model (recall eqs. B.14–B.15) but will evaluate its coefficients

under the instrumental distribution instead of the genetic contextual distribution. Namely, we

focus on individual i with trait xi in a group with neighbor trait profile x−i, and consider a

hypothetical switch in behavior to expressing trait x̃i in a group with neighbor trait profile x̃−i.

We then write the number u of descendants of an individual i of class s in the altered group as

wus(x̃i, x̃−i, x̄) = wus(x̄s, x̄, x̄)− cIus(xi, x−i, x̄)pI,i

+ ∑
j 6=i

bN
Ius←k(j)(xi, x−i, x̄)pI,j + residual, (C.13)

where x̄ denotes the vector of neighbor trait profile (dimension n− 1), all of which are evaluated at

the mean (of the corresponding class) in the population and cIus(xi, x−i, x̄) and bN
Ius←a(xi, x−i, x̄)

are regression coefficients. The functional form of this equation is the same as that under the

population genetic model (eq. B.14), but its interpretation slightly differs and is as follows. We

consider a group state where each of the gene copies from the original group of the focal individual

i may be replaced in any individual by 2, 1, or 0 copies of an I allele, which plays the same role

as the mutant allele in being a determinant of the traits of a focal individual i and its neighbors.

For the focal individual itself, the new trait value x̃i is within the set {zs(xi,s, x̄s), xi,s, x̄s}, when

it bears 2, 1, or 0 copies of the I allele, and pI,i ∈ {0, 1/2, 1} denotes the frequency of allele I

in individual i. The new trait x̃j of a neighbor individual j 6= i when of realized class k(j) = a
is within the set {za(xi,a, xj,a), xi,a, xj,a}, which stems, respectively, from individual j 6= i bearing

2, 1, or 0 copies of the I allele. Thus any value of (x̃i, x̃−i) is a hypothetical group trait profile,

resulting from a switch of allele expression and where, by construction, eq. (C.13) must hold for

all profiles (x̃i, x̃−i) ∈ {zs(xi,s, x̄s), xi,s, x̄s} ×∏a∈C ∏
(na−δsa)
j 6=i {za(xi,a, xj,a), xi,a, xj,a}. Hence, the
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main structural difference between eq. (C.13) and its population genetic counterpart, eq. (B.14),

is that all neighbors of individual i have all distinct traits in eq. (C.13) when they do not switch

to expressing allele I.

The regression coefficients cIus(xi, x−i, x̄) and bN
Ius←a(xi, x−i, x̄), are now obtained by following

exactly the same line of argument as in the population genetic model, but using the instrumental

distribution instead of the contextual genetic state distribution. Accordingly, we first note that

eq. (C.13) says that we predict fitness with the same linear regression

ŵus

(
cIus, bN

Ius, pI, x̄
)

= wus(x̄s, x̄, x̄)− cIus(xi, x−i, x̄)pI,i + ∑
j 6=i

bN
Ius←k(j)(xi, x−i, x̄)pI,j, (C.14)

where vector bN
Ius collects the bIus←k(j) regression coefficient and vector pI collects all the pI,i

frequencies. Second, we let σs(xi, x−i, p) and σ̃s(xi, x−i, p) denote the distribution of group

states in a population where the vector of frequencies of allele I across classes is equated to

the vector p of mutant allele frequencies across classes in the population genetic model (the

σs(xi, x−i, p) and σ̃s(xi, x−i, p) distributions have, respectively, sample space {zs(xi,s, x̄s), xi,s}×
∏a∈C ∏

(na−δsa)
j 6=i {za(xi,a, xj,a), xi,a, xj,a} and {xi,s, x̄s}×∏a∈C ∏

(na−δsa))
j 6=i {za(xi,a, xj,a), xi,a, xj,a}). These

sample spaces induce the sample simplexes as the q̃D
s and qD

s distributions (used in eq. B.16) and

so we set

σs(xi, x−i, p) = qD
s (xi, x̄, p) and σ̃s(xi, x−i, p) = q̃D

s (xi, x̄, p). (C.15)

We can now define the quadratic expression

QIus

(
cIus, bN

Ius, xi, x−i, p
)

= E(x̃i ,x̃−i)∼σs(xi ,x−i ,p)

[(
ŵus

(
cIus, bN

Ius, pI, x̄
)
− wus(x̃i, x̃−i, p)

)2
]

ps

+ E(x̃i ,x̃−i)∼σ̃s(xi ,x−i ,p)

[(
ŵus

(
cIus, bN

Ius, pI, x̄
)
− wus(x̃i, x̃−i, p)

)2
]

(1− ps), (C.16)

and we solve ∂QIus(cIus, bN
Ius, xi, x−i, p)/∂cIus = 0 and ∂QIus(cIus, bN

Ius, xi, x−i, p)/∂bN
Ius←k(j) = 0

for all j 6= i. Recalling eq. (B.20), we obtain the regression coefficients of eq. (C.13) as

cIus(xi, x−i, x̄) = lim
p→0

cIus(xi, x−i, x̄, p) bN
Ius←k(j)(xi, x−i, x̄) = lim

p→0
bN

Ius←k(j)(xi, x−i, x̄, p). (C.17)

We now further note that when qD
s (xi, x̄, p) → qD

s (xi, x̄) and σs(xi, x−i, p) → σs(xi, x−i, x̄)

as p→ 0, we have

σs(xi, x−i, x̄) = qD
s (xi, x̄), (C.18)

and

E(x̃,x̃−i)∼σs(xi ,x−i ,x̄)[pI,i] = E(xi ,x−i)∼qD
s (xi ,x̄)[pI,i] = rfs(xi, x̄), (C.19)
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where the first equality follows from eq. (C.18) and the definition of pI,i, which takes exactly

the same frequency as the mutant allele within an individual under assumption (C.18); while

the second equality follows from the definition of the within-individual identity in state under

neutrality (recall eq. B.22). Likewise, when individual j 6= i is of class a, we have

E(x̃,x̃−i)∼σs(xi ,x−i ,x̄)

[
pI,j
]

= E(xi ,x−i)∼qD
s (xi ,x̄)

[
pI,j
]

= rn a|s(xi, x̄). (C.20)

The first equality follows from eq. (C.18) and the definition of pI,j, while the second equality

follows from the definition of the between-individual identity in state under neutrality and the

fact that the distribution of allele I is the same as that of the mutant allele (recall eq. B.23). In

terms of the rfs(xi, x̄) and rn a|s(xi, x̄) probabilities, we have that

rs|a(xi, x̄) =
rn s|a(xi, x̄)

rfa(xi, x̄)
, (C.21)

which is the (neutral) relatedness coefficient between a class-s actor and a class-a recipient in a

population monomorphic for trait value x̄.

By contrast to the regression coefficients in the population genetic model, the coefficient

bN
Ius←k(j)(xi, x−i, x̄) (eq. C.17) takes only the interpretation of a neighbor-modulated regression

coefficient, since it gives the effect, on the fitness of i, of an average social partner switching to

expressing trait xi instead of its own trait xj. This in general is not the effect of individual i on

the fitness of its average social partner when switching its own trait value from x̄ to xi (since

in general xj 6= x̄). We next show how to obtain an actor-centered regression coefficient out of

bN
Ius←k(j)(xi, x−i, x̄).

C.3.2 Actor-centered regression coefficients

To introduce our argument, we first consider haploids without class structure. In that case,

we set bN
Ius←k(j)(xi, x−i, x̄) = bN

I,j(xi, x−i, x̄) since there are no class effects. It will also turn

out useful to re-write the quadratic expression (eq. C.16) for the haploid case in more compact

form. To that end, let σI(xi, x−i, p) denote the full unconditional instrumental distribution

(which concatenates the unconditional instrumental distributions σ(xi, x−i, p) and σ̃(xi, x−i, p)

weighted by the respective allele I frequencies), and that has sample space

ΩI = {xi, x̄} ×∏
j 6=i
{xi, xj}. (C.22)

With this, we can then write the quadratic expression for haploids as

QI

(
cI, bN

I , xi, x−i, p
)

= E(x̃i ,x̃−i)∼σI(xi ,x−i ,p)

(1− cI pI,i + ∑
j 6=i

bN
I,j pI,j − w(x̃i, x̃−i, p)

)2
 .

(C.23)
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Eq. (C.23) illustrates that, given that we assign a distribution to the traits expressed by

different individuals (the σI distribution), the quadratic expression to be minimized can be

represented as an average over a distribution of the traits. The resulting regression coefficients

are contrasts of the fitness values (i.e., weighted “averages” except that the sum of the weights

is zero), which can no longer be interpreted as averages over the σI distribution, but whose

contrast weights are still fully determined by this distribution (as implied by the so-called“normal

equation” of linear regression). For instance, by performing from eq. (C.23) the calculations

detailed in the last section, we obtain in the case n = 2 (where the sample space is {xi, x̄} ×
{xi, xj}),

bN
I,j(xi, xj, x̄) =

1
1 + r(xi, x̄)

(
w(x̄, xi, x̄)− w(x̄, xj, x̄)

)
+

r(xi, x̄)

1 + r(xi, x̄)

(
w(xi, xi, x̄)− w(xi, xj, x̄)

)
(C.24)

in the limit p→ 0, which can be thought of as the extension of b(x, y) in eq. (B.11) to the case

where the trait of each group member is distinguished.

When individuals are exchangeable (meaning that the distribution of their traits are ex-

changeable, and that the same fitness function holds for all individuals), then this effect is also

an average bI,j of effects of the focal individual on the jth neighbor’s fitness (and thus bI,j = bN
I,j).

This case holds when one considers mutant-resident dynamics (whether the resident’s state is

an uninvadable state, or not) and underlies the dual interpretation of the regression coefficients

discussed below eq. (B.7). Otherwise, even if the instrumental distribution σI is exchangeable

between individuals, the traits (sample space) expressed by individuals that do not bear the I

allele are not generally exchangeable. For instance, in the above haploid case, the trait sample

space of individual i is {xi, x̄} and {xi, xj} and that of its neighbor j is {xi, xj}. So these are not

exchangeable and we do not have bI,j = bN
I,j.

Rather, in order to construct an additive effect bI,j of the focal individual on the jth neighbor’s

fitness, we let bI,j be the regression coefficient to pI,j in the quadratic expression eq. (C.23), still

under the instrumental distribution defined from the context of individual i, but when the traits

expressed by the focal and its neighbor j are exchanged (in general, this is also different from

the regression coefficient to pI,j under the instrumental distribution defined from the context of

individual j). For example, consider that xj is equal to xi, except that we still denote it xj.

Then, under the instrumental distribution, pI,j has no effect on the focal individual’s fitness,

since it has no effect on expressed trait, xi = xj. Yet, the focal individual has a distinct effect

on its j-neighbor depending on its own pI,j and this must be reflected by a non-zero bI,j in the

inclusive fitness as-if of individual i. This effect is recovered by switching the supports of the

focal’s trait and of the j-neighbor’s trait, so that the focal trait now has sample space {xi, xj},
but more importantly the neighbor’s trait now has sample space {xi, x̄} so that we can compute

a non-zero bI,j as the regression coefficient of focal fitness on neighbor’s pI,j.

Formally, this means that once we have an expression, for bN
I,j from the regression of i’s fitness

under the instrumental distribution, as a contrast of individual fitnesses in different contexts, we
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obtain bI,j by keeping the contrast weights constant, but modifying the fitness values by switching

the sample spaces of the traits expressed by the I allele in individuals i and j. In the exemplar

case n = 2 given above (eq. C.24), the switch of the sample spaces {xi, x̄} and {xi, xj} then leads

to simply interchanging x̄ and xj in eq. (C.24). This produces

bI,j(xi, xj, x̄) =
1

1 + r(xi, x̄)

(
w(xj, xi, x̄)− w(xj, x̄, x̄)

)
+

r(xi, x̄)

1 + r(xi, x̄)
(w(xi, xi, x̄)− w(xi, x̄, x̄)) ,

(C.25)

which is an effect of the focal individual on the jth neighbor’s fitness. In terms of this coefficient,

we can then define the inclusive fitness as-if of individual i as

wI(xi, x−i, x̄) = 1− cI(xi, x−i, x̄) + r(xi, x̄) ∑
j 6=i

bI,j(xi, xj, x̄). (C.26)

More generally, for diploidy and class-structure the same argument applies. Here, once we

have the neighbor-modulated coefficient bN
Ius←k(j)(xi, x−i, x̄) for k(j) = a from the regression of

i’s fitness under the instrumental distribution, as a contrast of individual fitnesses in different

contexts, we can obtain bIuk(j)←a(xi, x−i, x̄) as the effect of an individual i of class a on receptor

j of class k(j) = s by keeping the contrast weights constant, but modifying the fitness values by

switching the sample spaces of the traits expressed by the focal in class s and its neighbor j when

of class a; that is, by switching the supports of the focal’s trait and of the j-neighbor’s trait, so that

the focal’s trait (now of class s) has support {zs(xs,i, x̄s), xs,i, x̄s} and the neighbor’s trait (now

of class a) has support {za(xi,a, xj,a), xi,a, xj,a}. This then leads a non-zero bIuk(j)←a(xi, x−i, x̄)

additive effect of a focal of class a on its neighbor j of class k(j) = s, whose sum over all

recipients of class s, denoted

bIus←a = ∑
j 6=i,k(j)=s

bIuk(j)←a(xi, x−i, x̄), (C.27)

is an individual-centered version of eq. (B.31). In terms of the so-obtained actor-centered indirect

coefficient (and the cIua and rs|a(xi, x̄) coefficients computed in the previous section, recall eq. C.17

and eq. C.21), we can define the inclusive fitness as-if of an individual i of class a as

wIa(xi, x−i, x̄) = va(x̄) + ∑
u∈C

vu(x̄)

[
−cIua(xi, x−i, x̄) + ∑

s∈C
rs|a(xi, x̄) bIus←a(xi, x−i, x̄)

]
. (C.28)
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C.4 Connecting the gene-centered and the rational-actor centered per-

spectives

Suppose now that at an uninvadable state x∗, we have

cIua(xi, x∗, x∗) = cua(xi, x∗) ∀xi ∈ Xa

bIus←a(xi, x∗, x∗) = bus←a(xi, x∗) ∀xi ∈ Xa.
(C.29)

Then, the inclusive fitness as-if at x∗ is equivalent to the inclusive fitness at x∗:

wIa(xi, x∗, x∗) = wIFa(xi, x∗) ∀xi ∈ Xa. (C.30)

Since we know the right-hand side is maximized at x∗, i.e., eq. (B.39) is satisfied, it follows from

eq. (C.30) that the inclusive fitness as-if (eq. C.28) satisfies eq. (C.3). Thus, in an uninvadable

population state, it is as if each individual aimed to maximize its inclusive fitness as-if, when all

others exhibit fitness-maximizing behavior.

We now show that eq. (C.29) indeed holds. First, we have both cIua(xi, x∗, x∗) = cua(xi, x∗)
and bN

Ius←a(xi, x∗, x∗) = bN
us←a(xi, x∗) because the regression model eq. (C.13) is the same as that

in the population genetic model (eq. B.14), the only difference is that its regression coefficients are

evaluated under a distribution where group neighbor traits are all distinct, everything else remain-

ing the same. Hence, in a population where all neighbors of the same class of an individual have

the same trait value, the regression coefficients computed under the instrumental and contextual

distributions will be the same. It now remains to show that bIus←a(xi, x∗, x∗) = bus←a(xi, x∗).
This follows by noting that in the computation leading to bIus←a(xi, x∗, x∗), the only thing that

is changed, is an exchange of supports in the evaluation of fitnesses, but the position of the

argument xi remains unchanged in all fitness functions. The nature of the maximization problem

remains henceforth unchanged, because it is only the trait of neighbors that are interchanged.

This has no effect on the symmetric Nash equilibrium (eq. C.3) and so when all neighbors play

the same trait, the regression coefficients will be the same. Hence, in an uninvadable population

state, it is as-if individuals in each class maximize (in the best-response sense) their own inclusive

fitness defined by eq. (C.28).

As explained in the main text, eq. (C.28) is, however, not an operationally convincing as-

if fitness as it entails that an individual controls the instrumental distribution describing the

number of group neighbors expressing the same trait as self. But since the contextual distribution

determining the instrumental distribution (by way of eq. C.18) is a population-level property that

depends on the mutant trait, we cannot meaningfully view this distribution as under the control

of a particular individual.
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C.5 Weak selection

C.5.1 Weak-selection concepts

We now finally turn to deriving an inclusive fitness as-if functions under weak selection (see

section “Weak selection concepts” of the main text for an informal discussion). To take weak

selection more formally into account, we let the matrix A(x, y) describing the growth of the

mutant when rare in the population with classes (eq. A.8 with elements giving the expected

number of groups in state i that descend from a group in state j) be of the form

A(x, y) = A(y) + εÃ(x, y) + O(ε2), (C.31)

where matrix A(y) has leading positive eigenvalue equal to 1 and is independent of the mu-

tant trait, Ã(x, y) is a matrix depending on both mutant and resident traits, and ε is a small

parameter.

The representation given in eq. (C.31) captures the two kinds of weak selection that we dis-

cussed in section “Weak selection concepts” of the main text3. First, one can consider that the

parameters determining both mutant and resident phenotypic effects are small. In this case

of “small-mutation” selection, the matrix A(y) depends only the resident trait y and matrix

Ã(x, y) is a first-order polynomial in mutant trait x, in which case one can use the approxima-

tion q(x, y) ∼ q(y). Second, one can consider traits affecting some material payoff (e.g., calory

intake), or any other phenotypic feature, which itself affects only weakly a background reproduc-

tion and survival (“small-parameter” weak selection). For this case, matrix A(y)→ A is actually

independent of both mutant and resident traits, in which case one can use the approximation

q(x, y) ∼ q and φ(x, y) ∼ φ, and the perturbation matrix Ã(x, y) can take any form.

For weak selection, ε → 0 (e.g, Nagylaki, 1993; Lessard and Soares, 2016), the remainder

O(ε2) in eq. (C.31) is neglected and

qk|a(x, y)→ qk|a(y) and φa(x, y)→ φa(y), (C.32)

where the left-hand sides depend at most on the resident traits and where k can describe ei-

ther a haploid or diploid group state (in the latter case, k must account for heterozygotes and

homozygotes within each class), and is independent of the evolving traits altogether under“small-

3As concrete example of both “small-mutation” and “small-parameter” weak selection, we can use the social-
insects scenario and corresponding fitnesses given in Box 1. Then, we can first Taylor-expand the fitness compo-
nents, say the number of daughters produced by queens (eq. B.2), in mutant trait around the resident trait and
neglect higher-order terms to obtain

wff(x, y) ∼ w̃ff(x, y) =
1
2

+
∂wff(x, y)

∂xo

∣∣∣∣
x=y

(xo − yo) +
∂wff(x, y)

∂xf

∣∣∣∣
x=y

(xf − yf),

where the right-hand side gives a small-mutation approximation to fitness as the fitness of a resident individual in
a monomorphic resident population plus the marginal changes in fitness weighted by their phenotypic differences.
Alternatively, we can linearize fitness in terms of the effect P(xo) of workers on female fecundity wff(x, y) ∼

w̃ff(x, y) = xf
2yf

+
xf

(
P(xo)−P(yo)

)
4yf

where the right-hand side represents small-parameter approximation to fitness.
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parameter” weak selection. Eq. (C.32) follows from Lessard and Soares (2016, eqs. 59-67) who

show that when ε → 0, the distribution over states of the mutant when rare in the popula-

tion is described by the right unit eigenvector u(y) of A(y), and this vector subtends qk|a(y)

and φa(y) (e.g., qk,a(y) = kauk(y)/ [∑k∈I ∑a∈C kauk(y)], eq. A.21, eq. A.25 and explanations

below eq. A.18 for the haploid case). Hence, not only the reproductive value vu(y) but also

the genealogical and class structure no longer depend on mutant traits. In other words, the

population-level properties may vary with the resident trait but are held constant on variation

of the mutant trait. This argument also applies to the case of distinct individuals (remember

Section A.1.2).

By collecting all components qk|a(x, y) into the distribution qD
a (x, y) of genetic group states,

we have for weak selection that

qD
a (x, y)→ qD

a (y). (C.33)

We will next apply eq. (C.33) to derive explicit expressions for fitness as-if under weak selection.

We are now ready to derive explicit as-if fitness representations. Fully endorsing weak selec-

tion, we denote from now on by w̃ua(xi, x−i, x̄) the weak-selection approximation of the class-

specific fitness function wua(xi, x−i, x̄) (as this covers both types of small-mutant and of small-

parameter weak selection). We first recover two expressions for direct fitness as-if from the

literature, which will allow us to point to limitations of this maximand, and finally to formalize

inclusive fitness as-if.

C.5.2 Class-specific inclusive fitness as-if maximization under weak selection

First, recall that, regardless for any strength of selection, we showed that each individual of

each class will appear to maximize its inclusive fitness defined by eq. (C.28) in an uninvadable

population state (e.g., eq. C.30, which implies that eq. (C.3) is satisfied) regardless of the the

strength of selection. Hence, eq. (C.28) will also be maximized under weak selection (eq. (C.3) is

satisfied), with the only difference that we can let the population genetic structure be independent

of the actor’s traits. Hence, for weak selection we write the inclusive fitness as-if of individual i
of class a as

wIa(xi, x−i, x̄) = va(x̄) + ∑
u∈C

vu(x̄)

[
−cIua(xi, x−i, x̄) + ∑

s∈C
rs|a(x̄) bIus←a(xi, x−i, x̄)

]
. (C.34)

This is eq. (6) of the main text and the key difference with eq. (C.28) is that relatedness is now

independent of the actor’s trait and the regression coefficients are evaluated under weak selection

using the fitness function w̃ua (instead of the fitness function wua) and using the weak selection

approximation of the instrumental distribution, everything else remains the same.
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Metz, J. A. J., R. M. Nisbet, and S. A. H. Geritz. 1992. How should we define fitness for general

ecological scenarios? Trends in Ecology and Evolution 7:198–202.

Michod, R. E. 1982. The theory of kin selection. Annual Review of Ecology and Systematics

13:23–55.

Moran, P. A. P. 1964. On the nonexistence of adaptive topographies. Annals of Human Genetics

27:383–393.

Nagylaki, T. 1992. Introduction to population genetics. Springer-Verlag, Heidelberg.

Nagylaki, T. 1993. The evolution of multilocus systems under weak selection. Genetics 134:627–

647.

65

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/624775doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/624775
http://creativecommons.org/licenses/by-nc-nd/4.0/


Okasha, S. and J. Martens. 2016. Hamilton’s rule, inclusive fitness maximization, and the goal of

individual behaviour in symmetric two-player games. Journal of Evolutionary Biology 29:473–

482.

Okun, L. 2012. ABC of Physics: a Very Brief Guide. World Scientific, London.

Otto, S. P. and T. Day. 2007. A biologist’s Guide to Mathematical Modeling in Ecology and

Evolution. Princeton University Press, Princeton, NJ.

Parker, G. A. and J. Maynard Smith. 1990. Optimality theory in evolutionary biology. Science

349:27–33.

Price, G. R. 1970. Selection and covariance. Nature 227:520–521.

Queller, D. C. 1992. A general model for kin selection. Evolution 46:376–380.

Reeve, H. K. and P. W. Sherman. 1993. Adaptation and the goal of evolutionary research. The

Quarterly Review of Biology 68:1–32.

Ronce, O., S. Gandon, and F. Rousset. 2000. Kin selection and natal dispersal in an age-

structured population. Theoretical Population Biology 58:143–159.

Rousset, F. 2004. Genetic Structure and Selection in Subdivided Populations. Princeton Uni-

versity Press, Princeton, NJ.

Rousset, F. 2015. Regression, least squares, and the general version of inclusive fitness. Evolution

69:2963–2970.

Rousset, F. and S. Billiard. 2000. A theoretical basis for measures of kin selection in subdi-

vided populations: finite populations and localized dispersal. Journal of Evolutionary Biology

13:814–825.

Rousset, F. and O. Ronce. 2004. Inclusive fitness for traits affecting metapopulation demography.

Theoretical Population Biology 65:127–141.

Roze, D. 2009. Diploidy, population structure and the evolution of recombination. American

Naturalist S1:79–94.

Szulkin, M., K. V. Stopher, J. Pemberton, and J. M. Reid. 2013. Inbreeding avoidance, tolerance,

or preference in animals? Trends in Ecology & Evolution 28:205–11.

Taper, M. L. and T. J. Case. 1992. Models of character displacement adn the theoretical robust-

ness of taxon cycles. Evolution 46:317–333.

Taylor, P. 1990. Allele-frequency change in a class-structured population. American Naturalist

135:95–106.

Trivers, R. L. and H. Hare. 1976. Haplodiploidy and the evolution of the social insects. Science

191:249–263.

66

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/624775doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/624775
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tuljapurkar, S. 1989. An uncertain life: demography in random environments. Theoretical

Population Biology 35:227–94.

Wakker, K. F. 2015. Fundamentals of Astrodynamics. TU Delft Repository, Delft.

Weissing, F. J. 1996. Genetic versus phenotypic models of selection: can genetics be neglected

in a long-term perspective? Journal of Mathematical Biology 34:533–555.

West, S. A. and A. Gardner. 2013. Adaptation and inclusive fitness. Current Biology 23:577–584.

Williams. 1966. Adaptation and Natural Selection. Princeton University Press, Princeton, NJ.

Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97–159.

67

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/624775doi: bioRxiv preprint first posted online May. 2, 2019; 

http://dx.doi.org/10.1101/624775
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Invasion fitness as average direct fitness
	Building blocks
	Individual fitness
	Distinct and indistinct individuals

	Average direct fitness without classes
	Haploids
	Diploids

	Average direct fitness with classes
	Haploids
	Diploids and social insects


	Inclusive fitness
	Inclusive fitness for haploids without classes
	Regression with respect to neighbors
	Regression with respect to focal and neighbors
	Comparing single- and two-predictor regression

	Inclusive fitness for diploids with classes
	Multiplayer class-structured regression
	Average allele frequency
	Average inclusive fitness
	Grouping effects by actor
	Class-specific inclusive fitness maximization

	Example: inclusive fitness for social insects
	Regressions for female fitness components
	Regressions for male fitness components
	Inclusive fitness effects


	Fitness as-if
	Rational-actor payoff maximization
	Average direct fitness as-if
	The instrumental distribution
	Haploids without classes
	Diploids with classes

	Inclusive fitness as-if
	Multiplayer regression for class-structure
	Actor-centered regression coefficients

	Connecting the gene-centered and the rational-actor centered perspectives
	Weak selection
	Weak-selection concepts
	Class-specific inclusive fitness as-if maximization under weak selection



