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A B S T R A C T

Matrix population models (MPMs) are powerful tools for translating demographic and life history information
into a form that can be used to address a wide range of research topics, such as projecting population dynamics,
evaluating stressor impacts on populations, and studying life history evolution. However, the reliability of such
studies depends on the MPM being constructed in a way that accurately reflects the species’ life history. We
highlight three errors commonly encountered in published MPMs: (1) failing to include survival in the fertility
coefficient; (2) introducing a one-year delay in age at first reproduction; and (3) incorrectly calculating the
growth rate out of a stage class. We review the sources of such errors and provide new analyses revealing the
impact of such errors on model predictions, using lionfish and American alligator models as examples. To
quantify the prevalence of such errors we examined and scored the original publications underlying the models
in the COMADRE Animal Matrix Database. The first two errors were found in 34% and 62%, respectively, of the
published studies; nearly all were in models that used a “postbreeding census” representation of the life cycle (in
which newborns—eggs, neonates, fledglings, etc.—are explicitly included). Of the studies where stages may last
longer than one time step, 53% constructed the growth rate using inappropriate formulas for estimating the
asymptotic population growth rate or its sensitivity to demographic parameters. These results suggest that
further efforts may be required to educate biologists on the construction of MPMs, perhaps in concert with the
development of new software tools. Furthermore, the conclusions of many studies that are based on MPMs may
need to be re-examined, and synthetic studies using the COMADRE Database need to be accompanied by careful
examination of the underlying studies.

1. Introduction

The use of matrix population models (MPMs) for the ecological
study of plants and animals has expanded rapidly in recent years
(Salguero-Gómez et al., 2016, 2015). MPMs are a convenient way to
synthesize demographic information about a population, and are useful
in addressing ecological, evolutionary, and management questions
(Caswell, 2001; Morris and Doak, 2002). Most early MPMs were de-
veloped by collaborations between biologists with expertise on the
species at hand and modelers with deep understanding of the subtleties
of modeling. MPMs now, having been long promoted as a straightfor-
ward translation of life-history information into quantitative analysis,
are often being created by biologists who are primarily empirical
ecologists or conservation biologists, and may have had little training in
modeling beyond a graduate course in population ecology. One might

then ask, do these MPMs reliably reproduce the life histories they are
meant to represent?

It is important to remember that MPMs are approximations, both
because they still abstract away much biological detail and because
demographic measurements are imprecise. There are a variety of sub-
tleties in constructing such models, especially when breeding is spread
across a substantial fraction of the year or when there is substantial
heterogeneity among individuals within an age or stage class; much
theoretical work has gone into making MPMs more complex to account
for this, and we are starting to better understand the effects of these
phenomena on simple models (e.g., Fujiwara and Diaz-Lopez, 2017;
Salguero-Gómez and Plotkin, 2010). But even setting aside these issues,
we might hope that, if we assume that a simple life history description
(e.g., as embodied in a life table or set of stage-based life-history
parameters) is a useful description of the population, then the
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constructed MPM should accurately reproduce that description. If it
does not, then we are introducing additional errors into the analysis
above and beyond the inherent approximations of modeling.

One of us (Kendall) has spent two decades teaching MPMs to ap-
plied masters students. This experience has revealed several aspects of
MPM construction that are particularly challenging to modelling no-
vices, and thus might be similarly challenging to biologists who do not
regularly create mathematical models of their system. At one level, the
errors made by these novices are “simply” accounting issues, but some
students exhibit a strong attachment to the incorrect formulations. We
suspect that this difficulty, for both students and researchers, is partly
rooted in the contrast between the often-loose way that terms are used
to describe biological populations and the very precise meanings of
terms in MPMs (together with some genuine linguistic ambiguity that
plagues the field). However, some of these issues may be instances of
what education scholars call a “threshold concept:” an understanding
that is essential to mastery of a field but that is troublesome to students
because it appears to violate common sense intuition (Cousin, 2006;
Meyer and Land, 2006).

We have not infrequently encountered published MPMs that em-
body many the same mistakes made by Kendall's students. Our goal in
this paper is to highlight these challenges (which are described in the
next section), document their prevalence in the peer-reviewed litera-
ture, and quantify their impacts on the outputs of MPMs. We conclude
with a discussion of why these MPM construction errors are so pre-
valent, and how we might improve future practice.

2. Challenges in MPM construction

We focus on animal population models in which the demography is
structured by age (Leslie matrices; Leslie, 1945) or developmental stage
(Lefkovitch matrices; Lefkovitch, 1965); plant and size structured
models present additional challenges, which would further complicate
our presentation. We also focus on species whose reproduction is con-
centrated in a short breeding season (so-called “birth-pulse” popula-
tions; Caughley, 1967). Many animal species satisfy this assumption,
and this allows us to avoid the extra complications associated with
using discrete-time models to represent a continuously breeding spe-
cies. Note that by “breeding season” we mean the season in which in-
dividuals are born or hatched, not the season during which their par-
ents mate. Age starts counting from birth, so that a reproductively
mature individual breeds on or about their birthday: e.g., if the age at
first reproduction is 5 years, then an individual has its first offspring on
its fifth birthday.

MPMs project the population from one nominal census date to the
next. While the census could, in principle, be at any time, in practice
many MPMs either census the population just before breeding (“pre-
breeding census”) or just after breeding (“postbreeding census”). In a
prebreeding census, the youngest age class is made up of individuals all
with age nearly one, which we designate as age one. In a postbreeding
census, the first age class would comprise newborn individuals, all of
age zero, the second class would comprise individuals of age exactly
one, etc. We refer to newborn individuals with a subscript of zero; as a
result, our postbreeding Leslie models will look different from most
textbooks, which assign newborns to “age class one” and use a subscript
of one.

2.1. Ensuring that the fertility coefficient spans a full timestep

In a table of demographic parameters (e.g., Table 1), age specific
survival and birth rates look as if they should make equivalent con-
tributions to a population model. But there is an important difference:
survival (which we denote σx for Leslie models and σi for Lefkovitch
models, where x is the age and i is the stage) represents the fraction of
individuals in a class (x or i) that survive for a full timestep, from time t
to time t+1. In contrast, the birth rate (which we denote bx for age-

structured demography and bi for stage-structured demography) is an
almost instantaneous event: it is the average number of offspring pro-
duced at time t by an individual that is alive at time t. It is tempting to
draw a life cycle graph like the one in Fig. 1a (commonly seen in the
literature). While this works as a conceptual diagram, translating it di-
rectly into an MPM by converting each arrow in the graph into a matrix
element is incorrect: each element in the matrix must span a timestep,
and bx does not accomplish that.

To get the timestep into the fertility coefficient, bx needs to be
multiplied by a survival term—either that of the parent or of the off-
spring. Failing to include survival term will inflate the fertility coeffi-
cients. For a prebreeding census model, the fertility coefficient is
Fx= bx σ0: the parent, in class x, produces bx offspring immediately
after the census, and then these offspring survive to the end of the
timestep at rate σ0—at which point they are age 1 (Fig. 1b). For an
annual timestep, Fx represents the number of one-year-olds next year
produced by an individual of age x this year.

In a postbreeding census, the parent (which will have just re-
produced if it is already an adult) must survive for a timestep, aging by
a timestep and possibly maturing into a new class, and then reproduces
with a birth rate appropriate to its class at the end of the timestep. If we
use x′ to denote the parent's class at time t+1, then the fertility
coefficient is = ′F σ bx x x (Fig. 1d). For an annual timestep, Fx is the
number of zero-year-olds (newborns) produced next year by an in-
dividual that was in class x this year. Properly accounting for x′ is a
separate challenge that we address in the next subsection.

2.2. Matching the age at first reproduction to the species’ life history

In an age-structured population, the lowest age with a non-zero
birth rate represents the age at first reproduction; we will call that age xm,
for “age at [reproductive] maturity.” In a prebreeding census model
(Fig. 1b), this does not present a conceptual challenge, as the newly
matured, about-to-reproduce-for-the-first-time individuals are already
classified as age xm, matching intuition. However, in a postbreeding
census model, the individuals who are age xm at the end of the timestep,
and have just reproduced for the first time, were age xm− 1 at the
beginning of the timestep. A model that has the first non-zero fertility
coefficient associated with age xm instead of xm− 1 (Fig. 1c) results in
the modeled age at first reproduction being xm+1, a year delay re-
lative to the actual life history.

The solution is to add a fertility coefficient linking age class xm− 1
to age class zero—the lower of the two fertility arrows in Fig. 1d.
Embracing this fertility coefficient requires overcoming cognitive dis-
sonance—“juveniles” are reproducing!—and we have found that stu-
dents—and perhaps other nonmodellers—actively resist this.

An alternative approach for postbreeding census Leslie models is to
change the indexing scheme, associating x with the individual's age at
the end of the timestep (rather than the age at the beginning of the
timestep, as we have done above). Then the individuals who will ma-
ture and reproduce before the next census are called age xm, and their

Table 1
A sample table of demographic parameters for a species that reaches sexual
maturity at age 3 (adult stage). Adults continue to survive and reproduce at
successive ages with the same survival and birth rates. Note that, because we
are using the stage-structured convention for assigning age class names (see
text), the table may look slightly different from those in many textbooks.

Age in years (x) Annual survival (σx) Birth rate (bx) Stage

0 0.2 0 Newborn
1 0.4 0 Juvenile
2 0.4 0 Juvenile
3 0.9 3 Adult
4 0.9 3 Adult
⋮ ⋮ ⋮ ⋮
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fertility is =F σ bˆx x xm m m (we use σ̂ for survival to clarify that it is a
differently indexed parameter from σ as used above). Thus, the cogni-
tive dissonance is finessed by “hiding” the fact that these individuals
started the timestep as juveniles. Indeed, many textbooks use this in-
dexing convention for age-structured models. However, this alternative
indexing convention cannot be maintained when moving from age-
structured to stage-structured models, as not all individuals that start
the timestep as juveniles will end it as adults.

So let us look at stage-structured models. The simplest stage-struc-
tured model has newborns, a nonreproductive juvenile class that spans
multiple timesteps, and reproductive adults (Fig. 2). Within the juvenile
class, some individuals remain juveniles in the next timestep (should
they survive; Juvenile–Juvenile transition), whereas others mature into
adults (Juvenile–Adult transition). If γJ is the fraction of surviving in-
dividuals that mature (“grow”) at the end of the timestep, then the
Juvenile–Juvenile transition is given by PJ= σJ (1− γJ) and the Juve-
nile–Adult transition is given by GJ= σJγJ. We will treat the estimation

of γJ in the next section. As in age-structured models, the fertility
coefficient needs to include a survival term, so Fig. 2a is incorrect. In a
prebreeding census model, the adult birth rate must be multiplied by
newborn survival, and newborns removed from the stage vector
(Fig. 2b), whereas in a postbreeding census model, the birth rate must
be multiplied by the parent's survival (Figs. 2c-d).

If the criterion for being classed as “adult” is that the individual can
reproduce, then just-matured adults should have non-zero fertility. In
the prebreeding census model (Fig. 2b), the individuals that have just
matured (made the transition from Juvenile to Adult) will reproduce at
the beginning of the next timestep. However, in the intuitive post-
breeding census model (Fig. 2c), the individuals that just matured won’t
reproduce until the end of the next timestep, a full timestep after their
transition to adulthood. In reality, the individuals that just made the
Juvenile–Adult transition were already adults at the just-passed
breeding season, and hence have had their first opportunity to re-
produce. To represent this, we need a fertility coefficient leading out of

Fig. 1. Four life cycle graphs that might (cor-
rectly or incorrectly) represent the demo-
graphic parameters in Table 1. (a) A “naive”
representation that associates each arrow with
a vital rate. This fails to account for the fact
that the fertility coefficients must span a
timestep and therefore include a survival term.
(b) A prebreeding census representation, in
which the youngest censused class is Age 1 and
the adult birth rate is multiplied by newborn
survival. (c) An “intuitive” postbreeding census
representation, in which the adult birth rate is
correctly multiplied by adult survival, but
which fails to account for the fact that Age 2
individuals will have reproduced (as adults)
just prior to the next census. (d) A correct
postbreeding census representation.

Fig. 2. Four life cycle graphs that might (cor-
rectly or incorrectly) represent stage structured
demographic parameters in Table 1. (a) A
“naive” representation that associates each
arrow with a vital rate. This fails to account for
the fact that the fertility coefficients must span
a timestep and therefore include a survival
term. (b) A prebreeding census representation,
in which the youngest censused class is the
juvenile stage and the adult birth rate is mul-
tiplied by newborn survival. (c) An “intuitive”
postbreeding census representation, in which
the adult birth rate is correctly multiplied by
adult survival, but which fails to account for
the fact that the maturing juveniles will have
reproduced (as adults) just prior to the next
census. (d) A correct postbreeding census re-
presentation.
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the juvenile class—FJ=GJ bA (Fig. 2d)—which again seems to defy
common sense. This is particularly well illustrated in Fig. 6.3 of Mills,
2013; Fig. 7.3 in the 2007 first edition). Although this is the textbook
solution, there are a number of other ways one might finesse this issue,
such as classifying individuals as adults at the beginning of the timestep
in which they mature, or creating a special “pre-adult” class between
juveniles and adults. However, these methods introduce additional
complications such as giving the maturing juveniles adult survival ra-
ther than juvenile survival (which might or might not be desirable), or
shortening the “juvenile” stage duration to account for the extra stage.

2.3. Ensuring that the mean time in each developmental stage matches the
species’ life history

The final challenge is associated with estimating γi, the fraction of
individuals growing (e.g., maturing) out of stage i. In many cases, the
goal is to combine information on stage-specific survival, often var-
iously collected, with knowledge about the stage duration (the number
of timesteps that individuals remain in a stage before maturing). If stage
durations are fixed (e.g., all individuals mature after two years as ju-
veniles, as in Table 1), then the goal is to create a “stage-from-age”
model (e.g., Ebert, 1998, Ch. 8) where the mean stage duration in the
model equals the fixed stage duration in the life history. If the real stage
durations are variable, then the goal is to create a model where the
mean stage duration in the model equals the mean stage duration in the
life history (in principle, the model should also match the variance in
stage duration, but this seems never to be done in practice).

Caswell (2001) has a section of his book describing various ways of
doing calculating γi to attain a specified stage duration, Ti. Depending
on the species’ life history, the stage duration might be fixed (all in-
dividuals mature after exactly Ti time steps in the stage) or variable
(there is a distribution of times to complete the stage), in which case the
mean stage duration needs to be calculated (this is not entirely
straightforward, a topic we do not take up here). When the life history
contains fixed stage durations, there is no single “best” approach, as the
stage-structured model will never match the age-structured model
completely. Nevertheless, the primary analyses performed on most
published MPMs are to calculate the asymptotic growth rate (λ1) and
the sensitivity of λ1 to underlying demographic parameters. For these
calculations, there is one (and only one) recipe to create a stage-
structured model that will, for any life history, generate the same re-
sults (at least to a very close approximation; we have not found theory
on this) as the equivalent age-structured model with Ti age classes
having the demography of stage i. As best we can tell, it was first in-
troduced by Caswell (1989), although its first application to an ecolo-
gical population may have been by Crowder et al. (1994).

The basic idea is that γi represents the fraction of individuals in the
stage that have spent enough time in the stage to mature. This, in turn,
depends on the (implicit) age structure within the stage. In general, this
age structure could have any form, depending on the recent history of
the population; the one well-defined case is when the population is at
the stable age/stage distribution. This is exactly the condition under
which λ1, the asymptotic growth rate, is the observed population
growth rate, λ(t). Under this condition, there are two factors that affect
the age distribution within the stage, and hence the fraction of in-
dividuals of an appropriate age to mature. The first is the stage-specific
mortality, which determines how a cohort shrinks as it ages within the
stage. The second is the asymptotic growth rate, which determines the
degree to which a cohort entering from the previous stage in one year is
larger or smaller than that of the previous year under the stable age or
stage distribution. This makes γi non-trivial to calculate, as the resulting
formula (Table 2) involves λ1, which can only be calculated once the
MPM has been parameterized! The solution is an iterative approach:
take an initial guess of λ1, calculate γi from the formula; calculate the
dominant eigenvalue of the resulting matrix; use that as a new guess for
λ1; and repeat until the value of λ1 stops changing. We will refer to this

as the “asymptotic age-within-stage structure” (AAS) model.
The iterative nature of the AAS model may be daunting to non-

modelers, especially those trained before the emergence of quantitative
ecology using R. Such researchers may be tempted by easier-to-calcu-
late formulas. Some discover a predecessor to the above Crowder et al.
approach that appears in Crouse et al. (1987) (Table 2). This formula is
complex-looking but straightforward to calculate, as it doesn’t require
iteration (it incorporates the within-cohort dynamics, but assumes that
λ1= 1). We will refer to this as the “stationary age-within-stage
structure” (SAS) model (where “stationary” means that the population
is neither growing nor declining). Although we have seen no comment
on this in the literature, the SAS model seems to be the correct choice
when the goal is to calculate statistics, such as the reproductive number
(R0), that involve following a cohort through the entire life cycle.

An even simpler approach is to say that, if the desired duration of
stage i is Ti timesteps, then the fraction maturing is 1/Ti (Caswell,
2001). This relationship between the mean residence time (stage
duration) and the fraction departing (maturing) is true for a simple
Markovian departure process (e.g., Gallager, 1995). However, for the
population process, different number of individuals are entering into
the stage as a population may be growing or declining and individuals
can also die before maturing. Consequently, this particular relationship
between the mean duration and fraction maturing is correct under
asymptotic conditions only if σi/λ1= 1. We will refer to this as the “flat
age-within-stage structure” (FAS) model.

A rather different approach to estimating γi does not explicitly at-
tempt to match the mean stage duration, but instead merely estimates γi
as the observed fraction of surviving individuals in the stage that ma-
ture to the next stage. This requires repeated observations of marked
individuals (capture histories), and might make use of tools such as
multistate capture-mark-recapture models (e.g., Fujiwara and Caswell,
2001). As long as the modeled age-within-stage distribution remains
the same as it was in the population during the observation period, then
the model will get the mean stage duration correct. However, the es-
timated γi may be biased if the age-within-stage distribution changes
unless the estimation process accounts for the age within stage of in-
dividuals. In particular, if γi is estimated by calculating the fraction of
individuals in stage i that were observed to mature in a given year, the
resulting model will accurately estimate λ1 only if the observed popu-
lation happened to be at the stable age structure. We will refer to this as
the “observed age-within-stage structure” (OAS) model.

Among the AAS, SAS, and FAS models, only the AAS model will
replicate λ1 and its sensitivities from the fully age-structured model. Of
course, a final approach, if the stage durations really are fixed, is to
“unroll” the stage, replacing the single stage class with Ti age classes
with identical survival coefficients (or, if the assumption of homo-
geneous survival within the stage was an approximation, with actual
age-specific survival coefficients). After analysis, the age classes can be
collapsed back to their stage to generate a stage structure or sensitivity
analyses that are stage-specific rather than age-specific.

Table 2
Three commonly used models for calculating γi, the fraction of individuals
maturing from stage i, when the stage is meant to have a fixed stage duration Ti.

Maturation model Fraction maturing from stage i (γi)

Asymptotic age-within-stage structure
(AAS)

−

∑ =
−

σi λ Ti

j
Ti σi λ j
( / 1) 1

0
1( / 1)

Stationary age-within-stage structure (SAS) −

∑ =
−

σi
Ti

j
Ti σi

j

1

0
1

Flat age-within-stage structure (FAS) 1/Ti
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3. Prevalence of construction errors in published MPMs

3.1. Methods

To evaluate the prevalence of these errors in published MPMs, we
examined a sample of the studies contained in the COMADRE animal
matrix model database (Salguero-Gómez et al., 2016). Using version
2.01 of the database, we subset the data to studies of nonhuman ani-
mals that had a DOI (as a simple filter to eliminate non-peer-reviewed
studies). This left 65 studies published prior to the year 2000, and
roughly twice that number published from 2000 to 2018. We retained
all of the 20th century studies and took a random sample of 60 of the
21st century studies. Although many studies publish multiple models,
representing different sites or species, we take the study as the unit of
observation, as a similar approach was usually taken in all the models
within a publication. Some of the studies did not actually contain MPMs
(the models in the COMADRE database were constructed by the CO-
MADRE digitization team based on information in the cited paper); we
eliminated these.

Using a haphazard subset of studies, we developed a protocol to
systematically assess each study (Appendix B). This protocol was ap-
plied by 4 of the authors. After initial training, consistency was ensured
by having all assessors independently apply the protocol to the same set
of papers until all were getting consistent results. If a question didn’t
apply (e.g., if it was not a stage-structure model), the answer was coded
“NA;” if the answer could not be determined from the information in
the publication, it was coded as “unknown.”

We coded a model as a postbreeding census if the first age or stage
class appeared to be newborn (e.g., eggs, neonates) or a small fraction
of a timestep old (e.g., hatchlings, larvae, fledglings). We coded a model
as a prebreeding census if the first age or stage class appeared to be one

timestep old (e.g., yearlings, juveniles, 1-year-olds). While a number of
other breeding models are possible, in practice nearly all models fell
into one of these categories.

We examined the MPM to determine whether the fertility coeffi-
cients contained survival terms, and if so, whether they were appro-
priate to the model type. If the appropriate survival term was not
present, we coded the model as “incorrect.”

To identify the first reproductive stage or age class, we examined
quantitative (e.g., life table) or qualitative (e.g., text description of the
life history) information about the species, as presented in the study.
For postbreeding census models, we then asked whether the individuals
maturing into that reproductive class had a nonzero fertility coefficient.
Models lacking this fertility coefficient were coded as “incorrect.”

For stage-structured models in which there was a target mean stage
duration, we examined textual model descriptions and symbolic re-
presentations of the model to determine whether it was constructed
using the AAS, SAS, FAS, or OAS formulations, or whether the stages
were “unrolled” into a Leslie matrix formulation, with the implicit age-
within-stage being made explicit. We examined the frequency of all
formulations, and coded AAS and unrolled models as “correct” from the
perspective of calculating the asymptotic growth rate, λ1.

For each of the three classes of errors, we calculated the overall
percentage of relevant studies (i.e., studies that had a structure poten-
tially subject to the error, and for which we could clearly determine
how the model was constructed) that made that error. We also used
logistic regression of error classification against publication year to
examine whether these errors had become more or less frequent over
time.

Fig. 3. Trends in matrix population model
construction errors through time. Trend line is
logistic regression; vertical lines represent the
data (jittered horizontally to prevent overlap).
(a) Frequency of errors in the fertility coeffi-
cient, among all studies. (b) Frequency of er-
rors in timing of first reproduction, among
studies with postbreeding census models.
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3.2. Results

The COMADRE Animal Matrix Database advertises itself as a re-
pository of peer-reviewed published MPMs (Salguero-Gómez et al.,
2016). Fine print in the user's guide (Anonymous, 2017) reveals that, in
some cases, the matrix does not actually appear in the cited paper, but
was provided to the database as a personal communication. However,
in the course of assessing articles from the database, we found many
examples where the original publication did not construct an MPM at
all. Instead, it appears that the database collators constructed MPMs
from published demographic data, such as life tables. Since our goal
was to assess the model construction accuracy of authors, not the da-
tabase maintainers, we excluded these studies from our analysis. This
removed 58 studies, leaving 67 for us to analyze.

We were able to unambiguously identify the components of the
fecundity term in 30 studies. 53% of these studies failed to include an
appropriate survival component in the fertility coefficients; 100% of
these errors were in postbreeding census models. The frequency of these
errors had no detectable trend over time (P=0.198; Fig. 3a).

The potential for missing the reproductive event associated with
first reaching reproductive age is only a feature of postbreeding census
models. Of the 24 studies in which we could unambiguously determine
both the last pre-reproductive stage or age class and in which we could
identify fertility coefficients, 67% made this error. The frequency of
these errors had no detectable trend over time (P=0.755; Fig. 3b).

In our random sample, only 19 studies included models having at
least one stage class that was meant to last for multiple timesteps. To
obtain a reasonable sample size, we augmented this with the haphazard
sample we had used to develop the evaluation protocol, which focused
on stage structured models published since 2010. This led to 14 in
which we were able to unambiguously classify the rule defining the
maturation rate out of the stage(s); however, the date range was too
narrow to evaluate trends through time. Of these, 64% did not use a
rule that would generate a value of λ1 that would match an age-struc-
tured model with the target mean stage duration (Fig. 4).

4. Consequences of incorrect MPM construction

We evaluate the impacts of these errors in MPM construction by
examining several endpoints that many analyses focus on: the asymp-
totic population growth rate (λ1), sensitivity analysis of λ1 to changes in
underlying vital rates, and life history statistics such as generation time.
We approach this evaluation through theoretical analysis (where fea-
sible and informative) and by examining two case studies: a lionfish

(Pterois sp.) model with very high population growth (Morris et al.,
2011) and a pair of American alligator (Alligator mississippiensis) models
that project rapidly declining and nearly constant population dynamics
(Dunham et al., 2014). These studies made all three of the errors de-
scribed above; we singled them out not because they are particularly
egregious (many other studies make these errors) but because the au-
thors did an exceptional job of describing the species’ life history, al-
lowing us to infer the model they meant to construct. We first focus on
the effects on λ1 and then evaluate the effects on other endpoints.

A matrix population model for lionfish was constructed by Morris
et al. (2011) to investigate the potential approaches for controlling this
invasive species. The modeled life history consisted of three stages
(larvae, juvenile, and adult), and time step of the model was one month.
The original model was a postbreeding census model, but it did not
include the survival of adults in the fertility rate. The average duration
of the juvenile stage was assumed to be 12 months in the model, and the
fertility coefficient for juveniles was set to zero. This meant that the
modeled lionfish take 14 months to reach first reproduction (one month
in larval stage, 12 months in juvenile stage, and one additional month
in fertility rate), in contrast to the target reproductive age of 12 months.
The authors used the FAS model for calculating the transition rates for
juveniles. The full model is described (as model L1) in Appendix A.

For the American alligator populations, Dunham et al. (2014) de-
veloped two stage-structured matrix population models to compare the
status of northern and southern populations, which differed in stage
durations and birth rates. The original models consisted of five stages
(eggs, larvae, juvenile, subadults, and adults), and the time step of the
model was one year. Similarly to the lionfish model, the alligator
models were postbreeding census models, but the authors did not in-
clude the survival of adults in the fertility rate. The first stage was egg
stage, but it only lasted for three months; therefore, there was clear
inconsistency in the time steps among stages. Dunham et al. (2014)
used the SAS model to calculate transition rates for juvenile and sub-
adult stages. The full models are described (as models AN1 and AS1) in
Appendix A.

In order to investigate the effects of the errors on λ1 with the lionfish
and American alligator matrices, we constructed stage structured po-
pulation matrices that corrected the three types of errors (models L5,
AN3, and AS3 in Appendix A). Then, we systematically inserted the
errors back to the model and developed the total of nine models for
comparison. These models vary in maturation models (AAS, SAS, FAS)
and the presence or absence of reproduction by maturing juveniles
(with adult survival in the fertility coefficient). When the reproduction
by maturing juveniles was absent, we also allowed adult survival in the

Fig. 4. Frequency of approaches for setting maturation rates from
stages with mean duration exceeding one timestep. See section 2.3
and Table 2 for descriptions of the approaches. Only the
“Unrolled” and “AAS” approaches generate mean stage durations
that match the target life history when the population is at the
stable stage distribution.
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fertility coefficient to be absent.

4.1. Failure to include survival terms in the fertility coefficients

Failing to include survival terms in the fertility coefficients will
make those coefficients too large (since survival is less than one). This
will lead to an overestimate of λ1. This error most often occurs in
postbreeding census models, and will be approximately

∑≈ −λ σ F S( ) (1 ) ,
x

x x Fsurv 1 x�

where SFx is the sensitivity of λ1 to the fertility coefficient Fx. Thus, if
the survival terms are close to one (as they often are for adults) and the
sensitivity of the asymptotic growth rate to survival is small (as it often
is), then this error should generally be fairly small.

The fertility coefficients in both lionfish and alligator models in the
original papers omitted the survival of adults. The effects of these errors
can be observed by comparing open (with survival) and filled (without
survival) circles in Fig. 5. When the survival rate was missing in the
fertility coefficient, asymptotic population growth rate was always
overestimated. For both lionfish and alligator populations, the survival
rate over the time step of a model was high (0.95 per month for lionfish
and 0.83 per year for alligator). Therefore, the effects were relatively
minor. However, when we deal with organisms with low adult survival
rate or when the time step is extended (e.g. the time step is changed to 1
year in the lionfish model), a fertility coefficient could be substantially
inflated without adult survival rate being included, causing biases in
demographic statistics. The effect was slightly higher for the southern
population of American alligator than the northern population. This
resulted from a larger fecundity associated with the southern popula-
tion (5.98 individuals per year) compared with the northern population
(2.37 individuals per year), suggesting the error may be magnified for
organisms with high fecundity.

4.2. Failure to allow individuals to reproduce when they first reach
reproductive age

The failure to allow individuals to reproduce when they first reach
reproductive age will have two consequences: R0, the net reproductive
rate, will be reduced slightly; and the mean generation time, TG, will be
increased by a timestep. Both effects contribute to an underestimate of
λ1; the error is approximately

≈ − +λ R σ R( ) ( ) ,T
A

T
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where σA is the one timestep survival of the newly matured class. This
doesn’t simplify easily, but it is clearly largest when the generation time
is short or R0 is large.

The original lionfish and alligator models did not include a fertility

coefficient associated with individuals transitioning into an adult stage.
In all cases, the missing fertility coefficient caused an underestimation
of the asymptotic population growth rate. The effects of the missing
fertility coefficient depend on the life history strategy of the organisms.
For example, the effects were greater for the southern alligator popu-
lation than northern alligator population (compare open circles and
squares in Fig. 5) because the southern population had a shorter
duration from egg to adult stages (resulting in smaller generation time)
and higher birth rate (resulting in higher R0) than the northern popu-
lation. Both of these would cause the reproduction in the first year to be
smaller, reducing the effects of the missing fertility coefficient to be
small. The effects of the missing fertility coefficient is expected to be
large for species for which the contribution of offspring from in-
dividuals reproducing the first time is large.

4.3. Failure to use AAS model for transition rate calculation

If the stage durations are fixed, such that a Leslie matrix model, with
all age classes within the stage having the same survival, is the best
model, then only the AAS stage-structured model will give the ap-
proximately correct λ1 in general. The SAS model will be correct only if
λ1= 1; if λ1 > 1, then the maturation fraction will be too large and λ1
will be overestimated; the opposite will be true if λ1 < 1. Thus the SAS
model will bias λ1 away from one. The bias from FAS model is similar,
except that the critical value for λ1 is σi. Thus, if there is more than one
multi-timestep stage with different values of σi, and λ1 is intermediate
between these values, then the direction of bias introduced by the FAS
model is unpredictable. The impact of using the observed transition
rates is likely to be highly variable, depending on the nature of the
deviations between the age structure when the population was ob-
served and the asymptotic age structure.

The use of different maturation models (Table 2) has substantial
effects on λ1 (Fig. 5). In particular, the asymptotic population growth
rate was substantially overestimated under the FAS models compared
with the AAS models. On the other hand, SAS models overestimated λ1
when λ1 > 1 (lionfish and southern population of American alligator)
compared with AAS models, but it underestimated when λ1 < 1
(northern population of American alligator). In general, the SAS model
magnifies the deviation in asymptotic population growth rate from 1, as
predicted by the theory above.

4.4. Effects of errors on sensitivity and elasticity analysis

A common goal of constructing a matrix population model is to
examine the sensitivity or elasticity of λ1 to underlying demographic
parameters, often in the service of informing population management
or understanding life history evolution. Predicting the effects of MPM
construction errors on these quantities requires information about the

Fig. 5. Asymptotic growth rate (λ1) for various
prebreeding census MPMs of the lionfish and
alligator populations. Factors varied include
three maturation models (AAS, SAS, FAS), the
presence (squares) or absence (circles) of re-
production by maturing juveniles, and the
presence (open symbols) or absence (filled
symbols) of adult survival included in the fer-
tility coefficient. The correct model is the open
square with the AAS maturation model.
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second derivative of λ1 with respect to model parameters (Caswell,
1996), the theory of which seems to only have been developed for
Lefkovitch models. In a Lefkovitch model, the second derivative of λ1
with respect to diagonal matrix elements is positive, and with respect to
off-diagonal elements seems to be generally negative (McCarthy et al.,
2008). This suggests that overestimates of the maturation rate should
reduce the sensitivity of λ1 to both stasis and growth terms, thus re-
ducing the overall sensitivity of λ1 to survival. In addition, failing to
include survival terms in the fertility coefficients will necessarily lead to
underestimates of the sensitivity (and elasticity) of λ1 to survival.

To look at the specific effects on elasticities to particular para-
meters, we calculated the elasticities of λ1 to stage-specific survival
across the same suite of error combinations as we did for λ1. For the
lionfish population, the choice of maturation model had a substantial
impact on the elasticity of λ1 to juvenile survival, and the rank order of
elasticities to juvenile and adult survival was reversed by the FAS model
(Fig. 6a). The impacts of errors in the fertility coefficients had a very
modest impact on elasticities (Fig. 6b). In contrast, the elasticities of λ1
to stage-specific survival in the alligator populations were nearly un-
affected by any of the matrix construction errors (results not shown).

4.5. Effects of errors on other endpoints

As described above, the three common errors in constructing matrix
population models can affect the population growth rate. However,
calculating other endpoints such as stable stage distribution, re-
productive value, sensitivity, elasticity, generation time, and damping
ratio are often the primary goal of constructing an MPM, especially for
management applications or studies of life history theory. Here, we
investigate the effects of the errors on these endpoints using matrices
for the lionfish and two populations of American alligators.

We started with the original matrices as “baseline” models, and
constructed models that fixed various subsets of the focal errors to see
how these errors affect the model projections and conclusions. For the
lionfish population, we developed four stage-structured population
models that gradually correct for some or all of the problems and three
age-structured matrices, of which two include the original errors asso-
ciated with the fertility coefficients (Appendix A). For the American
alligator populations, we developed two additional stage-structured
models that correct some or all of the problems and three age-struc-
tured matrices, of which two include the original errors associated with
the fertility coefficients, for each population. All of these models were
used to calculate λ1, stable stage distribution, reproductive value,
sensitivity and elasticity of λ1 to stage-specific survival rate and fe-
cundity, damping ratio, and generation time. The full results are shown
in Appendix A; here, we highlight some of the key outcomes.

The effects of failure to include survival terms in the fertility coef-
ficients can be observed by comparing the age-structured matrices with
and without the correction. The first set of age-structured matrices (L6,

AN4, AS4) included corrected fertility coefficients with corresponding
survival rates multiplied to the original fertility. When the survival rate
was missing in the fertility coefficient, then the adult proportion of the
stable stage distribution was underestimated (Figs. A.2. and A.9) and
the adult reproductive value was overestimated (Figs. A.8 and A.16).
These effects resulted from the fact the models mistakenly assumed
more offspring were born, inflating the number of younger individuals.

The effects of the missing fertility coefficient can be found by
comparing models L2 and L3 (stage-structured lionfish models), L7 and
L8 (age-structured lionfish models), AN5 and AN6 (age-structured al-
ligator models for northern population), and AS5 and AS6 (age-struc-
tured alligator models for southern population). In all cases, the missing
fertility coefficient caused an overestimation of the adult proportion of
the stable stage distribution (Figs. A.2 and A.9) and an underestimation
of adult reproductive value (Figs. A.3 and A.10).

The effects of using different maturation models can be observed by
comparing the FAS (L3), SAS (L4), AAS (L5), and age-structured (L8)
models for lionfish populations. Although the stable stage distributions
of adults under the four models appear similar (Fig. A.2), the juvenile
proportion in the stable stage distributions were underestimated with
the FAS and SAS models compared with the age structured models (Fig.
A.2). The reproductive value of adults were substantially under-
estimated with the FAS and SAS models compared with the AAS or age-
structured models.

There are a variety of ways to define generation time in demo-
graphic studies (Coale, 1972). In this study, we used the mean age of
mothers to represent the generation time, applying formulas developed
by Bienvenu and Legendre (2015), which is a function of elasticity and
fertility coefficients. Therefore, any bias associated with these two
quantities affects the estimated generation time (Figs. A.7 and A.16).
We found substantial and variable impacts of MPM construction errors
on the estimated generation time. In addition, the estimated generation
time tends to be biased with stage-structured models (Fujiwara and
Diaz-Lopez, 2017). These results suggest that the calculation of gen-
eration time needs to be done carefully.

The damping ratio is given by λ λ/| |1 2 , where λ1 is the eigenvalue of
the largest magnitude and λ2 is that of the second largest, and it mea-
sures how quickly transient dynamics dissipate over time. If λ2 were not
affected by the errors in constructing population matrices, then the
damping ratio and the asymptotic population growth rate should cor-
relate with each other. The fact they deviate from each other (cf. Figs.
A.1 and A.5, Figs. A.8 and A.15) suggests the estimation of λ2 is also
affected by the errors in constructing population matrices.

5. Discussion

We have described and analyzed three errors that are sometimes
made when constructing animal matrix population models. These er-
rors, involving the fertility coefficients and the maturation rates, cause

Fig. 6. Effects of MPM construction errors on the elasticity of λ1 to stage-specific survival in the lionfish model. (a) Contrasts among the three maturation models,
using correct values for the fertility coefficients. (b) Contrasts between approaches to fertility coefficient constructon, using the (correct) AAS maturation model.
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the MPM to misrepresent the intended life history of the species. Based
on our analysis of the COMADRE animal matrix model database
(Salguero-Gómez et al., 2016), we find that these errors are quite
common: 60% of the published models that we evaluated have in-
correct fertility coefficients (missing survival component, failure to
reproduce upon maturation, or both). Furthermore, there is no evidence
that these errors in the fertility coefficient are becoming less frequent
through time (Fig. 3). Among the (admittedly small) sample of stage-
structured models, fully half calculated the maturation rate in a way
that would result in incorrect estimates of the asymptotic population
growth rate.

These errors affect the value of quantities commonly calculated
from MPMs, such as asymptotic growth rate and stage structure, elas-
ticity analysis, generation time, and characteristics of transient dy-
namics. We can make a few generalizations about these effects. First,
the two types of errors in the fertility coefficients have opposite effects
on estimates of λ1, the asymptotic population growth rate. Second,
incorrect specification of the maturation rate tends to have a larger
impact on these statistics than do the other errors. Third, when the age
at maturation is fixed (so that a Leslie model is the most appropriate
representation) even a stage-structured model that correctly matches
the mean time to maturity gives incorrect transient dynamics and
generation time. Finally, most (but not all) of these errors are larger if
λ1 is far from one.

Nevertheless, the case studies we analyzed suggest that many ana-
lyses conducted with flawed MPMs may have broad validity. For ex-
ample, in none of the case studies did the errors introduce mis-
classifications of population decline versus increase. Furthermore,
errors in λ1 are generally modest, except when an inappropriate ma-
turation model is used (Fig. 5). Finally, the rank orders in stage-specific
values in the stable stage and reproductive value distributions were
unaffected by the matrix construction errors. However, we have only a
limited sample of case studies, and for some outcomes even this small
sample gives inconsistent results for the direction or magnitude of
biases introduced by the MPM construction errors. For example, the
rank order of the elasticities of lambda to the vital rates might (alli-
gator) or might not (lionfish) be robust to model errors. While a more
complete understanding of these biases might be derived by analyzing
more models, spanning a range of life histories, ecological under-
standing and management decisions would be better served by con-
structing the models correctly in the first place.

Why do these errors occur? The failure to include a survival com-
ponent in the fertility coefficient is most surprising, as all textbooks
make clear statements about the need for this. We suspect that the
causes are threefold. First, different texts use different words to describe
the birth rate (bx)—e.g., the “maternity function”—and the fertility
coefficient (Fx). For the latter, “fertility,” “fecundity,” and “reproduc-
tion” are used to represent Fx in different texts, and the terms have
different scientific meanings in human demography and various fields
of animal ecology. In particular, many animal ecologists use the term
“fertility” to refer to the potential to have offspring, and so associate it
with bx rather than Fx (in contrast, demographers refer to this as “fe-
cundity”). The use of a linguistically vague common language word to
refer to a precisely defined model element creates the condition for
nonmodellers to redefine the model element to match their under-
standing of the word, even when the textbook says otherwise. Second,
the visual similarity between the conceptual life cycle graph (Figs. 1a, 2
a) and the life cycle graph that actually corresponds to the matrix may
make it easy to forget to take the extra step of correctly formulating the
fertility arrows. Finally, many nonmodellers seem to struggle to grasp
the importance of having every transition in the MPM represent the
same timestep. This may be a threshold concept (i.e., an idea that is
essential to mastery of a field but that is troublesome to students be-
cause it appears to violate common sense intuition; Cousin, 2006;
Meyer and Land, 2006), although students find it more to be un-
necessary rather than counter-intuitive.

The need to include reproduction when an individual first matures,
which is solely found in postbreeding census models, seems to be a clear
example of a threshold concept. Here, the challenge is the intuition that
no juveniles should have positive fertility coefficients. The challenge is
probably exacerbated by the fact that most textbooks devote the most
thorough explanation of MPM construction to age-structured models
(where the confusing nature of postbreeding census models can be
hidden by labeling an individual's age class as its age at its next
birthday). However, when these textbooks move to a (usually much
briefer) description of stage-structured models, where this solution does
not work, they generally switch notation without comment (a notable
exception is Mills, 2007, 2013, who calls newborns “Nzero” for all
models, and provides a very clear graphical depiction of both age-
structured and stage-structured models).

The poor choice of maturation model is probably most easily un-
derstood. Most textbooks do not treat this issue, and those that do (e.g.,
Caswell, 2001; Ebert, 1998) tend to be more mathematical than many
nonmodellers may be comfortable with. Furthermore, they do not in-
clude clear guidance on which approach is most suitable for a given
modeling objective.

How can the prevalence of these errors in MPM construction be
reduced in the future? The standard recommendation from experts
(including both reviewers of this paper) is that biologists should think
carefully about what happens to individuals over the course of a
timestep, think carefully about how the data relate to these events, and
assemble everything in such a way that each transition spans a time-
step. In essence, this advice boils down to “think like a modeler.” In our
experience, non-modelers require a lot of interactive tutorial examples
to really learn this process. Current textbooks do not provide this; the
best published examples we have seen are in articles describing mod-
eling approaches for migratory species (e.g., Fig. 28.2 of Runge and
Marra, 2005). It is impossible to know how many instructors provide
effective classroom teaching on this topic, but our analysis of the CO-
MADRE database indicates that a substantial number of biologists have
not adequately internalized this message.

Clearly, there is a role for improved training materials (see below).
In the meantime, is there anything that biologists seeking to construct
an MPM for their species can do to increase the odds of constructing it
correctly? Our analyses suggest two purely mechanical approaches that
might substantially reduce error rates.

First, we note that none of the prebreeding census MPMs that we
examined had errors in the fertility coefficients. While we cannot assign
causality to this outcome based simply on the data, prebreeding models
simply do not require dealing with the troublesome reproductive
transition by maturing juveniles, and it may be that the fact that
newborn survival is “left over” after constructing the survival transi-
tions encourages a closer look at the fertility coefficient. It is also im-
portant to recognize that, if one has information on age- or stage-spe-
cific birth rates and annual survival, then that information can be used
to create either a prebreeding or a postbreeding census model (e.g.,
compare Figs. 1b and 1 d, noticing that the same parameters occur in
both). In particular, unless there is large age-dependent variation in
mortality through the breeding season, it doesn’t matter whether the
survival is measured from the end of one breeding season to the end of
the next, or from the beginning of one breeding season to the beginning
of the next. The key is that the survival be measured over a full timestep
(e.g., year). Furthermore, the prebreeding and postbreeding censuses
are different views into the same model. In particular, the estimate of λ1
and the elasticities of λ1 to underlying demographic parameters will be
identical between the two representations.

Thus, we recommend that, even if the ultimate goal is a post-
breeding census model, the model be constructed using the prebreeding
framework. This reduces the likelihood of missing a survival term in the
fecundity coefficient (as the newborn survival has to be put some-
where), and eliminates the non-intuitive fertility coefficients associated
with transitions into reproductive classes. If a postbreeding census
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model is desired (e.g., so that model output can be compared with
census data that includes newborns), then the prebreeding census
model can be used to check the accuracy of the independently created
postbreeding census model (e.g., λ1 should be identical for the two
matrices). In addition, for the simple sorts of models represented by
Figs. 1 and 2 (e.g., without clonal reproduction or multiple genders),
the conversion of a matrix from a prebreeding representation to a
postbreeding representation is a purely mechanical process that can be
automated in software. The pre_to_post function in the mpmtools R
package (Kendall, 2019) provides an example of this.

Second, we found that most models in which a conceptually age-
structured population had been collapsed into a small number of stages,
each with a well-defined mean stage duration, were constructed in ways
that would fail to reproduce the asymptotic growth rate—indeed, in our
case studies this error had the largest impact on λ1 estimates. We in-
terpret this as being because the best stage-based approximation—the
AAS model—is both conceptually and computationally challenging to
produce. For simple life histories, we recommend using the mpmtools
R package (Kendall, 2019) to automatically construct an AAS model
from information on stage-specific demography and duration. More
generally, if the among-individual stage variation is not too great (i.e.,
all individuals mature at about the same age), then we recommend that
the stage be “unrolled” into a Leslie matrix model. This creates a model
that makes correct projections under both transient and asymptotic
conditions, and can be used both for projecting the population and for
calculating life history statistics. This also allows the demographic rates
to vary with age within a stage (e.g., for species such as fish with size-
dependent demography), avoiding further pitfalls highlighted by
Fujiwara and Diaz-Lopez (2017). We recognize that in long-lived spe-
cies the results of sensitivity and elasticity analyses are often more
useful when aggregated by stage (Fujiwara and Diaz-Lopez, 2017); we
recommend performing this aggregation after analyzing the age-struc-
tured model (e.g., by summing the elasticities associated with all the
age classes within a stage).

Another reason for preferring age-structured to stage-structured
models (when appropriate) is for the accurate calculation of generation
time. Stage structured models in general are not particularly suitable
for estimating generation time (Fujiwara and Diaz-Lopez, 2017;
Lebreton, 2005). This is because stage structured modes lump in-
dividuals in multiple age classes into a single stage treating them
equally. This is a reasonable simplification if we are only calculating
asymptotic population growth rate and stable stage distribution.
However, all individuals, regardless of duration of time spent in a stage,
are treated equally to have the same rate of transitioning to another
stage. This has a large effect on generation time estimation. Therefore,
it is strongly recommended that generation time calculation should be
based on an age structured model unless stage transitions are truly age-
independent.

When the stage durations are not fixed, a more advanced solution is
to develop a model that incorporates both age and stage (Caswell et al.,
2018; Lebreton, 2005). In this case, an accurate characterization of the
distribution of stage durations can be critical for many analytic out-
comes, as described by de Valpine et al. (2014) for continuous-time
models. However, estimating the parameters of such distributions can
be challenging (see, e.g., the derivation of parameters for time to next
breeding in sea turtles by Ebert, 1998).

Experts can also help, by developing handbooks and training ma-
terials that are both comprehensive and clear to non-modelers, who are
experts in biology and ecology but novices at modeling. The compre-
hensiveness requires, in part, a thorough treatment of stage-structured
models (which are not described as completely as age-structured
models in many texts), as well as a comprehensive discussion of the
consequences of various choices of when the census should occur in the
model. The clarity certainly requires consistent notation and termi-
nology, as well as attention to the knowledge level of the audience, but
that will probably not be sufficient. Educational research suggests that

when students arrive with misconceptions, clear and accessible ex-
positions of correct principles do not lead to learning, as the students do
not pay sufficient attention to recognize the difference between the
exposition and their prior belief; better learning occurs when they are
first presented with the misconception and then led to an understanding
of why it is wrong (Muller et al., 2008a,b). The biologically-based in-
tuitions that underlay incorrect formulations of MPMs may have the
strength of scientific misconceptions, in which case the training mate-
rial will need to actively uproot them before a better understanding of
the model requirements can be learned.

One pedagogical approach that may be helpful is to build “seasonal”
sub-models, and use matrix multiplication to generate the integration
over the full timestep (rather than requiring the integration to be done
in the brain of the model builder). Williams et al. (2002) do this (for
age-structured models only; section 8.4.2), creating “survivorship” and
“reproduction” matrices and showing how they can be combined to
produce both prebreeding and postbreeding census models. Periodic
matrix models are generally presented as advanced topics (the notation
in Caswell's 2001 treatment of the topic is intimidating to non-mode-
lers), and are typically applied to either annual species or species that
breed continuously (at seasonally varying rates) throughout the year.
Nevertheless, a more accessible presentation of periodic matrix models,
showing how they can be used to integrate demographic processes that
happen at different points in the annual cycle, might help alleviate
many of the problems identified here. Such an approach to MPM con-
struction might also encourage the development of models that more
fully incorporate the richness of within-year life history processes.

Experts must also address the fact that many creators of animal
MPMs are not comfortable with even the simple programming required
to calculate quantities like the AAS maturation coefficient. While there
are tools for easing the analysis an MPM once the matrix has been
constructed (e.g., Stubben and Milligan, 2007), little is available to help
non-programmers construct complex MPMs. A set of such tools, in a
software environment with which many ecologists are familiar, such as
R, would be helpful, especially in connection with a tutorial.

We have focused here on three particularly common errors in MPM
construction. However, other problematic errors may occur. For ex-
ample, nearly all animal MPMs are presented as birth-pulse models, but
in some cases reproduction is continuous over all or a significant frac-
tion of the model timestep. The lionfish model analyzed here illustrates
this: lionfish are described as laying a batch of eggs every 3 days, but by
building a birth-pulse model with a one-month timestep, Morris et al.
(2011) fail to account for the fact that the total monthly egg production
is reduced by parental mortality during the timestep, or by the fact that
age classes comprise a range of ages. Both of these issues are addressed
by formulas for birth-flow models, but such models are vanishingly rare
in ecological applications. Another challenge arises when demography
is heterogeneous within a stage class, as when individuals grow con-
tinuously through life and survival and birth rates are size dependent.
Fujiwara and Diaz-Lopez (2017) have studied this and provide new
recommendations for how best to calculate “average” demographic
rates within a heterogeneous stage class.

While our analysis has focused on animal MPMs, we note that plant
MPMs may be subject to similar errors as those described here. In ad-
dition, the construction of size-structured MPMs faces challenges that
are qualitatively similar to those for stage-structured MPMs, while
differing in detail; and ambiguities around the treatment of seeds and
seed banks create the potential for additional errors in the fertility
coefficient. Thus, a systematic analysis of published plant MPMs may be
warranted.

In conclusion, we have found that errors in constructing animal
population models are widespread, that these errors can have sub-
stantial quantitative (e.g., mis-estimation of the asymptotic growth
rate, λ1) and qualitative (e.g., mis-ranking the elasticity of λ1 to various
vital rates) consequences for the conclusions reached by the MPM
analysis. This is bad news, and shows that we cannot count on peer
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review to ensure correct model construction. While some analysis
endpoints seem to be broadly robust to matrix construction errors
(especially errors in the fertility coefficient), there may be some cases in
which the scientific conclusions or management recommendations
supported by those models could be flawed. Furthermore, comparative
studies that use the COMADRE database to obtain a “representative
sample” of animal demography (e.g., Paniw et al., 2018) will be subject
to extra “noise” (that may bias parameter estimates) unless erroneous
models are corrected or excluded from the analysis. Fortunately, pub-
lications often contain enough life history information to allow the
model to be revised to more closely match the species’ biology, allowing
the conclusions of particular studies to be updated and comprehensive
databases to be improved.
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