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Abstract

Valiant [1] proposed to treat Darwinian evolution as a special kind of computational learning
from statistical queries. The statistical queries represent a genotype’s fitness over a distribution
of challenges. And this distribution of challenges along with the best response to them specify
a given abiotic environment or static fitness landscape. Valiant’s model distinguished families
of environments that are “adaptable-to” from those that are not. But this model of evolution
omits the vital ecological interactions between different evolving agents – it neglects the rich
biotic environment that is central to the struggle for existence.

In this article, I extend algorithmic Darwinism to include the ecological dynamics of frequency-
dependent selection as a population-dependent bias to the distribution of challenges that specify
an environment. This extended algorithmic Darwinism replaces simple invasion of wild-type by
a mutant-type of higher scalar fitness with an evolutionary game between wild-type and mutant-
type based on their frequency-dependent fitness function. To analyze this model, I develop a
game landscape view of evolution, as a generalization of the classic fitness landscape approach
that is popular in biology.

I show that this model of eco-evo dynamics on game landscapes can provide an exponential
speed-up over the purely evolutionary dynamics of the strict algorithmic Darwinism proposed
by Valiant. In particular, I prove that the noisy-Parity environment – which is known to be not
adaptable-to under strict algorithmic Darwinism (and conjectured to be not PAC-learnable) –
is adaptable-to by eco-evo dynamics. Thus, the ecology of frequency-dependent selection does
not just increase the tempo of evolution, but fundamentally transforms its mode.

The eco-evo dynamic for adapting to the noisy-Parity environment proceeds by two stages:
(1) a quick stage of point-mutations that moves the population to one of exponentially many
local fitness peaks; followed by (2) a slower stage where each ‘step’ follows a double-mutation by
a point-mutation. This second stage allows the population to hop between local fitness peaks
to reach the unique global fitness peak in polynomial time. The evolutionary game dynamics
of finite populations are essential for finding a short adaptive path to the global fitness peak
during the second stage of the adaptation process. This highlights the rich interface between
computational learning theory, evolutionary games, and long-term evolution.
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Evolution is an algorithm. As such, evolution is subject to the same constraints of computational
complexity as all algorithms [1–3]. But evolution is not any algorithm. It is a kind of local search
algorithm acting on the signal of fitness. By better understanding the kinds of algorithms that are
evolutionary dynamics, we can better understand the power and limits of evolution in nature.

In this article, I will show that adding ecological interactions – conceived of as frequency-
dependent selection – to Valiant [1]’s frequency-independent evolution has a qualitatively transfor-
mative effect on evolutionary dynamics. Ecology provides a fundamentally different computational
resource for evolution that allows exponential speed-ups in the time it takes to adapt to certain
environments. This is not a speed-up in the rate of evolution, but a fundamental shift in how
evolution computes and thus which ‘problems’ it can ‘solve’: i.e. which kinds of environments
populations can or cannot become well-adapted to. Ecology does not make evolution take steps
faster along an exponentially long adaptive paths but instead ecology helps evolution find a short
path. Thus, ecology does not just increase the tempo of evolution, but fundamentally transforms
its mode. To demonstrate this, I will focus on a family of highly non-linear environments – the
noisy-Parity problem defined more formally in Section 4 – that evolution on its own (i.e. without
ecology) provably cannot adapt to.

Valiant [1]’s strict algorithmic Darwinism (described in Section 1) formalizes many of our intu-
itions about evolution and allows for the analysis of a richer set of evolutionary dynamics than most
other models. But it lacks an important feedback mechanisms found in nature: eco-evolutionary
feedback. I will introduce this feedback as part of the extended algorithmic Darwinism in Section 2.

From first glance, it might seem like ecology would not have a drastic effect on the adaptive power
of evolution: especially in settings when ecological dynamics are much faster than evolutionary
dynamics. This is probably why this feedback was often ignored or minimized in early models
of the modern evolutionary synthesis. Even today, much of the work on eco-evo is motivated by
settings where ecology and evolution are on similar timescales [4, 5]. If ecological interactions are
on a much faster timescale than evolution, it seems like ecological dynamics can be “absorbed”
into a single update of evolutionary dynamics. This might make one “step” of evolution faster
or slower, but running faster in no particular direction or along an exponentially long path is not
helpful. Thus, it feels intuitive that short-bursts of ecological interaction within a single step of
evolution cannot fundamentally change what sort of environments populations can adapt to. This
intuition is wrong.

Even if ecological dynamics happen on a much faster timescale than evolution, I will show that
the feedback between ecology and evolution due to brief bursts of frequency-dependent selection can
help eco-evolutionary dynamics find short adaptive paths that purely evolutionary dynamics cannot
find. I will show this by concentrating on if populations can find the peak of the needle-in-a-haystack
fitness landscape correspond to the Parity environment. In Section 4, I will define the Parity
environment and rehearse a standard hardness argument to show that under strict algorithmic
Darwinism, the population cannot adapt to this environment in polynomial time (regardless of
which evolutionary dynamic it follows). But in Section 5, I will show that the simple mutation-
limited strong-selection dynamics from Section 3 are sufficient for the population to adapt to the
parity environment in polynomial time under extended algorithmic Darwinism.

From the perspective of computational learning theory, this exponential speed up from ecol-
ogy is due to the ability of the ecological dynamics of the evolving population to bias the chal-
lenge/example distribution in such a way that creates a new second-order gradient for evolution to
follow. This allows for a much richer set of concept classes to be learnable by evolution (or in more
biological terminology, a richer set of environments that are adaptable-to). It remains to be seen
just how much more computationally powerful eco-evolutionary dynamics can be in comparison to
just evolutionary dynamics.
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1 Strict algorithmic Darwinism: abiotic/prebiotic interactions

To represent what evolution can achieve just by natural selection on frequency-independent fitness,
I will focus on Valiant’s model of strict algorithmic Darwinism [1, 6]. In my presentation, I will
change some of the terminology to more closely correspond to biologists. In particular, ‘evolvability’
has a rich meaning in the biology literature that does not always correspond to Valiant [1]’s use
of the word. So my primary change will be to use statements like ‘a family of environments is
adaptable-to’ instead of ‘a concept class is evolvable’ and correspondingly I will refer to the model
as ‘(strict) algorithmic Darwinism’ instead of ‘evolvability’. These are only changes in terminology
for talking about the same mathematical model.

Abiotic environment ((D, f)): Let us consider an abiotic world filled with a primordial soup
of complex polymers. For simplicity, let us represent each possible polymer by some string z ∈ Z =
{0, 1}n. Let D ∈ ∆{0,1}n be the relative distribution of these polymers in the soup. We can think
of each polymer z as a ‘challenge’ sampled from D. Let us suppose that for each polymer z there
are exactly two ways {0, 1} to interact with it and one of these ways is ‘correct’ and the other is
‘incorrect’ – where the correct way liberate useful energy and the incorrect way spoils the polymer.
Let the ideal function f : {0, 1}n → {0, 1} hold the ‘correct’ response to each polymer. Thus, the
pair (D, f) can be seen as a representation of a particular abiotic environment.

Genotypes (x) and phenotypes (gx): A primordial organism has to encounter these abiotic
challenges and respond. We can summarize the organism’s responses as a (behavioral) phenotype
gx : {0, 1}n → {0, 1} that is encoded by a genotype x ∈ X = {0, 1}n. In general, there will be many
particular token organisms that all have the same genotype x and phenotype gx.

Fitness (wx and ŵx): We can imagine a specific token organism of type y that is floating in
this primordial soup and bumping into polymers as sampling a challenge z ∈ D. If the response of
the organism to this challenge (as given by gx(z)) is the ‘correct’ response (as given by f(z)) then
the organism gets a small reproductive reward (if gx(z) = f(z)) and otherwise it gets no reward (if
gx(z) 6= f(z)).

Of course, evolution itself does not act on tokens but rather on types [7, 8]. Evolution can only
respond to statistical properties of many individuals (tokens) of the same type, each encountering
many individual challenges sampled from D. Moreover, evolution cannot access arbitrary statistical
properties of D – as Kearns [9]’s statistical query model allows – but instead has to use the

particular statistical signal of (type) fitness. Formally, we can define w
(D,f)
z as the true fitness of z

in environment (D, f):

w(D,f)
x = Ez∼D(f(z) = gx(z)) (1)

which I will also write as wx when the environment (D, f) is obvious from context. A real pop-
ulation, however, will not have direct access to wx and instead will have to rely on taking the

average fitness over a random sample S ∼ D of sM many challenges. I will use ŵ
(D,f)
x to repre-

sent the empirical fitness estimate of the true fitness w
(D,f)
x . Throughout the analysis, it will be

useful to upper bound the error between the empirical and true fitness value by a tolerance τ as

|ŵ(D,f)
x − w(D,f)

x | ≤ τ .
The exact value of τ depends on the population size M and then number of challenges per token

s. If we wanted to ensure a tolerance of τ with high probability then we should set s ∈ Θ( 1
τ2

).
Although the above is defined for an f that is error-free, with a reasonable number of extra random
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queries, this tolerance can be ensured even if f is sometimes corrupted by noise (i.e. an organism
having a small probability of getting a fitness bonus even if it responded to the challenge incorrectly
or not getting fitness even if it responded correctly). [9] Thus, we can use the same analysis of
adaptability for both standard environments and noisy environments.

Fitness landscape (w or W ) view of strict algorithmic Darwinism: It is also possible to
express strict algorithmic Darwinism in the long established metaphor of fitness landscapes [10]
by setting w(x) = wx. A point x ∈ X is said to be a local peak if all its point-mutation (single
bit flip) neighbours (N(x)) are non-improving (i.e. ∀y ∈ N(x) w(x) ≥ w(y)) and a global peak
if all points are non-improving. For multiplicative fitness measures – like number of offspring in
a season – we can instead use W (D,f)(x) = Kw(D,f)(x) for some constant K > 1 or equivalently
W (D,f)(x) = exp(βw(D,f)(x)) for some strength of selection β [11].

Adaptable-to families of environments ((D,F)): Since algorithmic biology is after asymp-
totic results, we are usually concerned not with a particular abiotic environment (D, f) but a family
of environments (D,F) defined over a class of possible distributions D and set of potential ideal
functions F = {fn,s} (i.e. concept class) indexed by some natural number n, index s. Borrowing
an idea from his earlier model of probably-approximately correct learning [12], Valiant [1] defines
an environment (D,F) as adaptable-to if given an arbitrarily small probability 0 ≤ δ < 1/2 and
arbitrarily small approximation rate 0 ≤ ε < 1/2 there exists an evolutionary dynamic that in time
polynomial in n, |s|, ln 1/δ, and 1/ε with probability 1−δ gets the population to a genotype x such
that Prz∼D(gx(z) = f(z)) ≥ 1− ε for any D ∈ D and any fn,s ∈ F .

In the language of fitness landscapes, a family of environments (D,F) is adaptable-to if evo-
lutionary dynamics can find the global fitness peak or get to a type that has fitness ε close to it
in the corresponding family of fitness landscapes. Or more formally, if for every (Dn, fn,s) with
probability 1− δ the population reaches a genotype y with w(Dn,fn,s)(y) ≥ 1− ε in time polynomial
in n, |s|, ln 1/δ, and 1/ε. Note that this is different from Kaznatcheev [2] and Kaznatcheev, Cohen,
and Jeavons [3]’s focus on local peaks.

Feldman [13] showed that strict algorithmic Darwinism is computationally equivalent to a subset
of Kearns [9]’s statistical query model that is restricted to making only correlational queries (CSQ).
In other words, a family of environments (D,F) is adaptable-to if and only if the concept class F is
CSQ-learnable over the distributions D = {Dn}. As I discuss in more detail in 4, this means that
the parity function over the uniform distribution is not adaptable-to. Since the parity function
is PAC-learnable, Valiant [1] uses this as an argument for why learning is more powerful than
evolution.

2 Extended algorithmic Darwinism: biotic/ecological interactions

In this article, I extend the strict Algorithmic Darwinism of Valiant [1] to accommodate frequency-
dependent fitness. Let me sketch this in terms of the prebiotic soup of early life.

Abiotic distribution (DA): For Valiant, the distribution D of environmental challenges is not
affected by the resident population: all hypothetical populations in the same world would experience
the same distribution of challenges. Consider, for example, challenges as macromolecules in the
prebiotic soup: we can imagine the action of the sun on the early chemistry of the Earth producing
a consistent supply of random polymers for our organisms to encounter. This would be a sort of
constant abiotically generated distribution DA of challenges.
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Full distribution with biotic component (D(ρ)): But the abiotic distribution is not the
only source of polymers in the environment: there is also other organisms. Thus, we can imagine
the distribution D as partitioned into two parts, an abiotic part DA that is independent of other
organisms in the environment and a biotic part DB(ρ) that is a function of the evolving population
ρ. This gives us D(ρ) = (1 − b)DA + bDB(ρ), where b ∈ [0, 1] measures the strength of the biotic
component. In this extended algorithmic Darwinism, Valiant’s strict model would correspond to
b = 0. As such, I focus the rest of the discussion on a family of landscapes where b is a small but
polynomial fraction (i.e. b ≈ 1/nO(1)).

In a general application, the space of possible challenge strings Z and the space of genotypes
X might not be the same. In that case, DB : ∆X → ∆Z needs to map between distributions on
these two spaces. We can view this mapping as specifying the ecological part of the evolutionary
algorithm, since it would encode what kind of challenges certain organisms tend to present to other
organisms. But in this report, I will focus on when X = Z = {0, 1}n and set DB to be identity thus
making D(ρ) = (1 − b)DA + bρ. In the case of the protocells in a prebiotic soup, we can imagine
D(ρ) implemented as all protocells trying to constantly copy their own genotypes but due to their
primordial nature and poor lipid membranes, constantly shedding some of these copies without
always successfully duplicating. When one cell floats past another, it then encounters this cloud
of shed copies as new challenges. Thus, this would bias the abiotic distribution DA towards the
distribution of protocells ρ by an amount b that will depend on various aspects of the environmental
and population structure.

Game landscapes (ω): For the sake of this article, I will focus on matrix games as a model
of frequency-dependent fitness. For strict algorithmic Darwinism, we could have imagined the w
of a fitness landscape as a very long vector in RX with entries indexed by x ∈ X and specified
by Equation 1. Similarly, for the extended algorithmic Darwinism, I will build the (matrix) game
landscapes by considering a very large matrix G ∈ RX×X with entries given by:

Gxy = Ez∈DB(ey)(gx(z) = f(z)) (2)

where ey ∈ ∆X is the distribution with all weight at type y (i.e. the unit vector in direction y).
When X = Z and DB is the identity, we can specify fitness functions for the game landscape as:

ωD,fx (ρ) = (1− b)w(DA,f)
x + b

∑
y∈X

Gxyρy (3)

Darwinian engine that powers evolution: I visualize this whole model as the Darwinian
engine that powers evolution in Figure 1. The Darwinian engine is made of two cycles that together
change the distribution of genotypes. On the top, we have the genesis of new variants via the
mutation cycle. On the bottom, we have the struggle for existence via the development-ecology-
selection cycle. The game landscape acts as a summary of the contribution of development (the
mapping from genotype to phenotype) and ecology (from the distribution of phenotypes to fitness)
that I described in this section. This is the heart of algorithmic Darwinism and is what specifies the
environment that the population is adapting to – the problem instance, for a computer scientist.
The other two arrows (selection and mutation) specify the algorithm of evolution. If we want to
prove intractability results then we want to reason about arbitrary (polynomial time computable)
selection and mutation functions. But since I aim for a surprising tractability result, I will describe
in Section 3 the specific evolutionary algorithm of strong-selection weak-mutation dynamics [14,
15].
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Figure 1: Darwinian engine powering eco-evolutionary dynamics. The top cycle captures
the genesis of new variants and the bottom cycle captures the struggle for existence. Each edge is
labeled by both its conceptual role (in text) and its specific realization in the ecologically extended
algorithmic Darwinism (in equations). The two edges (selection and mutation) pointing into the
genotype node specify the algorithm of evolution that adapts the population. In general, we could
consider arbitrary polynomial time algorithms for these edges, but for the tractabiltiy of the Parity
environments, I focus on the specific algorithm of strong-selection weak-mutation dynamics in
a Moran process with single and double mutations as presented in Section 3. The other edges
(development, ecology, and the out-direction of mutation) specify the environment (or ‘problem
instance’) that the population is adapting-to. I give a general overview of this in Section 2 and
discuss the specific family of Parity environments in Section 4.
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3 Mutation-limited dynamics for game landscapes

In general, the strict and extended algorithmic Darwinism allow for a rich set of possible evolu-
tionary dynamics. And when we prove hardness results in these frameworks, we establish that
no evolutionary dynamic compatible with the framework is capable of adapting-to some environ-
ment. However, when we are establishing a tractability result, it is useful to consider a particular
evolutionary dynamic that is simple and biologically plausible.

Monomorphic and briefly polymorphic populations: In the case of traditional fitness land-
scapes, for the sake of analysis, biologists often consider a mutation-limited population [15]. This
population is nearly always monomorphic (i.e. made up of a number of tokens that are all of a
single type) except when a new mutant is invading, at which point the population is briefly poly-
morphic between the resident and invader type. The invading mutant is usually a point mutant of
the resident type one on timescales on the order of 1/µ where µ << 1 is the small mutation rate.
If the resistant cannot be invaded by any point-mutant then it is possible for a double (or more
distant) mutant to arise, although the timescales for these events scale as (1/µ)2 where µ << 1 is
the small mutation rate. After a successful invasion, the population is again monomorphic. This
corresponds to the extreme limit when ecological feedback can act only briefly during a single step
of evolutionary dynamics.

In the case of a traditional fitness landscape, strong selection mutation-limited dynamics only
allows a genotype y to invade and replace a genotype x if w(y) ≥ w(x). In strict algorithmic
Darwinism, a mutant invades if it is strictly fitter (w(y)−w(x) > t) or nearly-neutral [16] (|w(y)−
w(x)| ≤ t). But the story is more interesting for a game landscape and – instead of a simple
threshold – it becomes useful to explicitly study a finite population of size M .

Fitness of resident (ωx) and mutant type (ωy) as a function of number of mutants (My):
Since we are focused on the limit where at most two genotypes x, y ∈ X co-exist at a time, we
can track the state of the population with a single integer My ∈ [M ] for the number of invaders.
For simplicity, I will assume a well mixed population so that every protocell has the same chance
of interaction with every other protocell. This means that in a polymorphic population, a cell of
type x has a probability of My/(M − 1) of interaction with a cell of type y and a probability of
(M−My−1)/(M−1) of interaction with a cell of type x. Similarly, a cell of type y has a probability
of (My − 1)/(M − 1) of interaction with a cell of type y and a probability of (M −My)/(M − 1)
of interaction with a cell of type x. This transforms Equation 3 as a function of My into:

ωx = (1− b)wx + b(

ux︷ ︸︸ ︷
Gxx

M −My − 1

M − 1
+Gxy

My

M − 1
) (4)

ωy = (1− b)wy + b(Gyx
M −My

M − 1
+Gyy

My − 1

M − 1︸ ︷︷ ︸
uy

) (5)

When analyzing evolutionary games, it is useful to look at the (whole) gain function (γyx = ωy−ωx)
of switching from x to y [17, 18] – also known as the invasion fitness:

γyx(My) = (1− b)(wy − wx) + b((Gyy −Gxy)
My − 1

M − 1
+ (Gyx −Gxx)

M −My

M − 1
+
Gxx −Gxy
M − 1︸ ︷︷ ︸

uy−uv

) (6)
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and when wy = wx, it is useful to focus on just the component correspond to the game gain function
(uy − ux). Since f has a boolean range, we have that Gxx, Gxy, Gyx, Gyy ∈ {0, 1} and thus only
16 possible game gain functions, as shown in Figure 2. These two strategy matrix games are well
studied in evolutionary game theory and can even be measured directly in microscopic experimental
systems [8, 19].

Fixation probability of mutant against resident (φyx): Let us use the Moran process [11,
20] based on fitnesses ωx and ωy to update the number of invaders My. The Moran process is a
standard model of invasion of a wild-type by a mutant-type in evolutionary biology, and proceeds
as follows: (1) Randomly select an individual m proportional to it’s multiplicative fitness eβω [11];
(2) Uniformly select an individual c to be replaced; (3) Replace c by m and repeat the process
until the population is monomorphic. This defines a Markov chain on the state space [M ] with
transition probabilities given by:

Pr{0 7→ 0} = Pr{M 7→M} = 1 (7)

Pr{My 7→My − 1} =
(M −My)e

βωx(My)

Myeβωy(My) + (M −My)eβωx(My)

My

M
(8)

Pr{My 7→My + 1} =
Mye

βωy(My)

Myeβωy(My) + (M −My)eβωx(My)

M −My

M
(9)

Pr{My 7→My} = 1− Pr{My 7→My − 1} − Pr{My 7→My − 1} (10)

From this, we can calculate the fixation probability φyx of y (i.e. the probability that the above
Markov chain starting at My = 1 ends at the absorbing state of My = M) as:

φyx =
(
− β

M−1∑
k=0

exp(

k∑
My=1

γyx(My))
)−1

(11)

Strong selection: I will focus on strong selection (β > M) and when the game contributes a
detectable amount of the fitness (t << b

M ). In that case, it is easy to classify the possible game
regimes of the extended algorithmic Darwinism in Figure 2 into 4 classes: (1) In the green region,
invasion is very likely: φyx > φ∗ for a constant φ∗ independent of the rest of the parameters; (2)
In the yellow region, invasion is possible but not likely (the neutral and nearly-neutral mutation
regime): φyx = 1/M ; (3) In the red region, invasion is effectively impossible: φyx < e−M ; (4) In
the dotted red region, invasion is likely but the fixation time is exponential in M .

With a fitness landscape, it can be helpful to replace the numeric structure by just the structure
of allowed adaptive moves to get the fitness graph [2, 3, 21, 22]. Similarly, with a game landscape,
we can imagine it as a set of nodes {0, 1}n connected by the four types of edges outlined above. If
type (4) edges are not encountered, my separation of time-scales between ecology and evolution –
much like similar separations in the adaptive dynamics literature [5, 23, 24] – allows us to continue
to view a population as occupying a single vertex. But unlike the simple continuous landscapes of
adaptive dynamics, game landscapes allow us to also preserve the rich combinatorial structure and
discrete mutations that in fitness landscapes allows for computationally hard environments [2].

8

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 3, 2020. . https://doi.org/10.1101/2020.05.03.075069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.03.075069
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Possible game gain functions for game landscapes of a boolean environment: For each
graph, the x-axis is the number (My) of invaders of type y and the y-axis is the game gain function

(uy − ux). The game of each graph is inset as the matrix

(
Gxx Gxy
Gyx Gyy

)
. The possible invasion

dynamics under strong selection (β > M) are given by the colour-coding: green means y can
invade x with probability greater than some constant p∗; yellow means y can invade x through
random drift with probability 1/M ; red means y cannot invade x (solid red: nearly 0 probability
of fixation; dotted red: high probability, but exponentially long time to fixation).
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4 Representing parity environments as fitness landscapes

The formal approach of algorithmic Darwinism allows us to view evolution as an algorithm. Since
evolution is an algorithm, it is subject to all the same information- and computation-theoretic
constraints that limit all algorithms [1–3]. This allows us to identify families of fitness landscapes
or environments that cannot be adapted-to. I will call such environments or fitness landscapes
‘hard’ [2]. The canonical example of such a hard environment for strict algorithmic Darwinism is
the Parity environment [1].

Parity environments (fn,s): For each size n, the challenges come from the uniform distribution
Un: i.e. every string in {0, 1}n has an equal probability of 1/2n of being encountered – every string
is as likely as every other string to be encountered. Each environment of size n is indexed by a
hidden set S of salient bits or – equivalently – a string s ∈ {0, 1}n that has a si = 1 if i ∈ S
and 0 otherwise. To succeed, organisms have to pay very careful attention to all the positions in
S and ignore all other positions. The correct response to a challenge z ∈ {0, 1} is to return the
parity of the bits zi for i ∈ S (i.e. fn,s(z) =

∑n
i=1 zisi mod 2). I will call the part of the genotype

that overlaps with the hidden set of salient bits (x[S]) the head of x, and the other part the tail
(x[n−|S|]). A genotype x has an even-tail if it has an even number of 1s in the tail (i.e. with index
in [n]− S) and an odd-tail otherwise. Finally, we can set our tolerance parameter τ to account for
misclassification noise in f , so without loss of generality, I can treat fn,s as not noisy.

Although Parity might not seem like a very biologically plausible environment, it actually
idealizes an important problem that many organisms are likely to face. The Parity environment,
divides the sensory/informational world of the organisms into two parts: an important part S and
an irrelevant part [n]− S. The correct response to an environmental challenge is extreme sensitive
to the important part (with any one bit flipping the output) and completely insensitive to the
irrelevant part (with the output unaffected by bit flips). But the irrelevant part still gives the
organisms opportunities to attend to it (thinking that it matters to what should be done when it
doesn’t) and by so doing potentially make mistakes. The difficulty of the Parity environment then is
not in the computation of the exclusive OR of the various bits (which is not common in biological
systems, but certainly possible for a single cell [25, 26]), but in separating the set of important
stimuli from the set of irrelevant stimuli. Thus, in the context of simple biological systems with
minimal cognition [27], the Parity environment can be seen as an extreme version of the problem
of selective attention.

Parity is not adaptable-to under strict algorithmic Darwinism: After defining SQ-learning,
Kearns [9] showed that Parity over the uniform distribution is not efficiently learnable with statisti-
cal queries. Since any family of environments that is adaptable-to by strict algorithmic Darwinism
has to be an SQ-learnable concept class, [1] gave Parity environments as the prototypical hard
family of environments: a family of environments that are not adaptable to by any evolution-
ary dynamics compatible with strict algorithmic Darwinism. Finally, Parity is PAC-learnable but
noisy-Parity is conjectured to not even be PAC-learnable [28, 29].

Representing reaction norms as genotypes: The above hardness result for strict algorithmic
Darwinism is true regardless of how the reaction norms g are encoded as genotypes. But for the sake
of an intuition about this hardness result, and as preperation for the easiness result in Section 5, I
want to consider a specific simple representation of reaction norms as genotypes. Let the genotype
space be the same as the example space: X = Z = {0, 1}n. With a genotype x ∈ {0, 1}n servings
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as the indicator set for the parts of the environment that the organism pays attention to, giving
the reaction norm phenotype gx(z) =

∑n
i=1 xizi mod 2.

Parity fitness landscape (ws): This representation of reaction norms by genotypes specifies a
fitness landscape (ws) corresponding to the environment (Un, fn,s) that shows the intuition for why
the Parity environment is hard: fitness simply does not provide much information about s. For a
genotype x = s we have ws(s) = 1, but for any other genotype x 6= s, we have that ws(x) = 1/2.
This is because given any string x, there are exactly 2n−1 strings that share an even number of bits
in common with x and also 2n−1 strings that share an odd numbers of bits in common with x.

Thus, the fitness landscape is a needle-in-the-haystack landscape: one giant lowlands at fitness
1/2 with a single peak hiding at genotype s out of the 2n possible genotypes. In this case, where
the fitness landscape is not providing any information, mutation limited strong selection dynamics
of the kind outlined in Section 3 will with high probability take an exponential number of steps.

5 Parity is adaptable-to under extended algorithmic Darwinism

Note that when x = s, wsx = 1 and for all y ∈ {0, 1}, Gsxy = 1: the game landscape also has a
single unique global fitness peak at s. To see how evolution on the Parity game landscape finds the
s peak, we have to focus on how a mutation-limited strong selection dynamics navigates the great
low fitness plateau where for all x, y ∈ {0, 1}−{s}, wsx = wsy = 1/2. Thus, we can focus on just the
biotic contribution and the game gain functions from Figure 2 account for every possible invader.
This lets us analyze the evolutionary dynamics of adapting to Parity. These dynamics will proceed
by two stages, a fast stage where each step happens on the time-scale of 1/µ (Section 5.1) and a
slow stage where each step happens on the time-scale of 1/µ2 (Section 5.2).

5.1 Quick convergence to an evolutionary stable set under point-mutations

Even in the monomorphic case, there is a deformation as we sift from a fitness to a game landscape.
In particular, we see the great low-fitness plateau at fitness 1/2 split into two parts. The high fitness
even-tail genotypes (that have Gxx = 1) remain at fitness 1/2, but the set of odd-tail genotypes
(that have Gxx = 0) form a valley at fitness (1 − b)/2. Since any odd-tail genotype is adjacent to
[n] − S many even-tail genotypes, this is indeed a valley and not a plateau since any x with an
odd-tail can be invaded by any adjacent y with the same head x[S] = y[S] but an even-tail. Thus,
the odd-tailed strings are not evolutionary stable under points mutations. But more importantly,
this also means that once a string becomes even-tailed, it will not go back to being odd-tailed under
point-mutations. So at most one point-mutation will fix in the tail of the string.

What about mutations in the head? Consider genotypes x and y with same parity tail such
that there is exactly one i ∈ S such that 0 = xi 6= yi = 1 (without loss of generality, by relabeling).
Since x and y have the same parity tail, we have that Gxx = Gyy but Gxy 6= Gyx Here there are
two cases to consider: the string is still odd-tailed or it has become even-tailed. For an odd-tailed
string, we have Gxy = 1 > 0 = Gyy = Gyx, so x can invade y and thus decrease the number of 1s
in the head. But if x and y are even-tailed then y can invade x since Gxy = 0 but Gyx = 1 (this
also means, unsurprisingly, that x cannot invade y). Thus, for even-tailed strings, point mutations
in the head will only fix if they increase the number of 1s in the head.

Evolutionary stable set under point-mutations: From this, we can conclude that the only
strings that are evolutionary stable under point-mutations have a full-head and even-tail. I will call
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this set S1. In the space of point-mutations, this evolutionary stable set is a collection of isolated
local fitness peaks. More importantly, we will converge to a point in this evolutionary stable set
quickly. In the worst case, it will take 2|S| + 1 many fixations if the population starts with a
full-head, odd-tail string and then loses every 1 in the head (|S| fixations), flips to even-tailed, and

then regains every 1 in the head. On average, it will take fewer than |S|2 (1 + 1
|S| + 1

n−|S|) fixations.

5.2 Biased random-drift in the evolutionary stable set by double-mutations

Although points in the full-head-even-tail set S1 are evolutionary stable and isolated under point-
mutations (i.e. strict local peaks), they are not isolated under double-mutations. Hence, after
the population fixes at a point-mutation peak in S1, we need to focus on the dynamics of double-
mutations. In terms of timescales, in a mutation limited population with mutation rate µ, this
means switching from a timescale of Θ( 1

µ) to Θ( 1
µ2

). There are three kinds of bits of a string in S1:
1s in the head, 1s in the tail, and 0s in the tail. Let 2k be the even number of 1s in the tail. Call
the double mutant genotype y.

Double mutation in head: Suppose that both mutations are in the head. This happens with
probability |S|(|S|−1)

n2 . Then Gyx = Gxx = Gyy = Gxy = 1 and thus y can only fix by random drift
(i.e. with probability 1/M). But after it fixes, we have an even-tailed population y outside of S1
and so it will be quickly returned to S1 by point-mutations without changing the tail. Thus, this
double-mutation does not chance our position in S1.

Double mutation in tail: Consider that both mutations are in the tail. This happens with
probability (n−|S|)(n−|S|−1)

n(n−1) . Since this preserves tail parity: Gyy = 1. If one mutation flips 0 to
1 and the other flips 1 to 0 then Gxy = Gyx = 0 and thus y will be selected against and unable

to fix. This happens with conditional probability 4k(n−|S|−2k)
(n−|S|)(n−|S|−1) The remaining two cases are if

both tail mutations are 0 to 1 or both are 1 to 0. These happen with conditional probabilities
(n−|S|−2k)(n−|S|−2k−1)

(n−|S|)(n−|S|−1) and 2k(2k−1)
(n−|S|)(n−|S|−1) , respectively. In these two case, Gyx = Gxx = Gyy =

Gxy = 1 and so y can fix only by random drift (with probability of 1/M). But unlike the double-
head case, the resulting y is still in S1 and so the fixation will not be undone by point-mutations.

One mutation in head, one in tail: Finally, suppose a double mutant arises with one flip in the
head and one in the tail. This happens with probability 2|S|(n−|S|)

n(n−1) and gives us Gxx = 1 > 0 = Gyy.
If the tail mutation flipped a 0 to a 1 then Gyx = 0, so y is selected against and cannot fix. This

happens with condtional probability n−|S|−2k
n−|S| . The most interesting case is if the tail mutation

flipped a 1 to a 0 then Gyx = 1 and Gxy = 0. This happens with condtional probability 2k
n−|S| .

Without self-interactions in finite populations, uy − ux = 1/M so for strong-selection, y will fix
with probability lower bounded by a constant p∗. After fixing, however, y is outside S1 and will
be quickly returned to S1 by point-mutations. Upon returning to x′ in S1, x

′ will have either one
pair fewer or the same number of 1s in the tail than/as x. The former will happen with probability
2k−1
n−|S| and the latter with probability n−|S|−2k−1

n−|S| .

Biased random walk on S1: Putting this all together, we get that the double mutant regime
is equivalent to a biased random walk on the integer line [0,m] with m = bn−|S|2 c where being
at a point k ∈ [0,m] represents having a genotype with a full-head and an even-tail of length 2k.
Importantly, this walk has only a single absorbing state at k = 0 (i.e. when x = s). The transition
probabilities for the random walk’s Markov chain are:
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Pr{k 7→ k − 1} ≥ 1

M

2k(2k − 1)

n(n− 1)
+ p∗

4|S|k(2k − 1)

n(n− 1)(n− |S|)
(12)

Pr{k 7→ k + 1} =
1

M

(n− |S| − 2k)(n− |S| − 2k − 1)

n(n− 1)
(13)

Pr{k 7→ k} = 1− Pr{k 7→ k − 1} − Pr{k 7→ k + 1} (14)

If p∗M > (n−|S|)3
|S| then Pr{k 7→ k − 1} > Pr{k 7→ k + 1} for all 1 ≤ k ≤ m− 1. So in the case that

M = Θ(n3), the random walk will drift left, converging to k = 0 in number of double-mutations
that is linear in the initial k and thus also linear in n− |S|.

5.3 Total adaptation time

Number of mutations: Putting this together Sections 5.1 and 5.2 this results in an overallO(|n|)
number of fixations with evolution proceedings fast then slow. The fast part proceeds via a linear
number of point-mutations with each on a time-scale of O( 1

µ). The slow part proceeds by a linear

number of double-mutations, but since each double-mutation arises on the time-scale of Θ( 1
µ2

), we

will expect to see a total of O(nµ) of point-mutations mutations. Of those numerous point-mutations
will not fix with the exception of O(n) point-mutaitons corresponding to the one-mutation-in-head-
one-in-tail double-mutation. Thus, we expect on the order of O(nµ) total mutations.

Number of birth-death events: To finish the time analysis, we can go past mutations to the
number of birth-death events that make up each Moran process. For all the mutations that fail to
fix, they will fail with an expected O(1) number of birth-death events. Of the mutations that do fix:
the ones that are selected for will fix in an expected O(M lnM) number of birth-death events and
the ones that are neutral will fix in an expected O(M2) number of birth-deaths [30]. Since invasion
by neutral drift happens only for the double mutants, this means that the overall evolutionary time
can be bounded by O(nM2 + nM

µ ). But we need to avoid a new mutation arriving while an existing

one is fixing, so I need to set µ >> 1
M2 and from the end of Section 5.2 we have M = Θ(n3). Thus,

the overall evolutionary time measured in the number of birth-death can be bounded by O(n10).
For this article, this polynomial bound is sufficient to show that an evolving population can adapt
to the Parity environment under extended algorithm Darwinism.

6 Discussion

Theoretical computer science and evolutionary biology provide a rich interface for the development
of new theory. Providing a formal model of computation that characterizes which algorithms
correspond to evolution is essential to this new interface. Valiant [1] started by defining strict
algorithmic Darwinism as a subset of SQ-learning, but this did not account for the rich feedback
possible between ecology and evolution [4, 5] through effects like frequency-dependent selection. By
extending algorithmic Darwinism to include these ecological interactions, I showed that evolution is
computationally more powerful than we previously suspected. Thus, we need to continue to refine
our model of evolution to better integrate theoretical computer science into biology.

Protrophs vs heterotrophs and the origin of life: In the context of the Oparin-Haldane
hypothesis for the heterotrophic origin of life, the organisms in both strict and extended algorithmic
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Darwinism would, technically, be classified as hetrotrophs. This is because these organisms do not
generate their own energy but have to harvest it from correctly consuming macromolecules in the
environment. But there is also a fundamental difference between these two kinds of organisms. In
strict algorithmic Darwinism, all the macromolecules are generated by the environment in some
process that is independent of the organisms in that environment. This sort of metabolism is
exceptionally rare on Earth, maybe occurring only in deep-sea hydro-thermal vents. As such, I
think that the organisms of strict algorithmic Darwinism should be called prototrophs to distinguish
them from typical heterotrophs. The heterotrophs that do occur frequently in nature are much more
similar to the organisms of the extended algorithmic Darwinism, in that they harvest energy from
correctly eating macromolecules that are generated by a process that depends on the distribution of
organisms in the environment. But it is exactly this shift from an abiotic to biotic environment that
I have shown to transform the mode of evolution to make it exponentially more powerful. Thus,
it is tempting to hypothesize that part of the reason that we have we have such an abundance of
true heterotrophs from a presumably prototropic origin is due to the computational resource that
heterotrophy gave populations in adapting to Earth’s early environment.

Many consider the ability to metabolize, replicate and evolve as the central characteristics of
living organisms. We should augment this list: the central characteristics of living organisms are
the ability to metabolize, replicate, evolve and interconnect in a shared ecology.

Ecology is more transformative than sex: It is also important to highlight just how trans-
formative ecology is to the mode of evolution. For example, by comparing it to the difference
in mode between asexual vs sexual reproduction. Sexual reproduction, recombination, horizon-
tal gene-transfer, and fusion are another set of processes that are believed to have the potential
to greatly speed-up evolution [31, 32] and even matter in the origins of life [33] and the somatic
evolution of cancer [34]. Strict algorithmic Darwinism has previously been expanded to study the
transformation from asex to sex by considering recombination [35] and horizontal-gene transfer [36,
37]. Similar to my results for ecology, the authors showed that an exponential speed up is pos-
sible in the number of generations required for adapting-to a family of easy environments. But
unlike my results for ecology, they also proved that the set of families that are adaptable-to is not
changed and is still the set of CSQ-learnable environments. In contrast, in this paper, I presented
an exponential speed-up for the Parity environment that is hard for strict algorithmic Darwinism.
This moves the ecologically extended Algorithmic Darwinism beyond what is CSQ-learnable. The
sexual mode of evolution allowed a speed-ups from polynomial to polylog number of generations.
But, unlike the ecological mode of evolution, the sexual mode of evolution did not allow for a
speed-up from exponential to polynomial number of generations. In other words, both sex and
ecology can dramatically speed up evolution, but it is only ecology that can transform what kind
of environments are adaptable-to.

Knowing about this increase in computational power is important not only for a general under-
standing of evolution, but also so that we do not underestimate the power of eco-evolutionary
dynamics in settings where evolution is our adversary. For example, in cancer, the patient and
physician are in a battle against somatic evolution [38, 39]. Since we tend to view the change in
gene-frequencies as the most important aspect, we tend to treat cancer as a disease of individual
aberrant cells. But given that frequency-dependent selection can so drastically transform the mode
of evolution, we need to also focus on the aberrant ecology of cells [18, 19, 34, 38, 39]. My hope
is that a formal algorithmic theory of eco-evolutionary dynamics like my ecologically extended
algorithmic Darwinism can help in this effort.
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