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Abstract

Generally, sex-specific mortality is not expected to affect optimal patterns of

sex allocation. Several authors have, however, made verbal arguments that

this is not true if juvenile mortality is sex specific during the period of

parental care. Here, we provide formal mathematical models exploring the

effect of such mortality on optimal sex allocation. We confirm the prediction

that biased production of the sex with higher mortality during care is

favoured. Crucially, however, this is only true when juvenile mortality in

the period of parental care frees up resources for their current/future sib-

lings (i.e. the saved investment is transferable). Furthermore, we show that

although optimal sex allocation is consistent with the theory of equal invest-

ment (as asserted by previous authors), thinking in terms of equal invest-

ment is not readily feasible in some scenarios. We also show that differences

in early mortality overcome biased sex allocation such that the sex ratio at

independence is generally, but not always, biased in the opposite direction

from that at birth. Our models should prove useful to empiricists investigat-

ing the effect of sex-specific juvenile mortality and antagonistic sibling inter-

actions on sex allocation.

Introduction

Sex allocation theory predicts the optimal division of

resources into male and female reproductive function

(West, 2009). Generally speaking, equal sex allocation

is predicted (D€using, 1884; Fisher, 1930). In dioecious

species, this usually resolves to a primary sex ratio –
the proportion of sons produced at fertilization – of 0.5

(i.e. equal numbers of sons and daughters produced).

This occurs because the excess production of either sex

reduces the mean reproductive output of individuals of

that sex, lowering the returns offered by offspring of

that sex from a parent’s perspective (D€using, 1884;

Fisher, 1930). In this way, the primary sex ratio is

under negative frequency-dependent selection. This

prediction of equal investment can help us explain why

so many species of animals produce sons and daughters

in roughly equal numbers (assuming that the sexes are

equally costly to produce in most cases; West, 2009).

When sons and daughters are not equally costly to

produce equal investment into each sex is still the opti-

mal strategy, but this does not lead to a primary sex

ratio of 0.5. For example, if sons cost three times as

much as daughters to produce, equal investment would

be a sex ratio of 0.25. The average reproductive output

of sons would then be three times as much as that of

daughters (because there are, on average, three females

per male in the breeding population). In this way, nat-

ural selection leads to sex allocation that matches the

value each sex offers their parents with the initial cost

of producing that sex (Fisher, 1930).

The general prediction of equal investment into each

sex is, in most cases, independent of sex-specific mor-

tality (Leigh, 1970). Consider a species where the pri-

mary sex ratio is unbiased and costs of raising sons and

daughters are equal, but males are twice as likely as

females to die before reproducing. There will be, on

average, twice as many females in the mating pool as

there are males. Surviving males have double the aver-

age reproductive output of females, completely balanc-

ing out their elevated mortality. There is no selection

for a sex ratio bias (Leigh, 1970). Exceptions occur,

however, when mothers’ condition predicts offspring
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survival or mating success (and these therefore can

break free from having to equal the average values for

this sex, West, 2009), or when generational overlap

allows periods of sex-specific mortality to be compen-

sated for by biased sex allocation towards the rarer sex

after unpredictable events (Werren & Charnov, 1978;

Michler et al., 2013), or in anticipation of such periods

in predictable seasonal scenarios (Kahn et al., 2013).

Another exception leading to a biased primary sex

ratio exists when juvenile mortality occurs prior to

independence in species with parental care (i.e. during

the period of parental expenditure; Fisher, 1930). If

parents pay a significant cost to raise offspring to inde-

pendence, any young that die before that point could

be seen as wasted investment. This waste takes a subtle

form, however, if costs to parents accrue gradually dur-

ing the parental care period. Parents obviously reap no

fitness benefits through young that die, but not all

investment is wasted if the death of an offspring frees

the parent from paying all the care costs that would

have accrued by the time the offspring reached inde-

pendence. This saving can potentially be reallocated

into other current or future offspring. In this case, sex

differences in juvenile mortality lead to sex differences

in both the mean expected cost of producing each sex

and the expected returns. For example, if sons tend to

die more often during the period of parental care, the

average cost of sons will be greater for each son suc-

cessfully reared to independence, but also less per son

actually born (Fisher, 1930). The question then is, how

should this affect optimal sex allocation?

Fisher (1930) briefly dealt with this scenario in his

discussion of the theory of equal investment. With a

particular focus on humans, he stated that if sons die

more frequently during the period of parental care,

they will be the ‘cheaper sex’ to produce, despite sur-

viving to adulthood less often. He argued that natural

selection would favour the situation where ‘. . . boys are
the more numerous at birth, but become less numer-

ous, owing to their higher death-rate before the end of

the end of the period of parental expenditure’. (Fisher,

1930, p.143). As in the case of his enigmatic comments

on ‘runaway’ sexual selection, Fisher’s conclusion

seems plausible, but the assumptions and calculations

underlying his argument were not made explicit.

Since Fisher, this topic has received relatively little

attention from theoreticians and empiricists alike (West,

2009). To our knowledge, no quantitative empirical test

for an effect of sex-biased mortality during care on the

primary (or indeed secondary) sex ratio has yet been

attempted. This could be partly related to the difficulty

of disentangling inherent differences in sex-specific

mortality from compensatory responses by parents (e.g.

providing more food to the ‘weaker’ sex).

Several mathematical models have dealt with sex

allocation given sex-differential initial costs in species

with discrete generations (e.g. Kolman, 1960; Charnov

1982). These models, however, assume that Fisher’s

assertion that the sex with greater mortality during the

period of care is less costly is true. In particular, these

models focus on the idea of a ‘substitution cost’ – if a

mother foregoes an attempt to raise a son, how many

daughters can she produce? The answer to this ques-

tion is not immediately apparent for the case of differ-

ential juvenile survival. Consider, for example, the case

where sons survive better than daughters during the per-

iod of parental care. Sons then impose a greater cost on

their parents, but, at the same time, they are more likely

to survive and provide their parents with grandoffspring.

As is generally the case in sex ratio theory, we must also

consider the effect of mate availability, which likewise is

affected by offspring mortality. The situation is suffi-

ciently complex that verbal arguments could mislead or,

at least, gloss over hidden assumptions.

Here, we model optimal patterns of sex allocation,

specifically taking into account sex differences in juve-

nile mortality, and the costs that offspring impose on

their parents or siblings. In particular, we want to assess

the validity of three widely made assertions: when sex-

differential juvenile survival affects the relative costs of

rearing sons and daughters, (i) parents should bias sex

allocation towards the sex with greater mortality

(Fisher, 1930), (ii) the optimal pattern of sex allocation

is that which leads to equal investment (across the

whole period of parental care) into the sexes (‘The

exact sex ratio favored is that which leads to the total

investment in sons and daughters over the whole per-

iod being equal’ – West, 2009 p. 20) and (iii) that the

sex ratio at independence will be biased towards the

sex with greater survival during the period of parental

care – even though they were rarer at birth (‘. . . sex

ratio should be male biased early [assuming sons have

higher mortality], but female biased near weaning’ –
Charnov, 1982 p. 29; see also West, 2009 p. 19).

Analytic matrix models

Below, we present the results from two analytic models

of optimal sex allocation in relation to juvenile mortality.

Model 1 (‘maternal survival model’) deals with the case

where differential juvenile mortality affects the survival

prospects of caring mothers. Model 2 (‘sibling competi-

tion model’) considers the case where differential juve-

nile mortality affects sibling survival (i.e. there is within-

brood competition). We used a periodic two-sex matrix

population modelling approach (Caswell, 2001). This

involves breaking down a system into a series of distinct

phases, then describing the transitions between succes-

sive phases (e.g. Jenouvrier et al., 2010). At phase i, we

have a population vector Pi, which is the number of each

type of individual at that particular time. Process i repre-

sents the transition from phase i to phase i+1 and is

described by the projection matrix Ai, such that

Pi+1 = AiPi. Once these have been described, the equilib-
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rium population dynamics can then be determined, and

the reproductive values of different types of individuals

calculated (see below; Brommer et al., 2000; Pen &

Weissing, 2000a). The advantage of this approach is that

it allows us to describe complex systems incrementally in

a series of conceptually simple steps.

Model 1: maternal survival model

First, we consider an iteroparous species that breeds

once per year where mothers are responsible for sex

allocation decisions and parental care. There are four

separate phases and transitional processes to consider

(Fig. 1): (i) population P1 consists of overwintering

adult males (M) and females (F) who are ready to

reproduce: P1 = [M F]T. The first process is sex alloca-

tion: females ‘decide’ whether they will produce a son

or a daughter; one offspring is produced, and x denotes

the probability of producing a son for any given repro-

ductive event (i.e. the primary sex ratio). The first pro-

jection matrix is thus:

A1 ¼
0 x

1 0

0 1� x

2
4

3
5 (1)

(ii) Now, the population P2 is made up of adult males

as well as females who will go on to produce sons (FS),

or daughters (FD): P2 = [FS M FD]
T. Reproduction occurs

next; parents each contribute half their genetic material

to the offspring. Male reproductive success also depends

on the per capita availability of mates (i.e. F/M):

A2 ¼

1 0 0

1=2 FS=ð2MÞ 0

0 1 0

0 FD=ð2MÞ 1=2
0 0 1

2
66664

3
77775 (2)

(iii) We then have adult males, sons (S), daughters (D)

and females caring for either a son or a daughter:

P3 = [FS S M D FD]
T. Next, we deal with mortality dur-

ing the period of parental care. Sons and daughters sur-

vive through this period with probabilities sS and sD,

respectively, whereas mothers and fathers are assured

survival. The projection matrix is thus:

A3 ¼

1 0 0 0 0

0 SS 0 0 0

0 0 1 0 0

0 0 0 SD 0

0 0 0 0 1

2
66664

3
77775 (3)

(iv) As before, we now have adult males, sons, daugh-

ters and females who have finished caring for either a

son or a daughter: P4 = [FS S M D FD]
T. The final process

is overwinter survival (i.e. recruitment to next year’s

mating pool). Adult females and males overwinter with

probabilities sF and sM, respectively. Adult female survival

must, however, be reduced according to the costs associ-

ated with caring for the offspring the females recently

produced. This cost is a negative function of how long

the females had to care for their offspring, and the dura-

tion of care depends on the probability that the offspring

survives. In this way, a female’s own survival depends

on her offspring’s probability of survival (and hence its

sex). We incorporate this cost in a simple, linear way: the

survival of son-caring mothers is multiplied by 1 – p sS,

whereas the survival of daughter-caring mothers is mul-

tiplied by 1 – p sD. Here, p (0 ≤ p ≤ 1) is a penalty paid by

the mother. If p = 0, female survival is independent of

the survival of their offspring. Thus, adult female survival

through this period is either (1 – p sS)sF for mothers who

produced a son in the preceding phase or (1 – p sD)sF for

mothers who produced a daughter in the preceding

phase. Both sons and daughters recruit to the adult pop-

ulation with probability a, which is not fixed but

responds to population density. We thus use this param-

eter to introduce density-dependent survival at the juve-

nile stage only. Therefore, our final projection matrix is:

A4 ¼ 0 a SM 0 0

ð1� pSSÞSF 0 0 a ð1� pSDÞSF

� �
(4)

We now want to set a such the population size is sta-

ble from 1 year to the next. We can do this by ensuring

that the number of adult, breeding females at the start

of 1 year is the same as the next. This is done by solv-

ing the following equation:

F ¼ a SD ð1� xÞF þ SF ð1� p SSÞ x F þ SF ð1� p SDÞ
ð1� xÞF ð5Þ

which gives us

a ¼ ½1� SF ð1� p SSÞ x � SF ð1� p SDÞ ð1� xÞ�=½SD ð1� xÞ�
(6)

M
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D

FD
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S

M

D
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M

M

F

x

x

1

1

1

1

1

1

1

sS

sD

FS /(2M)

FD /(2M)

1/2

1/2

p sS)sF

sM

p sD)sF

Sex 
allocation Reproduction

Juvenile
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A1 A2 A3 A4

P1 P2 P3 P4Phase:

Transition:

Process:

P1

Fig. 1 Life cycle graphic for Model 1 (maternal survival). Solid

grey lines indicate survival, whereas dashed lines are reproduction.

The values on the lines indicate the probability that an individual

from phase i survives/contributes genes to the corresponding class

of individuals in phase i+1.
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Here, if sF or sD are small, a could potentially be

greater than 1. This makes no biological sense because

juvenile survival from birth to recruitment (a sS or a sD)

would then exceed 1, which is impossible. If the persis-

tence of a population requires impossibly high juvenile

survival values, the population is in reality unstable

and heading for extinction. Therefore, it is sensible to

only consider cases where a remains below 1 (i.e.

females and their daughters survive sufficiently often

for the population to persist). That said, it is unlikely

that optimal patterns of sex allocation, our main focus,

change with population growth (or reduction) rates.

As above, we can find the stable number of males in

the system:

M ¼ ða SS x FÞ=ð1� SMÞ (7)

On average, a sS x F sons and a sD (1–x) F daughters

survive to reach independence. We therefore know

how the sex ratio at independence (y) is related to the

optimal primary sex ratio:

y ¼ ðSS xÞ=½SS x þ SD ð1� xÞ� (8)

The next step is to find the reproductive value at

equilibrium of females who decide to produce either

sons or daughters in phase 2 (i.e. immediately after

making sex allocation decisions). Here, P2 = AP2,

where A = A1A4A3A2. The dominant eigenvalue of

this combined projection matrix A is thus a multiplica-

tive factor of population size (Caswell, 2001), which is

constrained to be one here (i.e. no population growth

or reduction). The corresponding left eigenvector is

then the reproductive values of the three types of indi-

viduals (FS, FD and M) in phase 2 (Brommer et al.,

2000; Pen & Weissing, 2000a). The optimal pattern of

sex allocation (x) is that which balances the reproduc-

tive value of females that ‘decide’ to produce sons (FS)

with those that ‘decide’ to produce daughters (FD). By

setting the corresponding values of the left eigenvector

to be equal, we can solve for optimal sex allocation:

x ¼ 1

2
þ 1

4

SFp ðSD � SSÞ
1� 1

2
SFð1� pSDÞ � 1

2
SFð1� pSSÞ (9)

This form makes it clear that the extent of primary

sex ratio biases is proportional to the differential mater-

nal survival cost imposed by sons or daughters (the

numerator) relative to maternal life expectancy under

the baseline assumption of no sex ratio bias (the

inverse of the denominator).

Model 1: results
The optimal sex allocation depends on the survival of

both sons and daughters during parental care, the sur-

vival of females (but not males) between years and the

penalty imposed by surviving offspring on their moth-

ers’ survival while caring. Our model corroborates

earlier verbal arguments that mothers should produce

more of the sex with greater mortality during the per-

iod of parental care (Figs 2 and 3; Fisher, 1930; Char-

nov, 1982). Furthermore, stronger sex allocation biases

are predicted as sex-specific mortality differences

increase (i.e. as the difference between sD and sS
increases). As expected based on the null model for

Fisherian negative frequency-dependent selection,

equal sex allocation is favoured when there is no sex

difference in offspring survival during the period of

parental care.

Generally, the primary sex ratio is under strong nega-

tive frequency selection favouring equal allocation to

sons and daughters. When maturing juveniles contrib-

ute relatively little to the total population in the follow-

ing year, however, this selective pressure is weaker.

There is thus more opportunity for mothers to produce

biased broods without coming up against negative fre-

quency-dependent selection (because biased primary

sex ratios will have little effect on the sex ratio at inde-

pendence). Consequently, our model predicts stronger

sex allocation biases when maternal survival post-

parental care is high (Fig. 2) and juvenile recruitment

to next year’s population size is low.

One important, and possibly underappreciated, point

shown by our model is that biased sex allocation is only

predicted if mothers obtain a ‘saving’ when a depen-

dent offspring dies (analogous to the idea of a substitu-

tion cost; Charnov 1982). In other words, if a mother’s

survival (sF) is completely independent of the fate of

her offspring during the period of parental care (i.e.

p = 0), then unbiased sex allocation is predicted. The

more strongly maternal and offspring survival are caus-

ally linked (i.e. larger values of p), the greater the sex

allocation biases predicted (Fig. 3).

The biases predicted by our model are generally mod-

est (40–60% sons) depending on the above-mentioned

parameters. This is mostly due to the limitations

imposed by population growth (i.e. that a ≤ 1), which

means we only consider a limited, but biologically rele-

vant, parameter space (i.e. sD and sS > 0.5, sF > 0.7 and

p < 0.3, as in Figs 2 and 3). If offspring impose very

large survival costs on their mothers (i.e. p close to 1),

then too few females will survive to maintain the pop-

ulation, causing extinction. In some cases, adaptive sex

allocation could worsen this effect. For example, if off-

spring impose a large cost on maternal survival and

sons tend to die more during the period of care, a

male-biased primary sex ratio is favoured. This will

amplify any shortage of females in the population

caused by the large cost imposed on mothers. It is also

worth noting that slightly weaker sex allocation biases

are predicted for higher offspring survival probabilities,

given the same absolute survival difference between

the sexes (compare with Model 2 below).

As an important conceptual aside, our model can eas-

ily be reformulated to incorporate a scenario where
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Fig. 2 Numerical examples of optimal

sex allocation predictions from Model 1

(maternal survival) with respect to the

survival probabilities of sons and

daughters with two different levels of

adult female survival. The panels on the

left show optimal primary sex ratios (at

fertilization), whereas those on the

right show the resultant sex ratios at

independence. Here, p = 0.2.
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Fig. 3 Numerical examples of optimal

sex allocation predictions from Model 1

(maternal survival), this time with two

different levels of the penalty term p.

Here, sF = 0.8.

ª 2014 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY . J . E VOL . B I OL . 2 8 ( 2 0 1 5 ) 4 2 8 – 43 7

JOURNAL OF EVOLUT IONARY B IOLOGY ª 2014 EUROPEAN SOC I E TY FOR EVOLUT IONARY B IO LOGY

432 A. T. KAHN ET AL.



fathers provide parental care, whereas mothers still

make the sex allocation decisions. Here, no matter how

great the costs of care imposed on fathers, equal sex

allocation is always favoured (see the supplementary

information). This outcome re-emphasizes the impor-

tance of the role of a ‘saving’ in optimal sex allocation.

Mothers are now afforded no saving from offspring that

die before the end of parental care, so they have noth-

ing to gain from biasing sex allocation (even though

their mates would gain from it). This is also a clear

example of sexual conflict over sex allocation decisions

(this result was also derived in Pen & Weissing, 2000b).

In the reformulated version, females do not pay a cost

of providing care; thus, sex allocation is driven solely

by negative frequency-dependent selection, and juve-

nile mortality follows the familiar results usually associ-

ated with adult mortality: it simply increases the per

capita success of surviving offspring of the weaker sex.

Equal investment?
It is instructive to test whether the optimal pattern of

sex allocation predicted by our model equates to equal

investment, as predicted by several authors (e.g. West,

2009 p. 20). A female’s investment for a given repro-

ductive event is her sex allocation decision (x) multi-

plied by the potential cost of that decision (here, the

probability that she dies before getting to reproduce

again). Therefore, a mother’s investment in sons is:

x ½1� ð1� p SSÞ SF � (10)

Investment in daughters takes the form

ð1� xÞ½1� ð1� p SDÞSF � (11)

If we set these two investments to be equal and solve

for optimal sex allocation, we find an identical solution

to that obtained with the reproductive values approach

(i.e. we rederive eq. 9). Therefore, equal investment

into the sexes is indeed favoured, demonstrating that

the scenario being modelled is a special case of the the-

ory of equal investment as Fisher and others have

asserted (Fisher, 1930 p. 143; West, 2009 p. 20).

Sex ratio at independence
When one sex suffers a higher rate of mortality during

parental care, Model 1 shows that biased production of

that sex can be favoured. However, in no cases did this

bias persist to independence (Figs 2 and 3 right col-

umn). Whenever biased primary sex ratios were pre-

dicted, the sex ratio at independence was biased in the

opposite direction. The effect of sex-specific mortality

always outweighed any sex allocation biases.

Model 2: sibling competition model

We next consider a species where females always pro-

duce two young per brood and mothers are responsible

for sex allocation decisions and parental care. During

the period of care, offspring survival is dependent on

the survival of their sibling (and hence influenced by

their sex if mortality is sex-biased). Unlike Model 1, if

an offspring dies, it does not affect its mother’s survival,

but instead its brood mate’s (sibling’s) survival can be

improved. Note that this scenario, where the survival

of mothers is independent of their offspring’s fate,

makes it quite hard to speak in terms of investment per

offspring (as investment ought to be measured as a

reduction in a mother’s ability to produce more

broods). The difficulty of applying equal investment

logic makes this model a particularly interesting one for

unravelling the adaptive dynamics of sex allocation

decisions.

There are four separate phases and hence four transi-

tional processes to consider in this system (Fig. 4): (i)

The population P1 consists of overwintering adult males

(M) and females (F) who are ready to reproduce:

P1 = [M F]T. The first process is then sex allocation:

females ‘decide’ whether they will produce two sons,

two daughters, or one son and one daughter. The inde-

pendent probability that a particular offspring is male

(i.e. the primary sex ratio) is x. In this way, the proba-

bility that a female ‘decides’ to produce two sons is x2

and so on. The first projection matrix is thus:

A1 ¼
1 0

0 x2

0 2xð1� xÞ
0 ð1� xÞ2

2
664

3
775 (12)

M

M
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Fig. 4 Life cycle graphic for Model 2 (sibling competition). Solid

grey lines indicate survival, whereas dashed lines indicate

reproduction. The values on the lines indicate the probability that

an individual from phase i survives/contributes genes to the

corresponding class of individuals in phase i + 1. The values not

shown are (i) [(1–p sS) sS]
2, (ii) 2(1–p sS) sS [1–(1–p sS) sS], (iii) (1–p

sD) sS [1–(1–p sS) sD], (iv) (1–p sD) sS(1–p sS) sD, (v) (1–p sS) sD[1–(1–
p sD) sS], (vi) 2(1–p sD) sD[1–(1–p sD) sD], (vii) [(1–p sD) sD]

2.
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(ii) Now, we have adult males as well as females who

will produce either two sons (FSS), or a son and a

daughter (FSD), or two daughters (FDD): P2 = [M FSS FSD
FDD]

T. Next, offspring are produced. Parents each con-

tribute half their genetic material to the offspring. Male

reproductive success also depends on the per capita

availability of females. Adults are assured survival. The

second projection matrix is:

A2 ¼

1 0 0 0

FSS=ð2MÞ 1=2 0 0

FSD=ð2MÞ 0 1=2 0

FDD=ð2MÞ 0 0 1=2
0 1 1 1

2
66664

3
77775 (13)

(iii) Now, we have adult males and females as well as

the three types of broods: P3 = [M SS SD DD F]T. This is

where things become interesting due to effects of juve-

nile mortality during the period of parental care. Sons

have a baseline survival of sS and daughters sD. One

can think of these baselines as the survival of juveniles

if their sibling were artificially removed prior to hatch-

ing or birth. The survival of an individual offspring is,

however, also dependent on the survival (hence sex) of

its sibling. Specifically, these baseline survival rates are

multiplied by either 1�p sS if they have a brother, or

1�p sD if they have a sister. Here, p is a penalty term

between 0 and 1. If p = 0, offspring survival is indepen-

dent of their sibling’s survival. One or both offspring

could die at this stage, so there are five possible brood

types at the end of this stage (excluding failed broods).

Together with assured adult male and female survival,

this yields seven rows in our third projection matrix:

(iv) Now, we have a population consisting of adults

and the five possible brood compositions: P4 = [M SS S

SD D DD F]T. The final process is recruitment by juve-

niles into the following year’s mating pool and over-

winter survival of adults. For simplicity, both sons and

daughters recruit to the adult population with probabil-

ity a. We will use this parameter to incorporate density

dependence below (as in Model 1, this density depen-

dence exists only for the juvenile stage). Adult male

and female survival is sM and sF, respectively. Thus, the

final projection matrix is:

A4 ¼ SM 2a a a 0 0 0

0 0 0 a a 2a SF

� �
(15)

We set a such the population is stable over time by

ensuring that the number of females in year t is equal

to that in year t+1:

F ¼ 2aFS2Dð1� pSDÞ2ð1� xÞ2þ
2aF SDð1� p SDÞSSð1� pSSÞð1� xÞxþ
af2FSDð1� pSDÞ½1� SD ð1� pSDÞ�ð1� xÞ2þ
2F SD ð1� pSSÞ½1�ð1� pSDÞSSÞð1� xÞ�þF SF

(16)

Solving for a gives

a ¼ ð1� SFÞ=½2 SD ð1� xÞ ð1� p SD þ p SD x � p SS xÞ�
(17)

As with Model 1, it is sensible to only consider cases

where a is less than 1 such that offspring recruitment

probability never exceeds 1 (a biological impossibility).

Here, this is easier to ensure than in Model 1 because

adult female survival (sF) is independent of her sex

allocation decisions in this model. Thus, optimal sex

allocation is less likely to cause population stability

problems in this scenario, especially when adult females

tend to survive to reproduce several times.

Using the same logic as in equations 5 and 6, we can

solve for the stable number of males in this system:

M ¼ ½Fð1� SFÞSSx�=½ð1� SMÞSDð1� xÞ� (18)

As in Model 1, we can also calculate the expected

number of sons and daughters that survive to indepen-

dence to see how the sex ratio at independence (y) is

related to the optimal sex ratio at birth. Because of the

symmetry in how juvenile mortalities are penalized

according to their sibling’s sex and survival, this again

resolves to:

y ¼ ðSS xÞ=½SS x þ SD ð1� xÞ� (19)

The next step is to find the equilibrium reproductive

values (v) of females with different patterns of sex allo-

cation. In particular, we are interested in female repro-

ductive values at phase 2 (i.e. immediately after

making sex allocation decisions). Here, P2 = AP2,

where A = A1A4A3A2. The left dominant eigenvector

of this combined projection matrix A gives the repro-

ductive values of individuals at phase 2. We can then

calculate the fitness (w) of a mutant female using sex

allocation strategy x*:

A3 ¼

1 0 0 0 0

0 ðð1� p SSÞ SSÞ2 0 0 0

0 2ð1� p SSÞSS ð1� ð1� p SSÞ SSÞ ð1� pSDÞ SSð1� ð1� p SSÞSDÞ 0 0

0 0 ð1� p SDÞ SSð1� p SSÞSD 0 0

0 0 ð1� pSSÞSDð1� ð1� p SDÞ SSÞ 2ð1� p SDÞ SD ð1� ð1� p SDÞSDÞ 0

0 0 0 ðð1� p SDÞSDÞ2 0

0 0 0 0 1

2
666666664

3
777777775

(14)
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w ¼ x�2 vSS þ 2 x� ð1� x�Þ vSD þ ð1� x�Þ2vDD (20)

The fitness of a mutant will be maximized at ow/o
x = 0, and this will be an evolutionary stable strategy as

x* approaches x. Solving this gives us the optimal pat-

tern of sex allocation:

x ¼ 1=2 þ fp ðSD þ SSÞ � 2 þ ½4� 4p ðSD þ SSÞþ
p2 ð9S2D � 14SD SS þ 9S2SÞ �1=2g=½8pðSS � SSÞ�

(21)

Model 2: results
Although the solution appears more complex than that

in our first model, the main findings are very similar:

(i) selection favours mothers who produce more of the

sex with greater mortality (and hence imposes a lower

cost on its siblings), (ii) stronger sex allocation biases

are predicted as the sexual asymmetry in mortality

increases, (iii) stronger biases are predicted when the

survival of one offspring has a stronger impact on the

mortality of the other (i.e. high values of p) and 4) if

offspring survival is independent of their siblings (i.e.

p = 0), unbiased sex allocation is predicted (Fig. 5 left

side).

There are two main differences between the results

of the two models. First, the sibling competition model

predicts stronger sex allocation biases than the maternal

survival model, with the strongest possible biases pre-

dicted ranging from 25 to 75% sons when p = 1 and

the difference between sS and sD are maximized (i.e. 0

vs. 1). Second, in the sibling competition model, the

same absolute difference in son and daughter survival
0.
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Fig. 5 Numerical examples of optimal

sex allocation predictions from Model 2

(sibling competition) with respect to the

survival probabilities of sons and

daughters with three different levels of

the penalty, p, on sibling survival. The

panels on the left show optimal primary

sex ratios (at fertilization), whereas

those on the right show the resultant

sex ratio at independence.
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predicts stronger sex allocation biases when survival is

higher (e.g. in the bottom left panel of Fig. 5, a primary

sex ratio of ~0.47 is predicted when sD = 0.5 and

sM = 0.6, but a sex ratio of ~0.45 is predicted when

sD = 0.9 and sM = 1.0, that is the same absolute differ-

ence in offspring survival). This has implications for the

relationship between the sex ratio at fertilization and

independence.

Sex ratio at independence
The relationship between the primary sex ratio and the

sex ratio at independence is more complex in the sib-

ling competition model than the maternal survival

model (Fig. 5 right column). In most cases, the pre-

dicted sex allocation biases are insufficient to overcome

the effect of sex-specific mortality. For example, in the

second example in Fig. 5, biased production of the sex

with lower survival is favoured, but at independence,

the sex ratio is biased towards the better surviving sex.

However, exceptions to this pattern arise when there is

a strong relationship between the mortality of one sib-

ling and greater survival of the other (i.e. high values

of p). The third case of Fig. 5 depicts relatively strong

sex allocation biases that, in most cases, shift to a bal-

anced sex ratio at independence. At high offspring sur-

vival values, however, the weakening of the sex ratio

bias over time is not complete: some bias persists

through to independence.

Discussion

We have investigated optimal sex allocation given sex-

specific juvenile mortality during the period of parental

care. In so doing, we have produced models that empir-

icists could parameterize to make quantitative predic-

tions about optimal primary sex ratios in appropriate

study systems. In general, our models support previous

verbal assertions that when one sex dies more often

during care, biased production of that sex is favoured

(Fisher, 1930; Charnov, 1982; West, 2009). It is, how-

ever, crucial to note that this is only true if the death

of an offspring prior to independence offers some kind

of ‘saving’ (i.e. the surplus resources can be reallocated

into other current/future offspring). If this is not true,

then resources not used by dying juveniles are essen-

tially wasted investment, but even if investment in one

sex is more likely to represent wasted effort, unbiased

sex allocation is predicted.

Past authors have suggested that juvenile mortality

during parental care represents a special case of Fisher’s

theory that optimal sex allocation should represent

equal total investment into the sexes (Fisher, 1930;

Charnov, 1982; West, 2009). Our models have demon-

strated that the sex allocation patterns in quite simple

life-history scenarios can be surprisingly complex. The

situation is not always easily captured via an equal allo-

cation principle. That said, in our maternal survival

model, with a very simple life history, the idea of equal

allocation was readily implemented and correctly pre-

dicted the optimal sex allocation. We suggest that past

authors were correct to discuss this scenario in terms of

equal investment. This might, however, be a less fruit-

ful way to think about the problem in more compli-

cated, but still biologically realistic scenarios (such as

our sibling competition model).

The other verbal argument that we set out to address

was that when there are sex differences in juvenile

mortality, any sex allocation biases would be overcome

by this mortality asymmetry such that the sex ratios at

fertilization and independence are negatively correlated

(Charnov, 1982 p. 29; West, 2009 p. 19). In the mater-

nal survival model, this was indeed the case. In our sib-

ling competition model, this general pattern also

emerged in scenarios that predicted relatively small sex

allocation biases. However, when the survival of sib-

lings was strongly interdependent (i.e. high values of

p), strong sex allocation biases were predicted, but the

sex ratio at independence was largely unbiased, and in

extreme cases, the direction of the primary sex ratio

bias persisted through to the end of the period of

parental care. So it appears, for certain life histories at

least, that the relationship between these sex ratios is

complicated. It is, however, always true that a mortality

bias that favours excess production of one sex will

reduce the sex ratio bias at independence (interestingly,

this is as far as Fisher took this idea: Fisher, 1930

p.143).

Our models predict that, all else being equal (and

assuming transferrable resources), species with sex-spe-

cific juvenile mortality differences will bias sex alloca-

tion towards the sex with higher mortality.

Conceptually, it is interesting to contrast this with the

case of within-species variation in sex-specific juvenile

mortality. For example, consider a species where son

survival during care was dependent on territory quality,

but daughter survival was not. This is a conditional sex

allocation scenario, where one would predict mothers

on high-quality territories to specialize in producing

sons (because they can do so more successfully than

others) and those on poor territories to produce daugh-

ters. Here, the predicted pattern within a species is

opposite to that across species. It follows that experi-

mental tests that use manipulations to induce pheno-

typically plastic changes in sex allocation should fail to

reveal the evolved species-level response to sex-specific

mortality.

In our maternal survival model, which closely resem-

bled the original verbal argument of Fisher (1930), the

sex allocation biases were not particularly strong

(45–55% sons) for most of the biologically meaningful

parameter space. This might explain why there are

currently no published empirical studies supporting (or

indeed testing) this idea in the literature (West, 2009).

There are also several complicating factors that could
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make detecting such a pattern challenging. For exam-

ple, in sexually dimorphic species, the larger sex might

suffer a higher level of mortality during parental care.

On its own, this predicts overproduction of that sex. If,

however, offspring of the larger sex also cost more to

produce (or use resources more rapidly during care),

this could cancel the survival-induced effect. Similarly,

in species with highly developed parental care, sex dif-

ferences in baseline juvenile mortality could be com-

pensated for by sex-biased resource allocation during

parental care rather than before (i.e. instead of biasing

sex allocation). The complexities of life histories in taxa

with parental care, especially birds and mammals,

might mean that we never see an empirical example of

the biased sex allocation envisaged by Fisher (1930).

The challenge for empiricists is to identify taxa with the

requisite natural history to fulfil the model’s key

assumptions.

In our sibling competition model, sex differences in

juvenile mortality change the costs that offspring

impose on their siblings. We found that, again, biased

production of the sex with higher mortality was

favoured, but only when there is competition among

siblings (i.e. juveniles survive better when their sib-

lings die). Similarly, Godfray (1986) demonstrated

that asymmetries in the costs imposed by the sexes

during juvenile competition favour excess production

of the sex with a smaller competitive effect on its sib-

lings. This idea has been neglected by empiricists (but

see Sykes et al., 2007), despite the fact that asymmet-

rical competition between the sexes occurs in several

species (reviewed in Uller, 2006), including humans

(Lummaa et al., 2007). We suggest that this type of

system could be more fruitful for empirical tests for

two reasons. First, our model of sibling competition

showed stronger sex allocation biases (compared to

our maternal survival model), so it should be easier

to detect in the wild. Second, such effects on sex

allocation could occur in species with simple modes

of parental care (e.g. insect species where eggs are

laid in fruit/on hosts and siblings compete for a lim-

ited pool of resources), eliminating some of the con-

founding factors arising from parental adjustment of

care in response to differences in baseline offspring

survival rates.
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 2 

Model 1 extension: What if mothers allocate but fathers care? 

 

Here, we consider an extension of our first model. As before, mothers are responsible for sex 

allocation decisions but males are now responsible for parental care and hence suffer reduced 

survival due to the costs imposed during parental care. As with our first model, there are four 

separate phases and transitional processes to consider (Sup. Fig. 1): 1) Population P1 exists of 

overwintering adult males (M) and females (F) who are ready to reproduce: P1 = [M  F]T. The 

first process is sex allocation: females ‘decide’ whether they will produce a son or a daughter 

this season according to x, the probability of producing a son for any given reproductive event 

(i.e. the primary sex ratio). At this point we also separate fathers based on the sex of offspring 

they will end up caring for. The first projection matrix is thus: 

 

 

(1) 

 

2) Now, the population P2 is made up of adult males and females who will go on to produce 

sons (MS, FS), or daughters (MD, FD): P2 = [MS FS FD MD]T. Reproduction occurs next; parents 

each contribute half their genetic material to the offspring. Male reproductive success also 

depends on the per capita availability of the relevant mates: 

 

 

 

(2) 

  

A1 =  

x 0 

0 x 

0 1–x 

1–x 0 

A2 =  

1 0 0 0 

FS/(2MS) 1/2 0 0 

0 1 1 0 

0 0 1/2 FD/(2MD) 

0 0 0 1 



 3 

3) We then have adult males caring for either a son or daughter, sons (S), daughters (D) and 

females (who are now combined back into one pool): P3 = [MS  S  F  D  MD]T. Next, we deal 

with mortality during the period of parental care, where sons and daughters survive with 

probabilities sS and sD respectively. The projection matrix is thus: 

 

 

 

      (3) 

 

4) As before, we now have adult males (who have now finished caring for either a son or a 

daughter), sons, daughters and females: P4 = [MS  S  F  D  MD]T. The final process is 

overwinter survival (i.e. recruitment to next year’s mating pool). Adult females and males 

overwinter with probabilities sF and sM respectively, except male survival is reduced due to 

the costs of caring. As with our first model, we incorporate the survival costs of parental care 

linearly: son-caring fathers’ survival is multiplied by 1 – p sS, whilst daughter-caring fathers’ 

survival is multiplied by 1 – p sD (0 ≤ p ≤ 1). Both sons and daughters recruit to the adult 

population with probability , which we will set to a value that stabilizes the population (see 

below). Therefore, our final projection matrix is: 

 

     

(4) 

 

As in our first model, we want to set α such the population size is stable from one year to the 

next, by solving: 

 

A3 =  

1 0 0 0 0 

0 sS 0 0 0 

0 0 1 0 0 

0 0 0 sD 0 

0 0 0 0 1 

A4 = 
(1–p sS)sM α 0 0 (1–p sD)sM 

0 0 sF α 0 
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F = sF F + α sD (1–x) F       (5) 

 

which gives us 

 

α = (1 – sF) / [sD (1–x)]        (6) 

 

As above we can find the stable number of males in the system (now more complicated 

because male survival depends on the sex of the offspring they care for): 

 

M = [(1 – sF) sS x F] / {sD (1 – x)[sM – 1 – p sD sM + p sM x (sD – sS)]}  (7) 

 

The next step is to find the reproductive value at equilibrium of females who decide to 

produce either sons or daughters in phase 2 (i.e. immediately after making sex allocation 

decisions). Here, P2 = AP2, where A = A1A4A3A2. The dominant left eigenvector is the 

reproductive values of the four types of individuals (MS, FS, FD and MD) in phase 2. The 

optimal pattern of sex allocation (x) is that which balances the reproductive value of females 

that ‘decide’ to produce sons (FS) with those that ‘decide’ to produce daughters (FD). By 

setting the corresponding values of the left eigenvector to be equal, we can solve for optimal 

sex allocation: 

 

x = 1/2          (8)  



 5 

Supplementary figure legends: 

 

 

Supplementary Figure 1: Life-cycle graphic for our extension of model 1 to paternal 

survival where males provide the parental care, but females still make sex allocation 

decisions. Solid grey lines indicate survival, whilst dashed lines are reproduction. The values 

on the lines indicate the probability that an individual from phase i survives/contributes genes 

to the corresponding class of individuals in phase i+1. 
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