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Females and males may face different selection pressures. Accordingly,
alleles that confer a benefit for one sex often incur a cost for the other. Classic
evolutionary theory holds that the X chromosome, whose sex-biased trans-
mission sees it spending more time in females, should value females more
than males, whereas autosomes, whose transmission is unbiased, should
value both sexes equally. However, recent mathematical and empirical
studies indicate that male-beneficial alleles may be more favoured by the
X chromosome than by autosomes. Here we develop a gene’s-eye-view
approach that reconciles the classic view with these recent discordant results,
by separating a gene’s valuation of female versus male fitness from its ability
to induce fitness effects in either sex. We use this framework to generate new
comparative predictions for sexually antagonistic evolution in relation to
dosage compensation, sex-specific mortality and assortative mating, reveal-
ing how molecular mechanisms, ecology and demography drive variation in
masculinization versus feminization across the genome.
1. Introduction
New genomic approaches paint an increasingly vivid picture of the extent of
sexual antagonism across the genome, identifying specific loci at which fixed
or segregating alleles increase the fitness of their female carriers while decreasing
the fitness of their male carriers, or vice versa [1,2]. The overall action of natural
selection on such alleles depends on how the benefits enjoyed by one sex are
balanced by costs incurred by the other, and since different parts of the genome
are expected to place different values on the fitness of females and males this is
predicted to lead to an intragenomic conflict of interest with respect to sexually
antagonistic traits [3–8]. Conventionally, the X chromosome has been viewed as
placing twice as much value on the fitness of females as it does the fitness of
males, on account of it spending twice as much evolutionary time in the bodies
of females than in the bodies of males, whereas the autosomes have been
viewed as placing equal value on each sex on account of them spending an
equal portion of evolutionary time being carried by males and females [9–16].
Accordingly, the X chromosome and the autosomes have been regarded as
being locked in an intragenomic conflict, inwhich the former favours phenotypes
that are relatively closer to the female optimum and the latter favour phenotypes
that are relatively closer to the male optimum [7,8].

However, this view has been challenged by recent mathematical analysis
which has indicated that male-beneficial alleles may be more—not less—readily
favoured at X-linked loci than at autosomal loci [17,18]. Specifically, this work
suggests that while the condition for an autosomal sexually antagonistic allele
to invade from rarity is the same irrespective of which sex obtains the benefit,
the condition for an X-linked sexually antagonistic allele to invade from rarity is
almost always less stringent when males obtain the benefit and females suffer
the cost than when females obtain the benefit and males suffer the cost, where
benefits and costs are defined according to how the allele’s homozygous and
hemizygous genotype fitnesses differ from those of the resident allele. Empiri-
cal support for masculinized X chromosomes has been found in humans [19],
aphids [20] and stalk-eyed flies [21]. These surprising results have been
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interpreted as directly contradicting evolutionary biologists’
classic understanding of intragenomic conflict [17].

Here, we show that these results are, in fact, fully consistent
with the classic view, by taking an explicit gene’s-eye-view
approach that considers the inclusive-fitness interests of a
single gene rather than a whole genotype [8,22]. By partitioning
a gene’s ‘agenda’ (valuation of female versus male fitness) from
its ‘power’ (ability to exert fitness effects upon females versus
males), we show that the classic view concerns a gene’s agenda
and the discordant results emerge from sex differences in
power.Weuse this framework to generate new comparative pre-
dictions for sexually antagonistic evolution in relation to dosage
compensation, sex-specific mortality and assortative mating,
revealinghowmolecularmechanisms, ecologyanddemography
drive variation in masculinization and feminization across
the genome.
Soc.B
287:20201633
2. Results
We begin by recapping the puzzling mathematical results that
have motivated our analysis. Traditionally, X-linked genes, for
which there is a double-dose in females in comparison with
males, have been viewed as placing twice as great a value
upon the fitness of females as that of males, on account of
their spending twice as much evolutionary time in the bodies
of females as opposed to males [8,23–26]. However, specific
population-genetic models of sexual antagonism have cast
doubt on thisprinciple. If amutant allele confers a fitness benefit
S to one sex and confers a fitness cost T to the other sex when in
its homozygous/hemizygous form, then in the absence of dom-
inance effects the condition for natural selection to favour
invasion of the allele from rarity turns out to be S > T for both
X-linked and autosomal genes, irrespective ofwhich sex obtains
the benefit [15,17]. That is, theX chromosomedoesnot appear to
be particularly biased towards female-beneficial alleles versus
their male-beneficial counterparts.

The situation ismore complex in the presence of dominance
effects. Rice [15] showed that whereas the condition for a
sexually antagonistic allele to invade from rarity on an auto-
some remains S > T, the corresponding condition for the
X chromosome is S > 2hT if it is male-beneficial and S > T/(2h)
if it is female-beneficial, where h is the dominance coefficient.
Accordingly, if the degree of dominance is the same for both
male-beneficial and female-beneficial alleles, then the X
chromosome is expected to become masculinized if mutations
are typically recessive, and feminized if they are typically domi-
nant [15]. However, consideration of the curvature of the fitness
landscape in the interval between the male and female optima
has suggested that dominance coefficients will typically be
reversed in comparisons of beneficial versus deleterious alleles,
such that the heterozygote fitnesses are given by (1− h)S and hT,
respectively [17,27]. This yields the conditions (1− h)S > hT for
autosomal alleles, S > 2hT for male-beneficial X-linked alleles,
and S > T/(2(1− h)) for female-beneficial X-linked alleles (note
that these results are exact in the limit of weak selection;
expressions for stronger selection are provided in the electronic
supplementary material). Accordingly, over almost all domi-
nance coefficients, the X chromosome promotes male-
beneficial alleles over their female-beneficial counterparts [17].

How can these results be reconciled with the view that
X-linked genes place greater value upon the fitness of females
than that of males? The key is to take an explicitly genic,
rather than genotypic, approach. In the absence of domi-
nance, the marginal fitness effect that a single gene has in
the context of the sex in which it is advantageous is σ = S/2
if this sex is diploid at the focal locus (which is the case for
both females and males if the gene is autosomal, and is the
case for females if the gene is X-linked) and is σ = S if this
sex is haploid at the focal locus (which is the case for males
if the gene is X-linked). Likewise, the fitness effect that the
gene has in the context of the sex in which it is disadvanta-
geous is τ = T/2 if this sex is diploid at the focal locus and
is τ = T if this sex is haploid at the focal locus. Accordingly,
if autosomal genes place equal value on the fitness of females
and males, then the condition for invasion of a mutant allele
is σ > τ, which is equivalent to S > T, in agreement with the
above analysis. And if X-linked genes place twice the value
on the fitness of females that they do males, then the con-
dition for invasion of a mutant allele is 2σ > τ when the
allele benefits females and σ > 2τ when the allele benefits
males, which in both cases is equivalent to S > T, again in
agreement with the above analysis. The same logic can be
used to recover the results for the dominance and reversal-
of-dominance scenarios (see electronic supplementary
material for details).

In otherwords, the X-masculinization results are entirely in
line with the classic view of how X chromosomes and auto-
somes value female and male fitness. This equivalence has,
until now, been obscured by a focus on whole genotypes and
genotypic fitnesses, rather than on single genes and the fitness
effects for which they—and they alone—are responsible.
Specifically, X-linked genes do place an extra twofold weight-
ing on their fitness effects in females, as a consequence of
such genes spending a greater fraction of their evolutionary
time in females. In this sense, X-linked genes have a female-
biased agenda. However, since a gene’s impact upon the phe-
notype may become diluted as it moves from a haploid to a
diploid setting [28,29], the relative power of an X-linked gene
to induce fitness effects may be lower in a female carrier than
in a male. This power asymmetry creates a bias towards
male-beneficial strategies that may counteract, and even over-
turn, the X-linked gene’s more fundamental female-biased
agenda.

More generally, the inclusive-fitness consequences of a
gene’s actions may be partitioned into three basic components:
fitness effects, reproductive value and relatedness [8,30]. The
fitness effects are the quantities that vary as a consequence of
the gene adopting alternative strategies and represent the
gene’s power to shape theworld. Reproductive value and relat-
edness together provide a currency conversion that translates
these fitness effects into the gene’s own inclusive-fitness valua-
tion of any given strategy [31,32], and these dictate its agenda.
The particular biological circumstances in which a gene finds
itself will modulate all three components of inclusive fitness,
and by investigating themodulating effects ofmolecularmech-
anisms, ecology and demography we are better able to predict
and understand the relative feminization versus masculiniza-
tion of sex chromosomes across different loci, populations
and species (figure 1).
(a) Fitness effects
First, we consider those factors that shape the magnitude of
costs and benefits in the two sexes (figure 2). One such
factor is dosage compensation. It is often assumed that the
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phenotypes of a mutant homozygote and hemizygote are
comparable [33], and consequently that the fitness effect of
a single mutant X-linked allele is greater in males. This
assumption is often justified by pointing to the existence of
mechanisms that scale gene expression to maintain a constant
X : autosome ratio of gene products across the two sexes,
despite variation in the number of X chromosomes [33].
However, it is now clear that dosage-balancing mechanisms
are not universal and vary across species, genes and develop-
mental stages [34–36]. We explore the effects of this variation
by introducing a parameter γ that scales the mutant fitness
effect in the heterogametic sex between the extremes of no
dosage compensation (γ = 0)—and thus comparable to the
heterozygote—and full dosage compensation (γ = 1)—and
thus comparable to the homozygote. Under additivity, the
ratio of the marginal costs and benefits σ : τ in the two sexes
is (1 + γ)S : T when male-beneficial and S : (1 + γ)T when
female-beneficial. Accordingly, in the limit of full dosage
compensation (γ = 1), the marginal fitness effect in males is
double that in females. But, as dosage balance decreases
(γ < 1), then the marginal fitness effect in males is reduced,
making conditions for invasion of female-beneficial alleles
less stringent and thus driving greater feminization. Other
factors may also modulate the marginal fitness effects in a
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similar fashion, for instance if selection occurs predominantly
in the haploid rather than diploid state of the life cycle [37], if
loci are expressed in a parent-of-origin-specific manner, or if
there remain functional homologues on the Y chromosome
(see electronic supplementary material).

(b) Reproductive value
Second, we consider reproductive value (figure 3). The tra-
ditional view is that a twofold weighting of female fitness
effects arises because twice as many of the X-linked genes of
future generations will descend from females, as compared
with males, in the present generation [23,24] and, accordingly,
selective effects in females are expected to shape future gener-
ations twice as strongly as are selective effects in males.
However, this neednot be the case in populationswith overlap-
ping generations, in which sex-biases in the stable age
distribution may have a modulating effect on the reproductive
values of females and males with respect to autosomal and
X-chromosomal genes ([38,39]; figure 3b). Specifically, the
ratio of female to male class reproductive values in an age-
structured population is x : y for autosomal genes and 2x : y
for X-linked genes, where x is the average age of a newborn’s
mother and y is the average age of a newborn’s father. The
existence of overlapping generations means that individuals
may contribute genes to the future in two ways—through
survival and through reproduction—and our analysis reveals
that these alternative routes are differently affected by sexual
antagonism. Survival effects are weighted by the ratio of the
reproductive values of female versus male survivors, which
is (x− 1) : (y− 1) for autosomes and 2(x− 1) : (y− 1) for X
chromosomes. Hence, under the assumption of age-indepen-
dent mortality and fecundity rates, if a sexually antagonistic
X-linked allele affects survival, then it will invade when
male-beneficial if 2(x− 1)τ < (y− 1)σ and when female-ben-
eficial if (x− 1)σ > (y− 1)τ. By contrast, if the allele affects
fertility, then its fitness effects in males and females are
valued according to their respective genetic shares of their
newborn offspring. For the X chromosome, this means fertility
effects are weighted in the typical 2 : 1 ratio (see electronic
supplementary material).

(c) Relatedness
Third, we consider relatedness (figure 3). Factors such as popu-
lation structure and mating system may generate genetic
correlations between homologous genes residing within the
same individual, i.e. inbredness [40], and the traditional coeffi-
cient of inbreeding provides a measure of the relatedness
between these homologues. For X-chromosomal genes, this
affects males and females differently, as while females are
diploid at their X-linked loci and hence can be inbred, this is
not possible for males on account of their haploidy at X-linked
loci [41]. As inbredness increases, we find that an X-linked
gene in a female values not only its direct fitness impact on
itself, but also its indirect fitness impact on the other, related,
gene copy. This increases the relative importance of fitness
effects in females (figure 3c). To illustrate, under a regime of
assortative mating of degree ϕ, the condition for a male-ben-
eficial allele to invade on the X chromosome is s . 2(tþ ft 0),
and for a female-beneficial allele is 2(sþ fs0) . t, where σ0

and τ 0 are the indirect fitness effects. Thus, a higher degree of
assortative mating can push the invasion conditions in favour
of female-beneficial alleles, even if fitness effects are of a greater
magnitude in males (see electronic supplementary material).
3. Discussion
Taking a gene-centred approach to the problem of sexual antag-
onism has two major advantages. First, it provides conceptual
clarity, resolving apparent contradictions between the female-
biased agendas of X-chromosomal genes and the male-biased
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outcomes of certain population-genetic analyses. Second, it pro-
vides a simple and practical way to separate and properly
understand the factors that affect the outcome of sexually antag-
onistic selection. By considering in turn howdifferent biological
contexts may modulate fitness effects, reproductive values and
relatedness, we can more easily generate new testable hypoth-
eses about sexually antagonistic selection and intragenomic
conflicts (some examples are given in table 1). While sexual
antagonism and sex chromosome evolution have been histori-
cally well-studied topics [9,13–16], there remain significant
gaps in theoretical understanding [49–52]. Here, we have
shown how a gene’s-eye–view approach may facilitate incor-
poration of salient aspects of real-world biology into future
models, making them more empirically informative.

One possible avenue for future empirical investigation con-
cerns the relationship between dosage compensation and sex-
biased gene expression. While previous work has focused on
how and why such dosage compensation systems may have
evolved [53–56], less emphasis has been placed on how sexual
antagonism may manifest differently in different dosage com-
pensation systems (but see [42,57,58]). Given biologists’
increasing knowledge of a variety of sex chromosome systems
and their dosage compensation mechanisms [34–36], this
presents an exciting opportunity for comparative work, both
within and between species. As dosage compensation is
reduced in the gonads of many species [35], we would expect
greater relative feminization in gonad-expressed genes as com-
pared with those expressed in somatic tissues. Additionally, the
degree of dosage compensation may vary across sex chromo-
somes themselves; for example, in Drosophila melanogaster it is
thought that the completeness of dosage compensation varies
with distance from the high-affinity siteswhere the dosage com-
pensation complex binds [59]. Therefore, wewould expect male-
beneficial alleles to invademore readily at loci close to these sites,
yielding a negative relationship between male-biased gene
expression and distance from these binding sites. Current evi-
dence is mixed as to whether these new predictions are met
[42–46], whichmay in part be due to other effects of dosage com-
pensation upon the distribution of sex-biased genes [58].
Similar—but reversed—predictions would also apply to the Z
chromosome, with increased masculinization expected for loci,
tissues and species that have lower dosage compensation.

Moreover, species vary greatly in the pace and span of life
[60], and within many species differences also occur between
the sexes [61]. As we have shown, sex differences in life-history
parameters can play an important role in shaping sexually
antagonistic traits, with genes ultimately placing more value
on the sex in which they spend more time. In our illustrative
model, an asymmetry in mean parental age arises as a conse-
quence of sex-specific mortality (figures 1 and 2). Thus, a
novel—albeit crude—prediction would be that those organ-
isms that typically have higher male mortality, such as
mammals [48,62], will have relatively feminized genomes,
while those with female-biased mortality, such as birds
[63,64], will be relatively masculinzed. However, factors other
thanmortalitymay also affect mean parental age. For example,
the two sexes may enter reproductive maturity at different
times, and fecundity/mating success may vary with age.
Consequently, one sex could have a higher mortality rate—
and thus a shorter expected lifespan—yet have a higher
mean parental age. An example of this is in humans, where
although men typically have a higher mortality rate, the aver-
age father is older than the average mother [65,66]. This may
explain why, despite women having longer lifespans in
almost all societies [67], they nonetheless senesce at a faster
rate [68,69], a phenomenon that is referred to in the medical lit-
erature as the ‘male–female health-survival paradox’ [70,71].
While previous suggestions have been made in relation to
menopause, and women’s lack of direct reproduction in old
age [72], the present analysis identifies the more general asym-
metry in mean age of parentage in humans—whereby fathers
are typically older than mothers—as a potential driver of
these differences between the sexes. Additionally, for those
sexually antagonistic variants affecting senescence, the later-
reproducing sex would be favoured, thus further exacerbating
sexual dimorphism in senescence. With demographic and gen-
etic data on sex-specific vital rates and patterns of senescence
becoming increasingly available [73–75], similar hypotheses
relating intralocus sexual conflict and differences in mean par-
ental age to sex differences in senescence and sex-biased gene
expression will become testable not only in humans, but
across the tree of life.

Furthermore, we have found that the asymmetry on the X
chromosome between an intragenomic ‘social’ setting (females)
and an ‘asocial’ one (males) means that relatedness between
homologous genesmay also play an important role inmodulat-
ing sexual antagonism. While positive relatedness (i.e. due to
inbreeding) pushes invasion conditions in favour of female-
beneficial alleles, scenarios with negative relatedness (i.e. due
to inbreeding avoidance)would do the opposite:with beneficial
effects in females being offset by benefits to negatively related
gene copies, and deleterious effects being countered by costs
to negatively related gene copies (a gene-level form of spite;
[22,76]). Despite the potential importance of this effect of assor-
tative mating, few studies have explicitly considered mating
scheme or population structure with regard to sexual antagon-
ism, and those that have done so have focused instead on how
these may modulate the potential for polymorphism [77–79],
rather than their impact on feminization/masculinization.
Specific mating systems may introduce further complications
involving the relatedness of different individuals to one
another—such as local mate and resource competition [80].
Although not considered here, such intrasexual and intersexual
cooperative and competitive interactions canmodulate the rela-
tive value of males and females [30,80], and thus potentially
modulate feminization versus masculinzation of the genome.
This may occur even for those genes inherited exclusively
from one sex [81,82]. Combining both intra-organismal and
inter-organismal social interactions provides opportunities for
investigating not only how social interaction may modulate
sexual antagonism but also how sexual antagonism may
modulate social interaction [83,84].

Our analysis has focused mainly upon those X-linked genes
forwhich there is nohomologue on theY chromosome, but simi-
lar principles also apply to pseudoautosomal regions. Although
the dynamics of these regions are typically more complicated
[85–87]—as allele frequencies may differ between males and
females even if selection is weak—boundary cases are readily
interpretable. We find that when recombination in males is free
(r≈ 1/2), then these regionswill evolve similarly to ‘true’ autoso-
mal genes, whereas when there is no recombination—yet there
remain functional copies on the Y chromosome—then X-linked
genes are expected to become feminized, as while there remains
the typical 2 : 1weighting on females, themarginal fitness effects
of newmutationsmay be expected to be of similar magnitude in
males and females (see electronic supplementary material).
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However, if the Y chromosome degenerates, and if dosage com-
pensation arises, then the marginal fitness effect in males will
likelybe larger, and thusmale-beneficial allelesmaymore readily
invade. Fromthis,wewould anticipate that X-linked alleles fixed
prior to Y degeneration are more female-biased than those fixed
subsequently.

Finally, while ourmain focus has been upon XYandXO sex
determination systems, our general analysis also applies to
other systems. Our results for X chromosomes can be directly
applied to Z chromosomes simply by switching the roles of
female and male. Similarly, the results we have obtained for
autosomal regions—including those relating to age struc-
ture—will also apply to other systems with similar
transmission genetics, including species that employ environ-
mental sex determination. Along the continuum of sex-bias,
the Y and W chromosomes occupy the extreme ends, as these
are exclusively restricted to males and females, respectively
(figure 3), and although cytoplasmically inherited genes,
such as those carried by mitochondria and chloroplasts, are
most often maternally transmitted, and thus expected to
show extreme female bias [3], they may fall anywhere along
this spectrum, depending on a combination of their mode of
inheritance [88–90] and the nature of the population’s age
structure (see electronic supplementary material). Identifying
the factors that shape the valuations these different genomic
factions place on males and females—and the power they
have in these different contexts—yields a richer understanding
not only of the evolution of sexual dimorphism, but also of the
array of intragenomic conflicts that these sex differences
foment.
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