
BRIEF COMMUNICATION

doi:10.1111/evo.13910

Fisher’s lost model of runaway sexual
selection
Jonathan M. Henshaw1,2 and Adam G. Jones1

1Department of Biological Sciences, University of Idaho, 875 Perimeter MS 3051, Moscow, Idaho, USA
2E-mail: jhenshaw@uidaho.edu

Received October 28, 2019

Accepted December 9, 2019

The bizarre elaboration of sexually selected traits such as the peacock’s tail was a puzzle to Charles Darwin and his 19th century

followers. Ronald A. Fisher crafted an ingenious solution in the 1930s, positing that female preferences would become genetically

correlated with preferred traits due to nonrandom mating. These genetic correlations would translate selection for preferred

traits into selection for stronger preferences, leading to a self-reinforcing process of ever-elaborating traits and preferences. It is

widely believed that Fisher provided only a verbal model of this “runaway” process. However, in correspondence with Charles

Galton Darwin, Fisher also laid out a simple mathematical model that purportedly confirms his verbal prediction of runaway

sexual selection. Unfortunately, Fisher’s model contains inconsistencies that render his quantitative conclusions inaccurate. Here,

we correct Fisher’s model and show that it contains all the ingredients of a working runaway process. We derive quantitative

predictions of his model using numerical techniques that were unavailable in Fisher’s time. Depending on parameter values, mean

traits and preferences may increase until genetic variance is depleted by selection, exaggerate exponentially while their variances

remain stable, or both means and variances may increase super-exponentially. We thus present the earliest mathematical model

of runaway sexual selection.
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In The Descent of Man and Selection in Relation to Sex, Charles

Darwin proposed that the elaborate ornaments of many species,

borne most commonly by males, evolved due to preferences for

such traits by the opposite sex (Darwin 1871). Famously, Darwin

left alone the question of why such apparently extravagant prefer-

ences should evolve in the first place. Ronald A. Fisher provided a

solution in his 1930 book The Genetical Theory of Natural Selec-

tion, expanding upon allusions in an earlier paper (Fisher 1915). If

females have some modest initial preference for a particular trait,

then this preference will become genetically correlated with the

preferred trait. Sexual selection for males with larger trait values

then indirectly favors genes for stronger preferences. This genetic

association can lead to a self-reinforcing process, where both traits

and preference become more extreme over evolutionary time.

It is widely believed that Fisher provided only a qualitative

verbal model of the runaway process, leaving mathematical

formalization to future generations of biologists (e.g., the models

of O’Donald 1962, 1980; Lande 1981; Kirkpatrick 1982). For

instance, Karlin (1992) refers to Fisher’s “qualitative scenario”

and “verbal theory,” and says that “many (others) have tried to

quantify Fisher’s proposal.” O’Donald (1990) similarly writes

that ‘polygenic models [of the runaway process] . . . were first

studied by Lande in 1981’. Hoquet and Levandowsky (2015)

remarked on the oddity that “Fisher, an early pioneer in the

field of applied mathematical statistics, did not construct a

mathematical model of the [runaway] process.” More recently,

Prum (2017) repeats that “Fisher never presented an explicit

mathematical model of his runaway process.”

Despite this widespread belief, Fisher did construct a math-

ematical model of the runaway process, although it was never

published in his lifetime. Fisher’s model was laid out in private

correspondence with Charles Galton Darwin, a physicist who

was also the grandson of his more famous eponymous ances-

tor. These letters, excerpts of which appear in Henry Bennett’s

variorum edition of The Genetical Theory of Natural Selection

(Fisher 1999), were not included in earlier editions of the same
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book (Fisher 1930, 1958). It is consequently no surprise that their

impact has not been widely felt in the field. Indeed, apart from

Bennett’s (1999) own discussion and a passing mention by Ed-

wards (2011), we were unable to find any mention at all of Fisher’s

model in the literature.

Fisher’s model predates the next mathematical treatment of

the runaway process (O’Donald 1962) by 30 years and the first

quantitative genetic treatment (Lande 1981) by half a century. It

is consequently of great interest what his model says and to what

extent it anticipates future work. Here, we dissect Fisher’s model

in detail. We show that, due to a pair of mathematical inconsis-

tencies, Fisher’s quantitative predictions are incorrect. Nonethe-

less, his correspondence contains all the necessary conceptual

and mathematical ingredients for a working model of the run-

away process. We correct his model and derive its predictions

using numerical techniques.

In Fisher’s Words
Before getting started, it is instructive to hear Fisher’s model in

his own words. After reading the first edition of The Genetical

Theory of Natural Selection, C. G. Darwin had written to Fisher

on July 11, 1930, saying that he was “still unconvinced” by the

runaway process and asking for formal mathematical justification

of Fisher’s claims. Fisher replied on October 25, 1932, saying1:

. . . Take x for cock beauty, and y for hen taste [NB: Fisher and
Darwin discussed the runaway process via the example of mate
choice in domestic fowl]. These will vary about some means x̄
and ȳ; of which x̄ will not matter, for there is no natural zero
for this measurement, but ȳ will, for y = 0 would represent
indifference, and ȳ the average intensity of preference. We
may suppose for convenience that x and y are genetic values
so that their averages in the offspring are the averages for the
two parents, and that for each the scale of measurement is
so chosen that the mean values of (x − x̄)2 and (y − ȳ)2 are
both unity. They may be correlated to a degree which must be
determined from the problem so we may put r for the average
value of (x − x̄)(y − ȳ).

We might suppose beauty to be measured objectively e.g. by the
length of feathers in a ruff, but taste will have to be measured
by actual performance. A hen with no taste would mate at
random, i.e., on the average of a number of trials, the average
x of the cock she mates with is x̄ . A selective hen will lose
some opportunities for mating with ugly cocks and will score
a higher average. On our scale of measurement I will say that
her value is y if the average beauty of the cock she chooses is
x̄ + ky. k is a datum depending on powers of discrimination,
opportunities for choice, etc.

1We are grateful to the Special Collections at The University of Adelaide

Library for permission to reproduce these extracts from the R. A. Fisher Dig-

ital Archive (available online at http://hdl.handle.net/2440/67635). Equation

numbers have been added for clarity.

If a cock with specification x1, y1 mates with a hen specified
by x2, y2 the offspring vary about the average x1+x2

2 , y1+y2

2 .
The only hypothesis about heredity we need is that within this
progeny x and y are uncorrelated; if this is true, then the mean
product r in the progeny generation will be merely

1

4
(x1 − x̄ + x2 − x̄)(y1 − ȳ + y2 − ȳ) (F1)

averaged over all matings. If this is the same as in the previous
generation we can find r , for the average value of

(x1 − x̄) (y1 − ȳ) = r and (x2 − x̄) (y2 − ȳ) = r (F2)

while for the rest

(x1 − x̄) (y2 − ȳ) = ky2 (y2 − ȳ) = k and

(x2 − x̄) (y1 − ȳ) = r2 k (F3)

as appears from averaging the kinds of cock which any partic-
ular hen x2, y2 will mate with.

It appears then that

2r = k(1 + r2) or r = 1 − √
1 − k2

k
(F4)

and a selection which raises the average of x by 1
2 k ȳ in each

generation must raise the average of y by 1
2 kr ȳ i.e. ȳ increases

in geometrical progression, supposing k, and therefore r , to
be constant. Of course in this I have ignored all checks, some
of which may work slightly from the start, while others will
certainly come in powerfully later.

Let me know if I have made any headway, as I found my-
self entirely dissatisfied with my inability to get the argument
across, and I hope the point that x and y must be correlated
may remove the difficulty you feel.

Darwin replied, saying that he could not follow the deriva-

tion of (x2 − x̄) (y1 − ȳ) = r2 k (eqn. F3). He also asked Fisher

whether the same exponential increase could be expected in sex-

limited traits that are not under sexual selection, such as milk

yield. Fisher replied on November 22, 1932:

Sorry I left the (x2 − x̄)(y1 − ȳ) evaluation obscure. The argu-
ment would go like this:

Hens selected for or the aggregate of hens having x2 will have
taste above the average by r (x2 − x̄). They will therefore mate
with cocks above the average in beauty by rk(x2 − x̄) and
therefore with cocks above the average in taste by r2k(x2 − x̄).
So the average of (x2 − x̄)(y1 − ȳ) will be the average of
r2k (x2 − x̄)2 = r2 k. The term does not matter, and I doubted
its existence for a while, but it does belong.

I am sending this without answering the rest of your letter, so as
to catch you with the point still in mind. Selous’ observations
on the Ruff, where he has seen the hen passing with perfect self
composure among the crowd of males, who await, but cannot
hurry, her choice, provide a perfect ecological framework for
this runaway type of selection. The hens choose the fashion of
their sons’ ornaments.
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The exponential element, which I agree is the kernel of
the thing, arises from the rate of change in hen taste being
proportional to the absolute average degree of taste (δy ∝ ȳ).
The milk yield is, of course transmitted through the bull, but
the intensity of selection in favour of higher milk yield is not
determined by the average milk yield. Again the drone bee has
large eyes probably only to see the queen during the nuptial
flight, and this quality selected thus in the male is transmitted
presumably both to his sons, and to his daughters’ sons, but
the intensity of selection in no way depends on the actual
average size of the eye, so there is no tendency to exponential
increase.

As far as we know, this was the end of Fisher and Dar-

win’s correspondence on runaway sexual selection, although they

continued to exchange letters for many years (Fisher’s correspon-

dence with C. G. Darwin and many other individuals is available

online in the University of Adelaide’s R. A. Fisher Digital Archive

at http://hdl.handle.net/2440/67635).

Correcting Fisher’s Model
Fisher’s model appears at first glance reasonable enough, but it

contains two subtle inconsistencies. First, Fisher assumes that

both traits x and preferences y have unit variance in the parental

population. However, this normalization procedure is problem-

atic when iterating the model over multiple generations. This is

because re-normalizing female preferences each generation is a

not a neutral “change of scale,” but rather transforms the pref-

erence distribution away from its evolved value, thereby altering

the evolutionary trajectories of both traits and preferences. This

inconsistency might be seen as fairly benign. After all, similar

assumptions are made in most quantitative genetic models of

Fisherian sexual selection (e.g., Lande 1981; Iwasa et al. 1991),

which treat the genetic variances and covariances of traits and

preferences as fixed parameters (for partial relaxations of this as-

sumption, see Barton and Turelli 1991; Pomiankowski and Iwasa

1993). Nonetheless, faithfully accounting for the evolution of

preference variation yields some interesting predictions, as we

shall see.

More egregious is Fisher’s assumption that the covariance

between traits x1 and unexpressed preferences y1 among mat-

ing males equals their covariance in the parental population as a

whole. This assumption is represented by the first part of equation

(F2). In general, however, these two covariances differ. For sim-

plicity, suppose that a female with preference y2 always chooses

partners with trait values of exactly x̄ + ky2 (we relax this assump-

tion in the Supporting Information). For ease of comparison, let

us also retain Fisher’s assumption that σ2
x = σ2

y = 1. In this case,

the covariance between traits and preferences in the parental pop-

ulation is σxy = r , whereas the covariance among mating males

is σx1 y1 = k2 r (for details, see Methods section). The intuition

that these values must differ is most easily obtained when k = 0.

In this case, all females choose males with trait values that are

exactly average. There is consequently no variance in male trait

values, and so the covariance σx1 y1 = 0.

As a consequence of these two inconsistencies, the equilib-

rium condition derived in equation (F4) is incorrect. Below, we

reconstruct and correct Fisher’s model. Doing so requires three

additional assumptions that are not explicit in the original model.

First, we must specify a joint distribution of traits and preferences

in the parental generation. In fact, Fisher’s original argument does

not hold for arbitrary joint distributions, but only those where in-

dividuals with trait values of x̄ + � have preference values of

ȳ + �r on average, regardless of the value of �. We will assume

that traits and preferences in the parental generation follow a bi-

variate normal distribution. Second, we require a more concrete

specification of female choice. For simplicity, we assume that if

a female has preference y2, her mates have trait values that are

exactly ky2 standard deviations above the mean (i.e., there is no

variance around the average in Fisher’s model). We relax this

assumption in the Supporting Information, where we allow for

errors in female mate choice. Third, we allow for the variance in

traits and preferences to be renewed each generation by meiosis

and mutation. Without such variational input, the variance in these

characters would quickly be depleted in the absence of strongly

disruptive or temporally variable selection.

Methods
Following Fisher, we distinguish among trait and preference val-

ues in three contexts: in the parental generation before mating

occurs (x and y), among mating males (x1 and y1) and among mat-

ing females (x2 and y2). We assume that these values are entirely

genetically determined (i.e., with no environmental contribution).

We also suppose that (x, y) initially follows a bivariate normal

distribution (which is implicit in Fisher’s argument). Fisher as-

sumes that x and y have unit variance in the parental generation,

with the consequence that the covariance and the correlation be-

tween these traits coincide. In contrast, we normalize neither traits

nor preferences. We write σ2
x and σ2

y for their variances, σxy for

their covariance, and r = σxy

σx σy
for their correlation.

We will first calculate the variance–covariance matrix for

the traits (x1, y1, x2, y2) among mating pairs. By assumption, nei-

ther trait nor preference is under direct selection in females, and

so their joint distribution (x2, y2) among mating females equals

their distribution (x, y) in the parental generation. This means

that σ2
x2

= σ2
x , σ2

y2
= σ2

y , and σx2 y2 = σxy . In contrast, females’

non-random choice of mates transforms the trait-preference dis-

tribution (x1, y1) of mating males. Fisher assumes that if a female

has mating trait y2, then her mates’ trait values are on average

ky2 standard deviations above the mean. For non-normalized trait
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values, this average is given by x̄ + kσx y2. For simplicity, we

assume that females always mate with males of exactly this trait

value (we relax this assumption in the Supporting Information).

The trait values of mating males are represented by the random

variable x1 = x̄ + kσx y2, where y2 represents the trait values of

mating females. The variance in mating males’ trait values is:

σ2
x1

= k2 σ2
xσ

2
y (1)

By assumption, traits and preferences are bivariate nor-

mal in the parental population and preference values are se-

lectively neutral in males. The distribution of preference values

y1 among males with trait value x1 is then normal with mean

E (y1|x1) = ȳ + r σy

σx
(x1 − x̄) and variance (1 − r2)σ2

y (see, e.g.,

Kotz et al. 2000). Using equation (1) and the law of total variance,

the variance in preference values among mating males is then:

σ2
y1

= E (var (y1|x1)) + var (E (y1|x1))

= σ2
y

(
1 + r2

(
k2σ2

y − 1
))

(2)

Similarly, the covariance between trait and preference values

among mating males is:

σx1 y1 = cov (x1, E (y1|x1)) = k2 rσxσ
3
y (3)

In particular, note that when σx = σy = 1, we have σx1 y1 =
k2 r , which differs from Fisher’s value of r in equation (F2) (see

above).

We now calculate the cross-sex covariances between males

and females of a mating pair. The simplest case is the covariance

between female preferences and male traits, which is just:

σx1 y2 = cov (x̄ + kσx y2, y2) = kσxσ
2
y (4)

Next, we consider the covariance between male and female

trait values. Since x1 = x̄ + kσx y2 and σx2 y2 = rσxσy , we have:

σx1x2 = cov (x̄ + kσx y2, x2) = krσ2
xσy (5)

Similarly, using equation (3) and the relationship y2 =
1

kσx
(x1 − x̄), the covariance between male and female preference

values is:

σy1 y2 = cov

(
y1,

1

kσx
(x1 − x̄)

)
= krσ3

y (6)

Lastly, by bivariate normality, we have x2 = x̄ +
r σx

σy
(y2 − ȳ) + ε, where ε is an error term that is independent of y2,

and by extension of y1. Hence, using equation (6), the covariance

between male preference values and female trait values is:

σy1x2 = cov

(
y1, x̄ + r

σx

σy
(y2 − ȳ) + ε

)
= kr2σxσ

2
y (7)

We can now derive the distribution of the midparent values

of mating pairs, which are given by xm = x1+x2
2 and ym = y1+y2

2 .

These are bivariate normal with means:

x̄m = x̄ + 1

2
kσx ȳ and ȳm = ȳ + 1

2
krσy ȳ, (8)

variances:

σ2
xm

= 1

4

(
σ2

x1
+ 2σx1x2 + σ2

x2

) = 1

4
σ2

x

(
1 + 2krσy + k2σ2

y

)

σ2
ym

= 1

4

(
σ2

y1
+ 2σy1 y2 + σ2

ym

)

= 1

4
σ2

y

(
2 + 2krσy + r2

(
k2σ2

y − 1
))

, (9)

and covariance:

σxm ,ym = 1

4

(
σx1 y1 + σx1 y2 + σx2 y1 + σx2 y2

)

= 1

4
σxσy

(
r + k2rσ2

y + kσy + kr2σy
)

(10)

Let us follow the standard assumption of the infinitesimal

model that the trait and preference values of the offspring of

a given pair are normally distributed, with means equal to the

midparent values and fixed variances that are independent of these

values (Barton et al. 2017). Individual trait and preferences values

in the offspring generation are then given by:

(
x ′, y′) = (xm, ym) + ξ, (11)

where ξ is normally distributed with mean zero and covariance

matrix � = [
σ2

ξx
0

0 σ2
ξy

] . The parameters σ2
ξx

and σ2
ξy

represent vari-

ance in the offspring generation that arises from meiosis or mu-

tation. Note that we assume that these processes have uncorre-

lated effects on traits and preferences, so that the correlation r

arises strictly via nonrandom mating. Under these assumptions,

traits and preferences in the offspring generation are normally dis-

tributed, with means equal to the midparent means in equation (8),

and variances and covariance given by:

σ2
x ′ = σ2

xm
+ σ2

ξx

σ2
y′ = σ2

xm
+ σ2

ξx

σx ′,y′ = σxm ,ym (12)

Given values for the parameters k, σξx and σξy , and initial

values for x̄ , ȳ, σx , σy , and r , we can iterate the above model

numerically to derive the evolutionary trajectory of trait and pref-

erence means, variances, and correlations across generations. For

some values of k, σξx and σξy there is a trajectory where the

variances σ2
x and σ2

y and the covariance σxy are stable across gen-

erations. We located such equilibria “equilibria” by setting the
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expressions in equation (12) equal to their values in the previous

generation and solving numerically.

Results
Our corrected model predicts the occurrence of three qualitatively

different outcomes (Fig. 1; note that the scales on both the hori-

zontal and vertical axes differ among panels):

CLASSIC RUNAWAY

In this case, the mean values of traits and preferences increase

without bound, while their variances and correlation approach a

stable equilibrium.2 This occurs when (1) the parameter k, the

initial variance in preferences, and the variational input to pref-

erences σ2
ξy

are all not too large, (2) traits and preferences re-

ceive new variational input each generation (i.e., σ2
ξx

, σ2
ξy

> 0),

and (3) the initial mean preference is non-zero. At this pseudo-

equilibrium, preferences increase geometrically by a fixed propor-

tion of 1
2 krσy each generation, just as Fisher predicted. Both the

correlation r and the proportional rate of increase at equilibrium

are increasing functions of k (Fig. 2). Although the equilibrium is

stable, it is not a global attractor.

EXPLOSIVE RUNAWAY

The second case occurs when either the initial variance or the

variational input of preferences is large. In this case, both the

means and variances in traits and preferences increase super-

exponentially, quickly reaching absurd values. It is notable that

such explosive behavior can occur even if there is no new vari-

ational input: in this case, selection is so strong that extreme

outliers in the original distributions are strongly favored, leading

to a rapid increase in variance. Such outliers are always available

to selection, because this quantitative genetic model implicitly

assumes an infinite population size and an infinite number of loci

of infinitesimal effect (Barton et al. 2017).

FIZZLE AWAY

Lastly, if there is no variational input (i.e., σ2
ξx

= σ2
ξy

= 0) and

the initial variance in preferences is low, then sexual selection

“fizzles away.” Variation in both traits and preferences converges

to zero, and the means of both traits and preferences plateau after

an initial period of increase. If, alternatively, there is variational

input to traits but not preferences (σ2
ξx

> 0 and σ2
ξy

= 0), then

preferences will plateau while traits increase indefinitely (data

not shown).

2For some parameter combinations, there is additionally an unstable equi-

librium in which traits and preferences are very highly correlated (cf. Karlin

and Raper 1990)

A

B

C

Figure 1. Coevolution of mean trait values (blue) and prefer-

ence values (yellow) under three different scenarios. Note that,

due to the vast differences in trait evolution among these sce-

narios, the scales on both the horizontal and vertical axes differ

among panels. (A) Classic runaway, where mean traits and pref-

erences increase according to a geometric progression. Variances

in traits and preferences and the correlation between them re-

main constant at a stable pseudo-equilibrium. Shown with σy = 1

and σ2
ξx

= σ2
ξy

= 1
2 . (B) Explosive runaway, where the means and

variances of traits and preferences increase super-exponentially.

Shown with σy = 5 and σ2
ξx

= σ2
ξy

= 1
2 . (C) Fizzle away, where vari-

ance in traits and preferences is depleted. Mean traits and pref-

erences initially rise and then plateau. Show with σy = 1 and

σ2
ξx

= σ2
ξy

= 0. All panels are shown with k = 0.5, initial parame-

ters x̄ = 0, ȳ = 0.1, r = 0, σx = 1, and other parameters as noted

above.
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Figure 2. Within-individual correlation r between trait and preference values (blue) and the proportional increase in mean preferences

each generation (yellow) at equilibrium in the “classic runaway” scenario. The variances σ2
x and σ2

y in traits and preferences and the

correlation r are stable across generations. Shown with variational inputs of σ2
ξx

= σ2
ξy

= 1
2 . When k > 0.69, there is no stable equilibrium

for these parameter values and explosive runaway occurs (see Fig. 2).

Our main model assumes that mate choice is perfect, in the

sense that females always choose males with trait values exactly

matching their preferences. Suppose, on the other hand, that re-

alized mate choice is noisy, such that the difference between a

female’s preference and her mate’s trait value can be represented

by a normally distributed “error.” Such noise introduces an addi-

tional source of variation in the trait values (and, by extension,

preferences values) of mating males. This acts to maintain varia-

tion in both characters, and consequently has similar evolutionary

implications to variational input via mutation (see Fig. S1).

Discussion
We have corrected Fisher’s unpublished model of 1932 to produce,

posthumously, the first mathematical model of runaway sexual se-

lection. Despite a pair of mathematical inconsistencies, Fisher’s

letters contain all of the necessary ingredients of a working run-

away process. The corrected model is more complex than Fisher’s

analytic sketch, and our analysis of it relies partly on numerical

techniques that were unavailable in Fisher’s time. Nonetheless,

the corrected model is very close to the conceptual spirit of both

Fisher’s sketch and the verbal model in The Genetical Theory of

Natural Selection. Among modern models, the corrected model

is closest to that of Karlin and Raper (1990), which, however,

contains additional elements such as viability selection on male

traits.

An obvious question is why Fisher never published a formal

model of runaway sexual selection, and here we can only spec-

ulate. First, it is worth noting that the situation is hardly unique.

Fisher often favored verbal over mathematical models in an at-

tempt to reach a wider audience (Edwards 2011), and many verbal

models in The Genetical Theory of Natural Selection were never

formalized by Fisher himself. Perhaps Fisher thought that his ver-

bal model was clear enough, and eschewed the dirty and detailed

work of giving it specific form. On the other hand, there is a hint

of frustration at the end of Fisher’s letter, where he pronounces

himself “entirely dissatisfied with my inability to get the argu-

ment across.” Maybe Fisher never derived a mathematical model

that met his high standards. Notably, many later models of the

runaway process (Lande 1981; Pomiankowski et al. 1991; Iwasa

and Pomiankowski 1995; Day 2000; Kokko et al. 2015) and of

sexual selection more generally (Grafen 1990; Iwasa et al. 1991;

Tazzyman et al. 2014; Dhole et al. 2018: reviewed in Kuijper et al.

2012) are characterized by considerable analytical sophistication

and by numerical techniques that were unavailable or impractical

in Fisher’s pre-digital era.

In contrast to most later work, Fisher’s model contains no

fitness costs or evolutionary constraints that would curb the evo-

lution of elaborate traits. Indeed, he “ignored all checks, some of

which may work slightly from the start, while others will certainly

come in powerfully later.” As a consequence, runaway evolution

occurs very easily in this model. Indeed, a “classic” runaway

is possible whenever initial female preference differs from zero

on average and there is some variational input to both traits and

preferences. Moreover, high initial variance in female preference

can lead to an “explosive” runaway, where both the means and

variances of traits and preferences increase super-exponentially.

It is amusing to imagine a peacock’s tail the size of the uni-

verse, but in reality, of course, such elaboration will be dampened

in multiple ways. First, there will be natural selection favoring

smaller trait values (Lande 1981; Kirkpatrick 1982; Karlin and

Raper 1990), which will likely increase in intensity as elaborate
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traits begin straining the limits of resource acquisition (Fromhage

and Jennions 2016; Henshaw et al. 2019). Second, extreme female

preferences will be selected against if they prevent females from

finding a mate (de Jong and Sabelis 1991; Kokko and Mappes

2005; Priklopil et al. 2015; Dechaume-Moncharmont et al. 2016;

Henshaw 2018). Third, strong selection for ever-elaborating traits

will deplete genetic variance for those traits in finite populations

(Borgia 1979; Kirkpatrick and Ryan 1991; Rowe and Houle 1996;

Kotiaho et al. 2008). If traits already commandeer a large share

of available resources, then presumably few mutations will arise

that increase trait size while maintaining general viability. The

combination of no-cost traits and unbounded genetic variability

in Fisher’s model enables the “explosive” runaway that would be

impossible in a model with either realistic fitness trade-offs or a

finite population or genetic structure.

Fisher’s model was never intended to be realistic. Nonethe-

less, it clearly demonstrates the conceptual operation of the

runaway process and would have provided an admirable formal

basis for further work, had anyone known about it.
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Figure S1 Coevolution of mean trait values (blue) and preference values (yellow) when females choose their mates with a normally distributed error with
variance σ2

ε = 0.5.
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