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Highlights
Recent developments in the field of
genetics show that the degree of pheno-
typic variability among genetically identi-
cal individuals can be under genetic
control and can thus be tuned by natural
selection.

To understand when the degree of intra-
genotypic variability for a trait is the out-
come of adaptive evolution, it is essential
tomap the focal trait to patterns of repro-
duction and survival across the life cycle.

Here, we evaluate the fitness conse-
quences of phenotypic variance for
Genetically identical individuals can be phenotypically variable, even in
constant environmental conditions. The ubiquity of this phenomenon, known
as ‘intra-genotypic variability’, is increasingly evident and the relevant mecha-
nistic underpinnings are beginning to be understood. In parallel, theory has
delineated a number of formal expectations for contexts in which such a
feature would be adaptive. Here, we review empirical evidence across biologi-
cal systems and theoretical expectations, including nonlinear averaging and
bet hedging. We synthesize existing results to illustrate the dependence of
selection outcomes both on trait characteristics, features of environmental
variability, and species’ demographic context. We conclude by discussing
ways to bridge the gap between empirical evidence of intra-genotypic
variability, studies demonstrating its genetic component, and evidence that
it is adaptive.
commonly encountered relationships
between traits, fitness, and environmen-
tal conditions.
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Responses to Environmental Variability
No environment on this planet is stable. Most organisms experience short-term fluctuations
(such as seasonal variation, or stochastic fluctuations in temperature, rainfall, and resources)
as well as longer-term trends (such as those driven by global change). Such environmental
variation drives the eco-evolutionary dynamics that contribute to maintaining genetic variation
between individuals and shapes phenotypic change. In turn, the fate of populations is
determined in part by whether they harbor sufficient phenotypic variation to adapt to changing
environments [1].

Perhaps the most frequently discussed source of phenotypic variation is genetic variation be-
tween individuals. Where sufficient genetic variation exists, a shift in the genetic makeup of the
population will allow some individuals to persist in new conditions. This process can result in
adaptive tracking (see Glossary), where the phenotypic mean of a population tracks a fitness
optimum. Alternatively, adaptive phenotypic plasticity may allow populations to keep pace
with environmental change, as specific genotypes modulate their phenotype in response to
experienced environmental conditions [2]. These two components of population persistence in
variable environments have been extensively studied both theoretically and empirically. An
alternative strategy has received far less attention; changes in the level of phenotypic variance
(rather than the mean) may be a key element in allowing populations to cope with changing
environments.

The evolution of intra-genotypic variability, phenotypic variation observed across genetically
identical individuals, leads to phenotypic variation even in a constant environment [3] (Box 1).
This is in contrast to phenotypic plasticity, in which phenotypic variation is correlated with the
environment. A life history strategy that maintains intra-genotypic variability will increase the
probability that at least some individuals are well suited to particular environmental conditions
[4]. Beyond genetic variation and phenotypic plasticity, intra-genotypic variability can thus be
an important third axis by which populations can persist across changing environmental condi-
tions, and is our focus here.
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Glossary
Adaptive landscape: (fitness
landscape); visualization of the relation
between fitness and one or more
phenotypic characters or genes.
Adaptive tracking: evolutionary
change in the average phenotypic trait in
a population, where the phenotypic
mean tracks a (changing) fitness
optimum.
Bet hedging: selection for increased
geometric mean fitness, despite a
reduction in arithmetic mean fitness, due
to a decrease in the variance in fitness
over generations.
Conservative bet hedging: bet
hedging where selection favors a single
conservative phenotype, thus reducing
fitness variance but without an increase
in the phenotypic variance.
Diversified bet hedging: bet hedging
where selection favors phenotypic
variance within genotypes.
G-matrix: additive genetic variance–
covariance matrix summarizing
inheritance patterns of multiple traits.
Intra-genotypic variability:
phenotypic variation between genetically
identical individuals reared in a constant
environment, most likely due to
differences in an individual’s ability to
buffer micro-environmental
perturbations, leading to stochastic
fluctuations in development.
Jensen’s inequality: mathematical
property of a convex function. The
expected value of a convex function
(where the second derivative is positive)
is higher than the value at the average
x-value, due to nonlinear averaging. In
contrast, the expected value of a
concave function (second derivative is
negative) is lower than the value at the
average x-value.
Long-term fitness: the geometric
mean population growth rate in a
variable environment.
Nonlinear averaging: the expected
value of a nonlinear function (E[f(x)] ) can
differ from the value at the average
x-value (f(E[x])). For convex functions,
Jensen’s inequality is the result.
Phenotypic plasticity: the ability of an
organism to change its phenotype in
response to the environment.
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What Is Known about Intra-genotypic Variability?
Although there are surprisingly few studies investigating the contribution of intra-genotypic vari-
ability to phenotypic variation between individuals, various lines of evidence indicate that intra-
genotypic variability is ubiquitous. Such variance in the variance commonly emerges in artificial
breeding programs, as a nuisance to farmers who seek uniformity in their crops or livestock, for
example, observed in birth weight of rabbits (family: Leporidae) [5], mice (Mus musculus) [6],
and rainbow trout (Oncorhynchus mykiss) [7]. Moreover, breeders have recently started using
intra-genotypic variability as a resilience indicator [8,9]. Intra-genotypic variability has also
been commonly observed for a wide range of traits in experimental model systems such as
vinegar flies (Drosophila melanogaster), yeast (Saccharomyces cerevisiae), or nematodes
(Caenorhabditis elegans) [10–12]. Finally, it has been observed in natural populations of plants
(e.g., in seed banks) [13,14], mammals [e.g., in docility behavior in yellow-bellied marmots
(Marmota flaviventris)] [15], and birds [in fledgling weight in great tits (Parus major)] [16], to list a
few. However, the mechanisms generating intra-genotypic variability are still poorly understood.
The phenotypic differences observed among genetically identical individuals are believed to result
from both: (i) the existence of stochastic micro-environmental variation affecting development
(known as ‘developmental instability’ [17]); and (ii) the ability of an individual’s genotype to buffer
development against these micro-environmental perturbations (and so limiting its effects on
phenotype and thus phenotypic variability) [18].

For intra-genotypic variability to be of relevance for evolutionary ecology, it must be under genetic
control. There is now ample evidence that this is the case, and heritabilities for intra-genotypic var-
iability for a range of traits are reviewed by Hill and Mulder [19]. Moreover, recently it has become
possible to map individual loci that regulate the degree of variability of a trait rather than its mean
[20–22]. Such loci have been mapped in a wide range of organisms and for a variety of traits, for
example, locomotor handedness [12] and bristle numbers [23] in Drosophila, flowering time in
Arabidopsis thaliana [24,25], morphological traits in maize (Zea mays) [26], calcium excretion in
rats (Rattus norvegicus) [27], litter size in pigs (Sus scrofa) [28], and body mass index in humans
[29]. The number of loci associated with variance may be on par with those associated with the
mean [24,30] and there seems little overlap between loci affecting the mean of a trait and its var-
iance [12,30] (although [31] provide a counter-example where the mean and variance are under
the same genetic control).

When Do We Expect Selection for Increased Intra-genotypic Variability?
Given that intra-genotypic variability is under genetic control, we may expect that it can respond
to selection. Results from basic theory allow us to predict selection for intra-genotypic variability
and its direction across a range of contexts. If the relationship between traits and fitness is linear,
for example, in plants, the relation between vegetative and reproductive mass (as a measure for
fitness) [32,33], there is no selection on the degree of variability (Figure 1A,E). However, the
relationship between traits and fitness is often nonlinear. If the shape of the relationship is convex
(accelerating), this means that trait values somemagnitude larger than the mean will result in large
increases in fitness, while trait values equivalently smaller than the mean will result in relatively
small reductions in fitness (Figure 1B,F). Measures of plant size other than weight can yield
such nonlinearities with reproductive output [33], also reported for the relationship between
body size and egg number in mites (Sancassania berlesei) [34] and antler size and lifetime breed-
ing success in red deer (Cervus elaphus) [35]. On average, then, if the trait mean is fixed, fitness
can nonetheless be increased by increasing trait variance, as a result of ‘Jensen’s inequality’, a
mathematical property of nonlinear functions [36,37] (Figure 2A). The consequences of such
nonlinear averaging have been described with respect to species coexistence [38] and may
also be important in the evolution of variance control [39]. For example, Mulder et al. [16] found
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Box 1. Intra-genotypic Variability in Inbred and Outbred Populations

Intra-genotypic variability is often described in the context of genetically identical individuals (e.g., parthenogenic species or isogenic lines). As illustrated in Figure IA,
when several isogenic individuals can be reared in the same nominal environment they often display different trait values. Here, three genetic backgrounds (different
colors) show different degrees of phenotypic variability for size and the estimated variance across genotypes can be used directly to estimate heritability or map vQTLs.
However, intra-genotypic variability also contributes to individual variation in outbred populations. Figure IB represents a population of outbred individuals segregated by
genotypes at a given locus (e.g., A or G) showing variance heterogeneity for size (the colors represent diverse genetic backgrounds). In both inbred and outbred
populations, a given genotypic class is associated with different degrees of phenotypic variability. The key difference is that in an outbred population the observation
of variance heterogeneity can either be driven by the presence of a variance controlling allele (e.g., A or G in this figure; the focus of this manuscript) or could result from
mean-controlling loci interacting epistatically with another locus, leading to variance heterogeneity across genotypes [95,96]. Please note that an instance for inbred
populations is not shown here. Figure IC illustrates this point: on the left, the variance effect is driven by a variance QTL where a polymorphism is directly associated
with a difference in variance across these alleles. On the right, the variance effect results from loci interacting epistatically. The phenotype of the ‘A’ harboring individuals
has low variance (regardless of the genetic background), while the phenotype of the ‘G’ harboring individuals is a function of the genotype at a different locus (illustrated
by the two distributions within the ‘G’ allele). This distinction has important implications for the evolution of variance control and how it is studied. Here, we focus on the
evolution of variance control from the perspective of variance controlling alleles, not variance heterogeneity driven by genetic interactions.While such heterogeneity could
technically be maintained by epistasis under balancing selection, such cases have yet to be documented.
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Figure I. Intra-genotypic Variability in Inbred and Outbred Populations. Abbreviation: QTL, quantitative trait loci.
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that stabilizing selection acts on variance in fledging weight in great tits due to the sigmoidal
curve describing the relationship between fledging weight and recruitment: for such a concave
(decelerating) relationship, an increase in the trait value (here, fledgling weight) yields smaller
increases in fitness than the symmetrical decline.

Moving from constant environments to environments that vary (spatially or temporally), a next
core theoretical driver of the evolution of intra-genotypic variability is bet hedging. Bet hedging
is formally defined as a strategy that leads to a reduction in fitness variance across generations,
thereby increasing geometric mean fitness (long-term fitness), at the cost of arithmetic mean
Trends in Ecology & Evolution, Month 2019, Vol. xx, No. xx 3
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Figure 1. Long-Term Adaptive Landscapes for Different Combinations of a Mean Phenotypic Trait and Variance in That Trait to Illustrate the Conditions
That Might Select for Intra-genotypic Variability. See Appendices S1–S3 in the supplemental information online for more information on how these landscapes were
obtained). Upper row shows results for a stable environment, bottom row shows results for a fluctuating environment. Different columns show results for different
relationships between the phenotypic trait and reproduction, as depicted in the small graphs. The environment modulates the relation between phenotype and fitness,
illustrated by the unbroken and dotted lines. In (A–C) and (E–G), fitness landscapes for continuous phenotypic traits are shown. In (D) and (H), results for a discrete
phenotypic trait are shown. Here, the x-axis shows the proportion of individuals expressing one trait and is plotted against long-term fitness (y-axis). Red colors
indicate higher long-term fitness, blue colors indicate lower values, and values are scaled for each graph separately. Variance has no effect in the case of the linear
relation between phenotypic trait and fitness (A,E), while it results in a higher long-term fitness in the case of a convex relation, due to nonlinear averaging (B,F). When
there is a phenotypic optimum that changes through time, for either a continuous (G) or discrete (H) trait, a bet hedging strategy results in the highest long-term fitness.
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fitness [4] (Figure 2B). In other words, while year-to-year a bet hedging strategy might produce,
on average, fewer offspring, over the long term its fitness will be larger. Germination delays in an-
nual plants provide a classic example of diversified bet hedging, which is our focus here. This in
contrast to conservative bet hedging, in which selection favors a single conservative pheno-
type (these two types of bet hedging may represent two extremes of one continuum, see [40]).
A non-bet hedging strategy, where every year all seeds present germinate, leaves itself vulnerable
to years of adverse environmental conditions where no or few germinants survive, and thus the
population is at risk of extinction. A bet hedging strategy guarantees some seeds will have de-
layed germination and thus persist in the seed bank during harsh years. Bet hedging involves a
reduction in arithmetic mean fitness, accompanied by a reduction in fitness variance. In order
to properly distinguish between bet hedging and nonlinear averaging, the fitness consequences
on both the arithmetic mean and the variance of fitness must therefore be considered [41–43].

Research into bet hedging has often focused on traits related to timing, for example, seed germi-
nation [14,44,45] or diapause duration [46–51]. For these timing-related examples, the process
underpinning bet hedging is often framed as a probability (e.g., probability of germinating). This
implicitly defines the core trait underpinning fitness as discrete (e.g., being a seed or a germinant),
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Figure 2. Two Conditions That Can Result in Selection Favoring Intra-genotypic Variability: (A) Nonlinear Averaging and (B) Bet Hedging. (A) The graph
shows fitness (y) as a function of phenotype (x). If the relation is convex, an increase in the variance in x (indicated by the grey shading) results in a higher expected fitness
value (E[y(x)]) (orange) than the fitness value of the average phenotype (y(E[x])) (blue), as a result of Jensen’s inequality. (B) A bet hedging strategy (orange) reduces variance
in fitness across generations comparedwith a non-bet hedging strategy (blue). Despite a decrease in arithmetic mean fitness, bet hedging leads to an increase in geometric
mean fitness and is thus expected to be favored by natural selection.
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with variance emerging purely from the binomial variance associated with the probability (implying
that variance is maximal for a probabilityP = 0.5, all else being equal). Interestingly, a largemajority
of both empirical and theoretical studies describing bet hedging in other traits (not related to
timing) have also mostly considered discrete traits. Examples include whether or not aphids de-
velop wings [52], left or right handedness in Drosophila [12], investment in spores or vegetative
cells in slime molds (Dictyostelium discoideum) [53], stochastic on- and off-switching of gene ex-
pression in yeast cells [10], as well as an array of theoretical models [54,55]. On consideration, a
clear reason emerges for the observation that studies of bet hedging tend to predominantly focus
on discrete traits: where the optimal trait value fluctuates unpredictably due to a changing envi-
ronment and there is no ‘intermediate’ trait value possible, it is beneficial to express both discrete
traits every time step [56] (Figure 1D,H). However, bet hedging has also been observed in contin-
uous traits, including thermal and phototactic preference in Drosophila [57], egg size in gypsy
moths (Lymantria dispar) [58], and macrophyte (Scirpus maritimus) offspring size [59]. For contin-
uous traits, theory indicates that bet hedging can be beneficial in traits for which the phenotypic
optimum varies between years, provided that the magnitude of environmental fluctuation is suffi-
ciently large [56] (Figure 1C,G) and being a function of howmuch the strength of stabilizing selec-
tion varies through time [60].

Interaction between Environmental Fluctuations and Lifespan on the Evolution of
Variability
In Figure 1, we describe the range of selection scenarios for intra-genotypic variability depending
on both characteristics of the trait: its mapping to fitness and scope of environmental variation.
The broader life history context will also be relevant. This is because fitness emerges from survival
and fertility across the life cycle [61] and other life stages will thus define selective pressures on
intra-genotypic variability, for example, for traits affecting reproduction. Increasing survival prob-
abilities decrease the optimal variance for two relationships between phenotype and reproduction
that we explored (Figure 3; see Appendix S4 in the supplemental information online for more de-
tails on the performed simulations). This demonstrates that modifying survival can alter the opti-
mum variance in another, uncorrelated, fitness component (reproduction) that together
Trends in Ecology & Evolution, Month 2019, Vol. xx, No. xx 5
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Figure 3. Graphs Depict the Optimal Variance in a Phenotypic Trait Affecting Reproduction, as a Function o
Survival Probability per Time-Step (x-Axis) and Environmental Variance (y-Axis). Here we vary it between 0 and
2, while in Figure 1 we set environmental variance at 0 (stable environment) and at 1 (fluctuating environment). We do so
to further explore how environmental variance affects the optimal phenotypic variance for two phenotype-reproduction
relations, where selection favored intermediate phenotypic variance (left: continuous, Figure 1G; right: discrete, Figure 1H)
Like in Figure 1, the environment modulates the relationship between phenotype and fitness, illustrated by the unbroken
and dotted lines (see Appendix S4 in the supplemental information online for more details on these simulations). The
graphs show that higher environmental variance favors higher phenotypic variance. For example, when survival probability
is set at 0.5, increasing the environmental variance from 0 to 2 increases the optimal phenotypic variance from 0 to
0.4 (left) and from 0 to 0.23 (right). Higher survival probabilities favor lower phenotypic variance. For example, when the
environmental variance is set at 1, increasing survival from 0 to 1 decreases the optimal variance from 0.77 to 0 (left), and
from 0.28 to 0 (right).
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determine population fitness, and suggests that the more adverse the habitat is to survival, the
more important it might be to invest in variable offspring. Furthermore, it implies that intra-
genotypic variability, when affecting a trait related to reproduction, may be more adaptive in
short-lived species (e.g., annual plants, Drosophila), as also indicated in results from Koons
et al. [39]. For short-lived species, individuals are at a higher risk of dying without having
reproduced, while for long-lived life cycles (e.g., trees, blue whales), individuals can afford to
have 1 year of zero reproduction, because the yearly fitness is balanced by the high survival [62].

Evolution of Intra-genotypic Variability in Natural Populations
An array of demographic models suggests that, at the phenotypic level, non-zero variance is
adaptive under commonly encountered environmental conditions and trait-phenotype relations
(Figures 1 and 3) [10,16,54,56], but what drives such phenotypic variability? This is largely an
open question and it may, in some cases, reflect nonbiological processes such as measurement
error or incomplete statistical models [63]. More interestingly, however, it may also be due to sto-
chastic variation in gene expression (‘gene expression noise’) [64]. Work on yeast cells has shown
that the average gene expression noise differs between genes, and the degree of variability is
suggested to be dependent on the gene function [65]. For instance, essential genes tend to
have low stochastic variance in expression [65,66], while genes related to stress and plasma-
membrane transporters show elevated noise levels [65,67,68]. Whether increased gene
expression noise is adaptive is under debate, with some studies showing selection against

Image of Figure 3


Trends in Ecology & Evolution
variance-increasing alleles [69,70], while others suggest fitness benefits in response to environ-
mental stress [71,72]. Optimal levels of expression noise will depend on the relationship between
gene expression and emergent phenotype (both functioning and variance) following the principles
linking phenotypic variance to fitness that we outline above. Defining these relationships will help
predict for which genes we expect stochastic variation in expression to be beneficial, under which
conditions, potentially helping explain why we observe gene expression noise in some genes, but
less so in others. For example, for dosage-sensitive genes (in which changing expression levels is
harmful), most genes indeed show low expression noise [69]. Whenever the relationship between
expression level and performance is convex, we expect variance in gene expression to be bene-
ficial [68]. Further, whenever an unpredictable environment changes the optimal gene expression
level, bet hedgingmight be a beneficial strategy. Such an optimum relation has, for instance, been
observed between lactose operon protein expression and fitness of Escherichia coli, whereby the
optimum changes with lactose level [73].

Evidence available to date suggests that heritability for intra-genotypic variability is quite low
[7,15,19]. Assuming that estimates are reasonably unbiased, we have three possible explanations
for a low heritability of intra-genotypic variability. First, it may be a relatively constrained trait, with
little variance. This will be modulated in part by the architecture of the gene networks constraining
the degree of gene expression noise and the degree to which its architecture is sensitive to muta-
tions [74,75]. Second, populations may be close to their fitness optima, such that additional addi-
tive genetic variance has been eroded, though this scenario might be unlikely [76]. Evidence on
whether populations are close to their optima is mixed: theoretical predictions on optimal germina-
tion and flowering probabilities in plants [14,45,77] have been shown to closely match observa-
tions. In contrast, Philippi [78], also focusing on germination probabilities, showed that predicted
optimal strategies did not match the observations. An apparent weak selection towards optimal
bet hedging strategies in specific cases can be due to: (i) selection for bet hedging being of recent
origin, simply resulting in insufficient time for optimal strategies to have evolved; or (ii) selection on
bet hedging being infrequent, implying that bet hedging promoting alleles disappear due to drift or
short-term selection against them, despite being beneficial in the long term [79]. Typically, theoret-
ical predictions assume infinite large populations (e.g., Figures 1 and 3 or [80]). However, real-world
populations consist of individuals that are subject to demographic stochasticity, resulting in genetic
drift. Whether a variance-increasing mutation appearing at one time point will get fixed in the
population depends on the population size, in addition to the selective advantage and the
experienced environment [79]. Moreover, responses to selection are additionally shaped by ge-
netic (co)variances, which have the potential to create a wide range of evolutionary trajectories to-
wards the optimum (Box 2). Third, there may be standing genetic variation associated with
phenotypic variability, but these alleles may appear neutral until particular environmental circum-
stances occur and thus their contribution to heritability would be cryptic (Boxes 1 and 2). Research
studies on this topic have primarily focused on fitness outcomes across environments that fluctu-
ate, but in a stationary manner (i.e., around a consistent mean) over the long term (Figures 1 and 3)
and generally do not allow for context-dependent manifestation of intra-genotypic variability
[81,82]. Transient and directional changes in environmental conditions that co-occurred with
expression of intra-genotypic variability could help sustain populations across challenging
periods [81]. Characterizing these links empirically would require sufficient knowledge of the
system to identify the condition-dependence of expression of intra-genotypic variability, as
well as its demographic consequences as outlined above.

Going Forward
A growing number of studies on intra-genotypic variability are providing heritability estimates and
are enriching a catalogue of loci associated with variability [7,15,19,23,24], however few studies
Trends in Ecology & Evolution, Month 2019, Vol. xx, No. xx 7
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have connected the degree of variability to fitness [16]. Observing heritable variation for variability
tells us nothing about whether variability is adaptive or not, just that it can evolve. However, em-
pirical or theoretical studies quantifying fitness gains from variability (for instance, through bet
hedging) generally lack knowledge of the underlying genetics basis. One notable exception is a
recent study by Mulder et al. [16]. Here, the degree of variability in fledgling weight, in a wild
great tit population, was related to fitness, showing stabilizing selection on intermediate pheno-
typic variance. Such studies are needed to understand when we expect intra-genotypic variation
to evolve (Box 2).

A key priority is now to use theoretical expectations to guide the experiments that will provide em-
pirical evidence. This remains challenging for a number of reasons. First, some of the best empir-
ical examples have relied on humans, laboratory, or domestic animals, making direct application
Box 2. Intra-genotypic Variance in a Quantitative Genetic Framework

In a quantitative genetic model, assuming no dominance or epistasis, an individual’s phenotypic deviation from the population mean can be written as the sum of its
breeding value (A) and an environmental (residual) effect (E), thus: P = A + E. In the absence of any covariance between A and E, the total phenotypic variance (VP)
can be written as VP = VA + VE, where VA is the additive genetic variance and VE is the environmental variance. Intra-genotypic variability involves a genetic component
in the residual variance, where different genotypes can differ in VE. Different approaches to model this genetic component in the residual variance exist [19], for example,
according to an additive model [76,97], where the genetic component of the variance is modelled as an additive effect:

P ¼ Amean þ χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VE þ Avariance

p
½I�

Here, χ is a standard normal deviate, distributed as N(0,1), scaled by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VE þ Avariance

p
. Each individual is now characterized by two breeding values: one determining its

average phenotype (Amean), and one determining the variance around this mean (Avariance). The evolutionary response in a population depends on both additive genetic
variances VA−mean and VA−variance, as well as its covariance [covA(mean,variance)] (which can be summarized in a so-calledG-matrix) (Figure I). Note that here Amean and
Avariance affect the same phenotypic trait; when affecting different phenotypic traits, nonlinear relations between traits, on a phenotypic level, may emerge [98].

Figures 1 and 3 (seemain text) illustrate the fitness consequences of intra-genotypic variability in a phenotypic trait affecting reproduction, obtained using a demographic
model (see Appendices S1–S3 in the supplemental information online). Combining such adaptive landscapes with a quantification of the underlying genetic variances
and covariances (Figure II) will shed light on an array of interesting research questions on the evolution of variance control (see Outstanding Questions).
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Figure I. Evolutionary Trajectories of the Mean and Variance in a Trait. Contour lines depict the fitness landscape, corresponding to Figure 1G (see main text).
For clarity, we only show contour lines here. Green dots indicate the trait combination resulting in the highest fitness. Starting from a population with a low mean trait
value and no variance (black dots), trajectories towards the fitness optimum (green dots) are shown, for varying genetic variances and covariances, using the
multivariate breeder’s equation [99]. Additive genetic variances for the mean (VA−mean) and variance (VA−variance) in phenotypic trait were both set at 0.1 and their
covariance [covA(mean,variance)] at 0. We then, one by one, varied these variance components, while keeping the rest of the G-matrix constant. We assessed how
the phenotypic mean and variance evolve over the course of 200 time steps. Graph on the left shows the effect of varying values for VA−mean, middle graph shows
the effect of varying VA−variance, and graph on the right the effect of changes in covA(mean,variance). Different colors correspond to the range of values for the variable
(see legend). Note that we considered a constant genetic variance–covariance matrix within each scenario, an assumption which might be often violated in natural pop-
ulation [100,101] and/or when environmental conditions change through time [102].
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Figure II. Proposed Workflow to Study the Evolution of Intra-genotypic Variability, Focusing on both the Fitness Consequences and the Genetics
Underlying the Traits. (1,2) By using a demographic model (see Appendices S1–S3 in the supplemental information online) to define the adaptive landscape,
partial selection gradients at a given point in the landscape can be obtained. (3) The additive genetic variance–covariance matrix (G) can be estimated using linear
mixed effects models, based on knowledge on phenotypic similarities between relatives [7,15,16,19]. (4) The evolutionary change in multiple traits (Δz ), in this case
phenotype mean and variance, can be written as the multivariate breeder’s equation [99], as the product of the genetic variance–covariance matrix (G) and the
partial selection gradients for each trait (β).
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of evolutionary predictions complicated (as these populations may not reflect the outcome of
natural selection). Second, inferring the degree to which intra-genotypic variability is adaptive
requires quantifying the impacts of a changing environment on (components of) fitness, which
is intractable unless a life history model can be constructed. This in turn requires measurement
of core individual demographic rates (survival, growth, reproduction) as well as measurements
of how variation in both the trait and the environment affect these demographic rates. Such infor-
mation is rarely available (with the notable exception of plants with seed banks [13,14]). Third,
evolutionary outcomes will be modulated by the degree to which genetic variation is available
for selection to act upon (e.g., both additive genetic variance and covariances with other traits)
(Box 2). Estimating genetic variances (e.g., using mixed effects models [83]) already demand
Trends in Ecology & Evolution, Month 2019, Vol. xx, No. xx 9
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Outstanding Questions
How do life history parameters (from
reproductive rate to lifespan) impact
the adaptive advantage of intra-
genotypic variability? In other words,
is variance control more likely to evolve
in fruit flies than in elephants? And, do
we observe smaller coefficients of vari-
ation and thus potentially higher canali-
zation in long-living species versus
short-living species?

The relationship between canalization,
plasticity, and intra-genotypic variabil-
ity remains poorly understood. For ex-
ample, does intra-genotypic variability
favor the evolution of phenotypic
plasticity and are they genetically
correlated?

What is the genetic correlation
between the mean and the variance,
either affecting the same phenotypic
trait or different phenotypic traits? Are
there categories of traits (e.g., life his-
tory traits) for which such a correlation
is more likely than others?

What is the contribution of cryptic
genetic variation to intra-genotypic
variability? Is a significant fraction of var-
iance controlling alleles only associated
with variance control under certain
(e.g., stressful) environments?

How often do predicted optimal
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large data resources for mean trait values and the situation only worsens when attempting to do
the same for trait variance. Estimating these components (see e.g., [84,85]) requires data on the
relatedness between individuals, which generally calls for genetic analyses. Recent advances in
genomic technology and the developments of powerful analytical tools are enabling the construc-
tion of high quality pedigree on an unprecedented large scale [86,87].

Concluding Remarks
Making robust quantitative predictions on the evolution of variance control in natural populations
requires long-term data on: (i) temporal changes in one or more environmental variables; (ii) individual
phenotypes and demographic rates, interacting with the environment; and (iii) the relatedness
between individuals. Gathering such comprehensive datasets is a considerable undertaking, yet
recognizing the unparalleled value of long-term field studies, a growing number of consortiums
have risen to the challenge. For example, the Soay sheep (Ovis aries) in Scotland have become a
key model to study disease ecology [88], the Amboseli baboon (Papio cynocephalus) project has
transformed the field of behavioral ecology [89], and other long-term studies in birds [90,91] and
in plants [92] promise to be just as valuable. Such studies will provide estimates for key parameters,
such as the genetic component of phenotypic variance and its genetic correlation with themean trait
[7,15,16], that are necessary to refine theoretical models and better understand the evolution of
variance control (see Outstanding Questions). Model systems in laboratory settings remain an
important tool to study the evolution of intra-genotypic variability. They afford the ability to combine
genomics tools with quantitative genetics and creative experimental design, using, for example, ex-
perimental evolution under a range of conditions [93,94]. Although the catalog of variance controlling
loci [variance quantitative trait loci (vQTLs)] that have been mapped to date remains relatively limited,
a population genetics analysis of these loci would shed critical light on the dynamic driving their evo-
lution. Finally, combining the adaptive landscapeswith the evolutionary potential of intra-genotypic
variability will be essential for making predictions about factors driving its evolution. Future studies
applying demographicmodels, such as the one proposed here, to empirical data, will help to explain
the ubiquity of the genetic control of phenotypic variation and to understand its relevance for natural
populations facing environmental changes.
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