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ABSTRACT Natural selection acts on phenotypes constructed over development, which raises the question of how development
affects evolution. Existing mathematical theory has considered either evolutionary dynamics while neglecting developmental
dynamics, or developmental dynamics while neglecting evolutionary dynamics by assuming evolutionary equilibrium. We
formulate a mathematical framework that integrates explicit developmental dynamics into evolutionary dynamics. We consider
two types of traits: genetic traits called control variables and developed traits called state variables. Developed traits are
constructed over ontogeny according to a developmental map of ontogenetically prior traits and the social and non-social
environment. We obtain general equations describing the evolutionary-developmental (evo-devo) dynamics. These equations
can be arranged in a layered structure called the evo-devo process, where five elementary components generate all equations
including those describing genetic covariation and the evo-devo dynamics. These equations recover Lande’s equation as a
special case and describe the evolution of Lande’s G-matrix from the evolution of the phenotype, environment, and mutational
covariation. This shows that genetic variation is necessarily absent in some directions of phenotype space if at least one trait
develops and enough traits are included in the analysis so as to guarantee dynamic sufficiency. Consequently, directional
selection alone is generally insufficient to identify evolutionary equilibria. Instead, “total genetic selection” is sufficient to identify
evolutionary equilibria if mutational variation exists in all directions of control space and exogenous plastic response vanishes.
Developmental and environmental constraints influence the evolutionary equilibria and determine the admissible evolutionary
trajectory. These results show that development has major evolutionary effects.
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Natural selection screens phenotypes produced over develop-1

ment, defined as the construction of the phenotype across2

the lifespan. Thus, a fundamental evolutionary question is how3

development affects evolution. Interest in this question is long-4

standing (Baldwin 1896, Waddington 1959 p. 399, and Gould5

and Lewontin 1979) and has steadily increased in recent decades.6

A fundamental tool to understand how development affects7

evolution is Lande’s (1979) equation. This equation states that8

evolutionary change in the multivariate mean phenotype z̄ is9

∆z̄ = Gβ, where the selection gradient β points in the direction10

of steepest fitness ascent in phenotype space and the additive11

genetic covariance matrix G describes the genetic covariation12

between the traits in phenotype space (Lande 1979; Walsh and13

Lynch 2018). From Lande’s equation, it follows that genetic co-14

variation may divert evolutionary change from the direction of15
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steepest fitness ascent, and may prevent evolutionary change in 16

some directions if genetic variation in those directions is absent 17

(i.e., if G is singular). Thus, Lande’s equation indicates that de- 18

velopment affects evolution by inducing genetic covariation and 19

hence via G (Charlesworth et al. 1982; Cheverud 1984; Maynard 20

Smith et al. 1985). 21

Extensive efforts have been devoted to understand the struc- 22

ture of the G-matrix. Most efforts have been empirical, but 23

progress has been hampered by methodological difficulties 24

(Blows and Hoffmann 2005; Mezey and Houle 2005; Hine and 25

Blows 2006; Blows 2007; Meyer and Kirkpatrick 2008; Kirk- 26

patrick 2009; Pavlicev et al. 2009; Walsh and Blows 2009). For 27

instance: a strict estimation of the G-matrix requires large sam- 28

ple sizes and that an arbitrarily large number of traits is anal- 29

ysed, which is impractical (Hill and Thompson 1978; Pavlicev 30

et al. 2009); determining whether any eigenvalue of G is exactly 31

zero, thus indicating that there is no genetic variation in some 32

direction of phenotype space, is infeasible since one cannot sta- 33
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tistically establish that a quantity is exactly zero (Kirkpatrick34

and Lofsvold 1992; Kirkpatrick 2009); and the structure of the35

G-matrix may change by many factors including time, so as-36

sessing its structure in a given generation offers little guarantee37

of its structure in the future (Kirkpatrick 2009; Björklund et al.38

2013). Simulation and analytical work on the nature of the G-39

matrix has considered the effects of pleiotropy, selection, and40

drift (Jones et al. 2003, 2004, 2007, 2012; Chantepie and Chevin41

2020; Engen and Sæther 2021). Yet, analytical work has been42

hindered by the mathematical complexity of the task (Arnold43

et al. 2008).44

Interest in the evolutionary effects of development has in-45

creased with growing interest in the evolutionary effects of plas-46

ticity, niche construction, extra-genetic inheritance, and devel-47

opmental bias (West-Eberhard 2003; Laland et al. 2015). Many48

studies have modeled the evolution of plasticity and its effects49

on the evolutionary process (Via and Lande 1985; Lande 2009,50

2014; Michel et al. 2014; Lande 2019). Many others have mod-51

eled the evolutionary effects of niche construction (Laland et al.52

1996, 1999, 2001; Lehmann 2007, 2008; Rendell et al. 2011; Cre-53

anza et al. 2012; Creanza and Feldman 2014; Kobayashi et al.54

2019). There are also many models on the evolutionary effects55

of extra-genetic inheritance (Cavalli-Sforza and Feldman 1981;56

Boyd and Richerson 1985; Day and Bonduriansky 2011; Mul-57

lon et al. 2021) and developmental bias (Salazar-Ciudad and58

Jernvall 2002; Salazar-Ciudad and Marín-Riera 2013; Milocco59

and Salazar-Ciudad 2020), although these have not always been60

verbally framed in such terms.61

An important difficulty in understanding how development62

affects evolution is the existing lack of general mathematical63

frameworks that explicitly consider developmental and evolu-64

tionary dynamics. Lande’s equation provides the insight of de-65

velopment as affecting genetic covariation, but Lande’s equation66

has not been derived from an explicit account of development,67

which may hinder insight into the evolutionary effects of devel-68

opment. Lande’s original derivation is based on the standard69

quantitative genetics approach of describing each individual’s70

multivariate phenotype as breeding value plus uncorrelated71

error (Lande 1979). Breeding value is in turn the best linear pre-72

diction of the phenotype from gene content, using least-square73

regression (Fisher 1918; Crow and Kimura 1970; Falconer and74

Mackay 1996; Lynch and Walsh 1998; Walsh and Lynch 2018).75

This linear prediction can be carried out regardless of any mech-76

anism by which the phenotype is constructed over ontogeny.77

Thus, details regarding evolutionary effects of development re-78

main implicit in that approach. Consequently, while breeding79

values may depend on development as well as myriad other80

factors, information of how this dependence occurs is not made81

available by the linear regression of phenotype on gene content.82

This may have limited insight into how development affects the83

G-matrix.84

There is a wide variety of mathematical frameworks that re-85

late to the problem of understanding how development affects86

evolution, but there is a lack of synthesis of these frameworks to87

simultaneously consider developmental and evolutionary dy-88

namics. First, the earliest frameworks of evolutionary dynamics89

considered non-overlapping generations without any class struc-90

ture (Fisher 1922; Wright 1942; Lande 1979; Dieckmann and Law91

1996) (Fig. 1A). These frameworks have been extended in vari-92

ous research lines that could be seen as incorporating different93

aspects of development. One line considers age structure, which94

allows individuals of different ages to coexist and to have age-95

specific survival and fertility rates (Lande 1982; Charlesworth 96

1993, 1994; Durinx et al. 2008; de Vries and Caswell 2018, 2019) 97

(Fig. 1B). An important feature of age-structured models is that 98

the forces of selection decline with age due to demography, in 99

particular due to mortality and fewer remaining reproductive 100

events as age advances (Medawar 1952; Hamilton 1966; Caswell 101

1978; Caswell and Shyu 2017). Such age-specific decline in the 102

force of selection does not occur in unstructured models. 103

Second, age- or stage-structured models have been extended 104

to traits that depend on a continuous variable (e.g., age), under 105

the label of function-valued or infinite-dimensional traits (Kirk- 106

patrick and Heckman 1989; Dieckmann et al. 2006; Coulson et al. 107

2010; Parvinen et al. 2013; Metz et al. 2016; Rees and Ellner 2016). 108

The analogue of the G-matrix for infinite-dimensional traits (i.e., 109

the genetic covariance function) is thought to be commonly sin- 110

gular since increasing the number traits in the analysis is likely 111

to increase genetic correlations, as supported by empirical data 112

(Wagner 1988; Kirkpatrick and Lofsvold 1992; Gomulkiewicz 113

and Kirkpatrick 1992). While these models consider age-specific 114

traits (Cheverud et al. 1983), these models have not considered 115

explicit developmental constraints (but see Avila et al. 2021). 116

Third, another research line in life-history evolution has ex- 117

tended age-structured models to consider explicit developmen- 118

tal constraints, although this literature calls such constraints 119

dynamic rather than developmental (Gadgil and Bossert 1970; 120

Taylor et al. 1974; León 1976; Schaffer 1983; Houston et al. 1988; 121

Houston and McNamara 1999; Sydsæter et al. 2008) (Fig. 1D). 122

Such models consider two types of age-specific traits: control 123

variables that are under genetic control, and state variables that 124

are constructed over ontogeny according to developmental con- 125

straints. This explicit consideration of developmental constraints 126

in an evolutionary context considers that the population is at an 127

evolutionary equilibrium. Thus, this approach identifies evolu- 128

tionarily stable (or uninvadable) controls and associated states 129

using techniques from dynamic optimization such as optimal 130

control and dynamic programming (Gadgil and Bossert 1970; 131

Taylor et al. 1974; León 1976; Schaffer 1983; Houston et al. 1988; 132

Houston and McNamara 1999). While the assumption of evolu- 133

tionary equilibrium has enabled deep and numerous insights, 134

it does not address the evolutionary dynamics which would 135

provide a richer understanding. For instance, evolutionary equi- 136

libria might not be achieved in realistic evolutionary timescales, 137

different equilibria might be achieved from different ancestral 138

conditions, or equilibria might not be achieved at all (e.g., due 139

to evolutionary cycles). 140

Fourth, another research line in quantitative genetics has con- 141

sidered unstructured models where a set of traits are functions 142

of underlying traits such as gene expression or environmental 143

variables (Wagner 1984, 1989; Hansen and Wagner 2001; Rice 144

2002; Martin 2014; Morrissey 2014, 2015) (Fig. 1C). This depen- 145

dence of traits on other traits is used by this research line to 146

describe the developmental map or the genotype-phenotype 147

map, which is akin to the developmental constraints in life- 148

history models. However, as this research line considers no 149

explicit age progression, it considers implicit rather than explicit 150

developmental (i.e., dynamic) constraints. Thus, this line has not 151

considered the effect of age structure nor explicit developmental 152

constraints (Wagner 1984, 1989; Hansen and Wagner 2001; Rice 153

2002; Martin 2014; Morrissey 2014, 2015). Overall, there has been 154

a lack of integration of age structure, developmental constraints, 155

and evolutionary dynamics into a single mathematical frame- 156

work, which has yielded a fragmentary understanding of how 157
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Evolutionary dynamics
No class structure

No developmental constraints
(e.g., Lande 1979)

A

Evolutionary dynamics
Age structure

No developmental constraints
(e.g., Lande 1982)

B Evolutionary dynamics
No class structure

Implicit developmental constraints
(e.g., Wagner 1984)

C

Evolutionary equilibrium
Age structure

Developmental constraints
(e.g., León 1976)

D

Evolutionary dynamics
Age structure

Developmental constraints
(this paper)

F

Life history theoryQuantitative genetics/Adaptive dynamics

Figure 1 Previous mathematical frameworks on the question
of how development affects evolution. Each box refers to a set
of mathematical models considering the indicated assump-
tions. The arrows point to extensions to previous models.

development—which unfolds as the individual ages—affects158

evolution.159

Here we formulate a mathematical framework that integrates160

explicit developmental dynamics into evolutionary dynamics.161

To do this, we model some traits as being constructed over162

ontogeny, as is done in life-history models with dynamic con-163

straints. We simultaneously consider age structure, develop-164

mental constraints, and evolutionary dynamics, and allow for165

environmentally-mediated phenotype construction, environ-166

mental constraints, population dynamics in a fast time scale, and167

environmental dynamics in a slow time scale. Environmentally-168

mediated phenotype construction allows for the developed phe-169

notype to depend on (i) the non-social environment (i.e., plastic-170

ity) and (ii) the social environment, which can mechanistically171

describe extra-genetic inheritance and indirect genetic effects172

(Moore et al. 1997). Environmental constraints allow for the en-173

vironment to depend on individuals’ phenotypes, thus allowing174

for niche construction (though we do not consider ecological175

inheritance). Additionally, developmental constraints allow the176

phenotype to be “predisposed” to develop in certain ways, thus177

allowing for developmental bias. Our methods integrate tools178

from adaptive dynamics (Dieckmann and Law 1996), matrix179

population models (Caswell 2001; Otto and Day 2007), and opti-180

mal control (Sydsæter et al. 2008).181

Materials and Methods182

Overview183

Here we provide an overview of our methods. First, we describe184

the framework’s set-up, including its components and causal185

relationships as well as the three phases in which we divide186

an evolutionary time step. Second, we introduce notation to187

describe the phenotype, environment, and development. This188

gives an explicit description of the developmental dynamics.189

Third, we formally describe the three phases of an evolution-190

ary time step. Fourth, we identify invasion fitness and use it191

to derive an equation describing the evolutionary dynamics of192

genetic traits (i.e., controls) under adaptive dynamics assump-193

tions (Dieckmann and Law 1996). This equation depends on194

what we call the total selection gradient of controls. Thus, we195

obtain a description of explicit developmental and evolutionary196

dynamics. Fifth, we identify the selection gradient in age struc-197

Environment

Fitness

Controls
(genetic traits)

States
(developed traits)

Exogenous
process

(e.g., climate change)
Partners’
controls

Partners’
states

Phenotype
Metaphenotype

Figure 2 Causal diagram among the framework’s compo-
nents. Each arrow indicates the effect of a given variable on
another one. States correspond to developed traits (e.g., body
size) while controls correspond to genetic traits (e.g., gene ex-
pression). The phenotype consists of states and controls. The
metaphenotype consists of states, controls, and environment.
For simplicity, we assume that controls are open-loop, so the
there is no arrow towards controls.

tured populations, which we use to calculate the total selection 198

gradient of controls. Based on this setting, in Appendices 4-12, 199

we derive equations describing the evolutionary dynamics of 200

the various types of traits involved in our framework. 201

Set up 202

We base our framework on standard assumptions of adaptive 203

dynamics (Dieckmann and Law 1996). We consider a large, 204

age-structured, well mixed population of clonally reproducing 205

individuals. The population is finite but, in a departure from 206

Dieckmann and Law (1996), we let the population dynamics be 207

deterministic rather than stochastic for simplicity (so there is 208

no genetic drift). Thus, the only source of stochasticity in our 209

framework is mutation. Each individual has a phenotype consist- 210

ing of two types of traits: age-specific controls and age-specific 211

states (Fig. 2; notation is summarised in Table 1). The values of 212

controls at each age are genetically controlled by genetic loci, 213

although the genetic details such as the number of loci need not 214

be specified given our adaptive dynamics assumptions. States 215

are constructed over development. We separate time scales, so 216

developmental and population dynamics occur in a fast discrete 217

ecological timescale t and evolutionary dynamics occur in a slow 218

discrete evolutionary timescale τ. In addition to this standard 219

separation of time scales used in adaptive dynamics, we add a 220

phase to each evolutionary time step due to social development. 221

Thus, for tractability, we partition a unit of evolutionary time 222

in three phases: socio-developmental (socio-devo) stabilization 223

dynamics, resident population dynamics, and resident-mutant 224

population dynamics (Fig. 3). 225

At the start of the socio-devo stabilization phase of a given 226

evolutionary time τ, the population consists of individuals all 227

having the same resident genotype and phenotype. A new in- 228

dividual arises which has identical genotype and experiences 229

the same environment as the resident, but develops a phenotype 230

that may be different from that of the original resident due to 231

social interactions. This developed phenotype is set as the new 232

resident. This process is repeated until convergence to a socio- 233

devo stable (SDS) resident or until divergence. If development 234

is not social, the resident is trivially SDS so the socio-devo sta- 235

bilization dynamics phase is unnecessary. If an SDS resident 236
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Table 1 Notation summary

Symbol Meaning

x States (developed traits)

y Controls (genetic traits)

z Phenotype (states and controls)

εεε Environment

m Metaphenotype (phenotype and environment)

Na Number of ages

Ns Number of states

Nc Number of controls

Ne Number of environmental variables

g Developmental map

h Environmental map

n Population density

f Fertility

p Survival probability

` Survivorship

w Fitness

λ Invasion fitness

u Stable age distribution

v Reproductive value

φ Force of selection on fertility

π Force of selection on survival

t Ecological time

τ Evolutionary time

θ Socio-devo stabilization time

T Generation time

x̌ Resident states in the context of mutant

ẑ Undeveloped phenotype

aζ Breeding value of ζ

bζ Stabilized breeding value of ζ

Gζ Additive genetic covariance matrix of ζ

Hζ Additive socio-genetic cross-covariance matrix of ζ

sζᵀ

sξ
Stabilized effects of ξ on ζ

dζᵀ

dξ
Total effects of ξ on ζ

δζᵀ

δξ
Semi-total effects of ξ on ζ

∂ζᵀ

∂ξ
Direct effects of ξ on ζ

Resident-mutant
population dynamics

Socio-devo
stabilization dynamics

Resident
population dynamics

Resident SDS resident SDS resident
at carrying cap.

New
resident

Time scale:

Figure 3 Phases of the evolutionary cycle. Evolutionary time
is τ. SDS means socio-devo stable. The socio-devo stabiliza-
tion dynamics phase is added to the standard separation of
timescales in adaptive dynamics, which only consider the
other two phases. The socio-devo stabilization dynamics
phase is only needed if development is social (i.e., if the de-
velopmental map g depends on social partners’ phenotype).

is achieved, the population moves to the next phase; if an SDS 237

resident is not achieved, the analysis stops. We thus study the 238

evolutionary dynamics of SDS phenotypes. 239

If an SDS resident is achieved, the population moves to the 240

resident population dynamics phase. In this phase, the SDS resi- 241

dent undergoes density dependent population dynamics which 242

we assume asymptotically converges to a carrying capacity. 243

Once an SDS resident has achieved carrying capacity, the 244

population moves to the resident-mutant population dynamics 245

phase. At the start of this phase, a random mutant control 246

vector arises in a vanishingly small number of mutants. We 247

assume that control mutation is unbiased and weak. Unbiased 248

control mutation means that mutant controls are symmetrically 249

distributed around the resident controls. Weak control mutation 250

means that the variance of mutant controls around resident 251

controls is marginally small. Weak mutation (Walsh and Lynch 252

2018, p. 1003) is also called δ-weak selection (Wild and Traulsen 253

2007). We assume that the mutant becomes either lost or fixed 254

in the population (Priklopil and Lehmann 2020), establishing a 255

new resident phenotype. 256

Repeating this evolutionary cycle generates long term evolu- 257

tionary dynamics of an SDS phenotype. 258

Phenotype, environment, and development 259

We now introduce notation for the phenotype and environment, 260

and describe the developmental dynamics. Each individual can 261

live from age 1 to age Na ∈N+ = {1, 2, 3, . . .}. The phenotype 262

is composed of Ns ∈ N+ state variables and Nc ∈ N+ control 263

variables that have age specific values. Throughout, we denote 264

resident variables with an “overbar” (¯ ). Let ȳia be the i-th con- 265

trol variable of a resident individual of age a for i ∈ {1, . . . , Nc} 266

and a ∈ {1, . . . , Na} (e.g., a certain gene’s expression level at a 267

given age). Let x̄ia be the i-th state variable of a resident indi- 268

vidual of age a for i ∈ {1, . . . , Ns} and a ∈ {1, . . . , Na} (e.g., a 269

certain tissue’s size at a given age). The controls of a resident of 270

age a are given by ȳa = (ȳ1a, . . . , ȳNca)
ᵀ. The states of a resident 271

of age a are given by x̄a = (x̄1a, . . . , x̄Nsa)
ᵀ. The phenotype of 272

a resident of age a is the vector z̄a = (x̄a; ȳa), where the semi- 273

colon indicates a “linebreak” so that the vector x̄a is placed on 274

top of the vector ȳa, that is, z̄a = (x̄1a, . . . , x̄Nsa, ȳ1a, . . . , ȳNca)
ᵀ. 275

The controls of a resident across life are given by the vector 276

ȳ = (ȳ1; . . . ; ȳNa ). The states of a resident across life are given by 277

the vector x̄ = (x̄1; . . . ; x̄Na ). The resident phenotype across life 278

is the vector z̄ = (x̄; ȳ). The notation for the mutant phenotype is 279

analogous without the overbar (e.g., z). We analogously denote 280

the phenotype of a focal individual, either resident or mutant, 281

with a bullet • subscript (e.g., z•). 282

We now describe an individual’s environment. We assume 283
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that an individual’s environment can be described by Ne ∈N+284

mutually independent environmental variables. Let εia• be the285

i-th environmental variable describing the focal individual’s286

environment at age a for i ∈ {1, . . . , Ne} and a ∈ {1, . . . , Na}287

(e.g., ambient temperature experienced by the focal individual288

at that age). The vector of environmental variables experienced289

by a focal individual at age a is εεεa• = (ε1a•, . . . , εNea•)
ᵀ. That290

the environmental variables are mutually independent means291

that changing one environmental variable at one age does not292

directly change any other environmental variable at any age (i.e.,293

∂εkj•/∂εia• = 0 if i 6= k or a 6= j). We assume that environmental294

variables are mutually independent to be able to write each295

environmental variable as a function of variables that are not296

directly environment variables, which facilitates derivations.297

The environment experienced across life by the focal individual298

is εεε• = (εεε1•; . . . ; εεεNa•). The notation for the environment of a299

resident is analogous without the bullet but with an overbar300

(e.g., ε̄εε), and for a mutant without the bullet or the overbar (e.g.,301

εεε).302

A focal individual’s environment at age a satisfies the envi-303

ronmental constraint given by304

εεεa• = ha(za•, z̄, τ), (1)

for all a ∈ {1, . . . , Na}. The function305

ha(za•, z̄, τ) = (h1a(za•, z̄, τ), . . . , hNea(za•, z̄, τ))ᵀ

is the environmental map at age a and it is a differentiable function306

of the individual’s phenotype at that age (e.g., the individual’s307

behaviour at age a may expose it to a particular environment),308

of the phenotype of social partners of any age (e.g., through309

social niche construction), and of evolutionary time due to slow310

exogenous environmental change (e.g., climate change). The311

environmental map ha can also be a function of the population312

density of the resident (n̄(t) defined below), but ha is not a func-313

tion of ecological time t in any other way. Consequently, the314

resident environment ε̄εε changes slowly: on the one hand, ε̄εε can315

change in ecological time through density dependence, but this316

dependence is evolutionarily immaterial in our analysis because,317

as is standard, we assume mutants arise when residents are at318

carrying capacity in which case the resident population density319

is at equilibrium; on the other hand, ε̄εε evolves over evolutionary320

time τ as it depends on τ indirectly through the resident phe-321

notype and directly due to exogenous environmental change.322

We assume such limited environmental change to enable the323

resident population to reach carrying capacity to be able to use324

relatively simple techniques of evolutionary invasion analysis325

to derive selection gradients.326

We call m• = (z•; εεε•) the metaphenotype (i.e., the aggregate327

of phenotype and environment) of a focal individual. Analo-328

gously, the metaphenotype of a resident is denoted without the329

bullet but with an overbar (e.g., m̄), and the metaphenotype of a330

mutant is denoted without the bullet or the overbar (e.g., m).331

We now describe the process of development. A focal in-332

dividual’s state variables at age a + 1 satisfy the developmental333

constraint given by334

xa+1,• = ga(za•, z̄, εεεa•), (2)

for all a ∈ {1, . . . , Na − 1} with initial condition x1• = x̄1 (pro-335

vided that Na > 1). The function336

ga(za•, z̄, εεεa•) = (g1a(za•, z̄, εεεa•), . . . , gNsa(za•, z̄, εεεa•))
ᵀ

is the developmental map (or genotype-phenotype map) at age a 337

and it is a differentiable function of the individual’s phenotype at 338

that age, the phenotype of the individual’s social partners which 339

can be of any age, and the environment faced at that age (the 340

term developmental function can be traced back to Gimelfarb 341

1982 through Wagner 1984; for the evolutionary implications of 342

similar maps under non-overlapping generations see Mullon 343

and Lehmann 2017, 2018). For simplicity, we assume that the 344

state variables x1• = x̄1 at the initial age are constant, so they 345

are not developmentally constrained and do not evolve. This as- 346

sumption corresponds to the common assumption in life-history 347

models that state variables at the initial age are given (Gadgil 348

and Bossert 1970; Taylor et al. 1974; León 1976; Schaffer 1983; 349

Sydsæter et al. 2008). A focal individual’s developmental map 350

across life is 351

g(z•, z̄, εεε•) = (g1(z1•, z̄, εεε0•); . . . ; gNa−1(zNa−1,•, z̄, εεεNa−1,•)).
(3)

Then, the resident states can be written as x̄ = (x̄1; g(z̄, z̄, ε̄εε)). 352

Phases of the evolutionary cycle 353

We now formally describe the three phases in which we partition 354

an evolutionary time step (Fig. 3). We start with the socio-devo 355

stabilization dynamics phase, which yields the notions of socio- 356

devo equilibrium and socio-devo stability. 357

Socio-devo stabilization dynamics occur as follows. For a 358

resident phenotype z̄ = (x̄; ȳ), new resident states x• are ob- 359

tained from Eq. (2); the resulting z• is set as the new resident; 360

and this is iterated. To write this formally, let θ denote time for 361

the socio-devo stabilization dynamics. During the socio-devo 362

stabilization phase, denote resident states at socio-devo time θ 363

as x̄(θ). Then, writing z̄ in terms of its composing states and 364

controls, the resident states at socio-devo time θ + 1 are given by 365

x̄a+1(θ + 1)

= ga(x̄a(θ + 1), ȳa, x̄(θ), ȳ, ha(x̄a(θ + 1), ȳa, x̄(θ), ȳ, τ)), (4)

for all a ∈ {1, . . . , Na − 1} and with given initial conditions x̄(1) 366

and x̄1(θ + 1) = x̄1. If limθ→∞ x̄(θ) converges, this limit yields a 367

socio-devo stable phenotype as defined below. 368

We say a phenotype z̄ = (x̄; ȳ) is a socio-devo equilibrium 369

if and only if x̄ is produced by development when everyone 370

else in the population has that z̄ phenotype and everyone in 371

the population experiences the same environment; specifically, a 372

socio-devo equilibrium z̄ = (x̄; ȳ) satisfies 373

x̄a+1 = ga(z̄a, z̄, ha(z̄a, z̄, τ)), (5)

for all a ∈ {1, . . . , Na − 1} with initial condition x̄1. We assume 374

that there is at least one socio-devo equilibrium for a given 375

developmental map at evolutionary time τ. 376

It will be useful to note that if the resident phenotype is a 377

socio-devo equilibrium, from Eqs. (1), (2), and (5), it follows 378

that evaluation of the mutant controls at resident controls yields 379

resident variables. That is, if z̄ is a socio-devo equilibrium, then 380

x|y=ȳ = x̄

εεε|y=ȳ = ε̄εε

z|y=ȳ = z̄

m|y=ȳ = m̄.

Now, we say a phenotype z̄ = (x̄; ȳ) is socio-devo stable 381

(SDS) if and only if z̄ is a locally stable socio-devo equilibrium. 382

A socio-devo equilibrium z̄ = (x̄; ȳ) is locally stable if and only 383
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if a marginally small deviation in the initial states x̄(1) from384

the socio-devo equilibrium keeping the same controls leads the385

socio-devo stabilization dynamics to the same equilibrium. Thus,386

a socio-devo equilibrium z̄ is locally stable if all the eigenvalues387

of the matrix388

dx
dx̄ᵀ

∣∣∣∣
y=ȳ

have absolute value strictly less than one (Appendices 14 and389

15). The requirement that this matrix has such eigenvalues arises390

naturally in the derivation of the evolutionary dynamics of states391

(Appendix 9). We assume that there is a unique SDS phenotype392

for a given developmental map at evolutionary time τ.393

Once the SDS resident is reached in the socio-devo stabi-394

lization phase, we continue to the resident population dynam-395

ics phase (Fig. 3). Let the resident phenotype z̄ be SDS. Let396

n̄a(t) denote the density of SDS resident individuals of age397

a ∈ {1, . . . , Na} at ecological time t. The vector of resident398

density at t is n̄(t) = (n̄1(t), . . . , n̄Na (t))
ᵀ. The life cycle is399

age-structured (Fig. 4). At age a, an SDS resident individual400

produces a number A1a(z̄a, z̄, n̄(t)) of offspring and survives401

to age a + 1 with probability Aa+1,a(z̄a, z̄, n̄(t)) (where we set402

ANa+1,Na (z̄a, z̄, n̄(t)) = 0 without loss of generality). The first403

argument of these two functions is the phenotype of the indi-404

vidual at that age, the second argument is the phenotype of405

the individual’s social partners which can be of any age, and406

the third argument is density dependence. The SDS resident407

population thus has deterministic dynamics given by408

n̄(t + 1) = A(z̄, z̄, n̄(t))n̄(t), (6)

where A(z̄, z̄, n̄(t)) is a density-dependent Leslie matrix whose409

entries Aij(z̄j, z̄, n̄(t)) give the age-specific survival probabili-410

ties and fertilities of SDS resident individuals; additionally, the411

first argument of A(z̄, z̄, n̄(t)) is the phenotype vector formed412

by the first argument of Aij(z̄j, z̄, n̄(t)) for all i, j ∈ {1, . . . , Na}.413

We assume that residents in the last age class reproduce (i.e.,414

A1Na (z̄Na , z̄, n̄(t)) > 0) and that residents can survive to the last415

age class with non-zero probability (i.e., Aa+1,a(z̄a, z̄, n̄(t)) > 0416

for all a ∈ {1, . . . , Na − 1}); this ensures that A(z̄, z̄, n̄∗(z̄)) is417

irreducible, with n̄∗(z̄) defined below (Sternberg 2010, section418

9.4). We further assume that residents of at least two consecu-419

tive age classes have non-zero fertility (i.e., A1a(z̄a, z̄, n̄(t)) > 0420

and A1,a+1(z̄a+1, z̄, n̄(t)) > 0 for some a ∈ {1, . . . , Na − 1});421

this ensures that A(z̄, z̄, n̄∗(z̄)) is primitive (Sternberg 2010, sec-422

tion 9.4.1; i.e., raising A(z̄, z̄, n̄∗(z̄)) to a sufficiently high power423

yields a matrix whose entries are all positive). We assume that424

density dependence is such that the population dynamics of the425

SDS resident (Eq. 6) have a unique stable non-trivial equilib-426

rium n̄∗(z̄) (a vector of non-negative entries some of which are427

positive), which solves428

n̄∗(z̄) = A(z̄, z̄, n̄∗(z̄))n̄∗(z̄). (7)

The sum of the entries of n̄∗(z̄) gives the carrying capacity, which429

depends on the SDS resident phenotype. From our assumptions430

rendering A(z̄, z̄, n̄∗(z̄)) irreducible and primitive and from the431

Perron-Frobenius theorem (Sternberg 2010, theorem 9.1.1), it fol-432

lows that A(z̄, z̄, n̄∗(z̄)) has an eigenvalue λ̄ = 1 that is strictly433

greater than the absolute value of any other eigenvalue of the ma-434

trix. This λ̄ describes the asymptotic growth rate of the resident435

population, as the resident population dynamics equilibrium436

n̄∗(z̄) is achieved.437

Age 1 Age 2 Age Na

Figure 4 Age-structured life cycle. The vital rates shown are
those of rare mutants: a mutant of age a produces fa offspring
and survives to age a + 1 with probability pa. See text for the
vital rates of the resident.

Once the resident population has reached the equilibrium 438

n̄∗(z̄), we move on to the resident-mutant population dynam- 439

ics phase (Fig. 3). A rare mutant control y arises, where y is 440

a realization of a multivariate random variable. A mutant has 441

phenotype z = (x; y) where the states x are given by the devel- 442

opmental constraint (Eq. 5); specifically, the states at age a + 1 443

for an individual having the mutant control vector y are given 444

by the developmental constraint 445

xa+1 = ga(za, z̄, εεεa), (8)

for all a ∈ {1, . . . , Na − 1} with initial condition x1 = x̄1, where 446

the mutant’s environment is given by the environmental con- 447

straint 448

εεεa = ha(za, z̄, τ). (9)
Let na(t) denote the density of mutant individuals of age 449

a ∈ {1, . . . , Na} at ecological time t. The vector of mutant den- 450

sity at t is n(t) = (n1(t), . . . , nNa (t))
ᵀ. Given clonal reproduc- 451

tion, the population dynamics of the resident and rare mutant 452

subpopulations are then given by the expanded system 453n̄(t + 1)

n(t + 1)

 =

A(z̄, z̄, n̄(t)) 0

0 A(z, z̄, n̄(t))

n̄(t)

n(t)

 ,

where the mutant projection matrix A(z, z̄, n̄(t)) is given by 454

evaluating the first argument of A(z̄, z̄, n̄(t)) at the mutant phe- 455

notype. Hence, A(z, z̄, n̄(t)) is a density-dependent Leslie ma- 456

trix whose ij-th entry is Aij(zj, z̄, n̄(t)) that gives either the age- 457

specific survival probability (for i > 1) or the age-specific fertility 458

(for i = 1) of mutant individuals in the context of the resident. 459

The rare mutant subpopulation thus has population dynamics 460

given by n(t + 1) = A(z, z̄, n̄(t))n(t). 461

As mutants are rare, the mutant population dynamics around 462

the resident equilibrium n̄∗(z̄) are to first order of approximation 463

given by 464

n(t + 1) ≈ Jn(t), (10)
where the local stability matrix for the mutant (Appendix 14) is 465

J =
∂A(z, z̄, n̄)n

∂nᵀ

∣∣∣∣
n=n∗

=

(
∂

∂nj

Na

∑
k=1

Aik(zk, z̄, n̄)nk

∣∣∣∣∣
n̄=n̄∗

)
=
(

Aij(zj, z̄, n̄∗(z̄))
)

.

Explicitly, 466

J =



f1 f2 · · · fNa−1 fNa

p1 0 · · · 0 0

0 p2 · · · 0 0
...

...
. . .

...
...

0 0 · · · pNa−1 0


, (11)
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where we denote the mutant’s fertility at age a at the resident467

population dynamics equilibrium as468

fa = fa(za, z̄, εεεa) = A1a(za, z̄, n̄∗(z̄)) (12a)

and the mutant’s survival probability from age a to a + 1 as469

pa = pa(za, z̄, εεεa) = Aa+1,a(za, z̄, n̄∗(z̄)). (12b)

We denote the fertility of a neutral mutant of age a as f ◦a =470

fa(z̄a, z̄, ε̄εεa) = A1a(z̄a, z̄, n̄∗(z̄)) and the survival probability of471

a neutral mutant from age a to a + 1 as p◦a = pa(z̄a, z̄, ε̄εεa) =472

Aa+1,a(z̄a, z̄, n̄∗(z̄)), where the superscript ◦ denotes evaluation473

at y = ȳ (so at z = z̄ as the resident is a socio-devo equilibrium).474

Evolutionary dynamics of controls475

We can now identify invasion fitness and use it to obtain an equa-476

tion describing the evolutionary dynamics of controls. Invasion477

fitness is the asymptotic growth rate of the mutant population478

and it enables the determination of whether the mutant invades479

the resident population (i.e., whether the mutation increases in480

frequency) (Otto and Day 2007). Because we assume that an481

individual’s environment εεε• only depends on ecological time482

t through density dependence n̄(t) and because J is evaluated483

at the resident equilibrium n̄∗, we have that J is constant with484

respect to t. Therefore, the asymptotic population dynamics485

of the mutant subpopulation around the resident equilibrium486

are given to first order of approximation by the eigenvalues487

and eigenvectors of J. As for residents, we assume that mu-488

tants in the last age class reproduce ( fNa > 0) and that mutants489

can survive to the last age class with non-zero probability (i.e.,490

pa > 0 for all a ∈ {1, . . . , Na − 1}); so J is irreducible (Sternberg491

2010, section 9.4). We similarly assume that mutants of at least492

two consecutive age classes have non-zero fertility (i.e., fa > 0493

and fa+1 > 0 for some a ∈ {1, . . . , Na − 1}); so J is primitive494

(Sternberg 2010, section 9.4.1; i.e., raising J to a sufficiently high495

power yields a matrix whose entries are all positive). Then, from496

the Perron-Frobenius theorem (Sternberg 2010, theorem 9.1.1),497

J has a real positive eigenvalue λ = λ(y, ȳ) whose magnitude498

is strictly larger than that of the other eigenvalues. Such lead-499

ing eigenvalue λ is the asymptotic growth rate of the mutant500

population around the resident equilibrium, and thus gives the501

mutant’s invasion fitness. Since the population dynamics of502

rare mutants are locally given by Eq. (10) where J projects the503

mutant population to the next ecological time step, the mutant504

population invades when invasion fitness satisfies λ > 1.505

We consider the evolutionary change in controls from the506

evolutionary time τ, specifically the point at which the socio-507

devo stable resident is at carrying capacity as marked in Fig. 3, to508

the evolutionary time τ + ∆τ at which a new socio-devo stable509

resident is at carrying capacity. The vector y is a realization of a510

multivariate random variable y with probability density M(y, ȳ)511

called the mutational distribution (Dieckmann and Law 1996),512

with support in RNa Nc (abusing notation, we denote a random513

variable and its realization with the same symbol, as has been514

common practice—e.g., Lande 1979 and Lynch and Walsh 1998,515

p. 192). We assume that the mutational distribution is such that516

(i) the expected mutant control is the resident, E[y] = ȳ; (ii)517

mutational variance is marginally small (i.e., selection is δ-weak)518

such that 0 < E[||y− ȳ||2] = tr(cov[y, y]) = ∑Nc
i=1 ∑Na

a=1 E[(yia −519

ȳia)
2]� 1; and (iii) mutation is unbiased, that is, the mutational520

distribution is symmetric so skewness is E[(y− ȳ)(y− ȳ)ᵀ(y−521

ȳ)] = 0. Given small mutational variance, Taylor-expanding λ522

with respect to y around ȳ, invasion fitness is to first order of 523

approximation given by 524

λ = 1 + (y− ȳ)ᵀ
dλ

dy

∣∣∣∣
y=ȳ

+ O(||y− ȳ||2), (13)

where we use the fact that λ|y=ȳ = 1 due to density depen- 525

dence. A given entry of the operator d/dy|y=ȳ, say d/dyai|y=ȳ, 526

takes the total derivative with respect to yia while keeping all 527

the other controls yjk constant. Hence, we refer to dλ/dy|y=ȳ 528

as the total selection gradient of controls y, which takes the total 529

derivative considering both developmental constraints (Eq. 8) 530

and environmental constraints (Eq. 9) (Appendix 16). Thus, the 531

total selection gradient of controls can be interpreted as measur- 532

ing total genetic selection. Since the mutant population invades 533

when λ > 1 and mutational variances are marginally small (i.e., 534

selection is δ-weak), the mutant population invades if and only 535

if 536

(y− ȳ)ᵀ
dλ

dy

∣∣∣∣
y=ȳ

> 0,

to first-order of approximation. The left-hand side of this in- 537

equality is the dot product of total selection on controls and the 538

realized mutational effect on controls (y− ȳ). The dot product 539

is positive if and only if the absolute value of the smallest an- 540

gle between two non-zero vectors is smaller than 90 degrees. 541

Hence, the mutant population invades if and only if total selec- 542

tion on controls has a vector component in the direction of the 543

mutational effect on controls. 544

In Appendix 1, we show that the evolutionary dynamics 545

of controls are given by a form of the canonical equation of 546

adaptive dynamics: 547

∆ȳ
∆τ

= Gy
dλ

dy

∣∣∣∣
y=ȳ

, (14a)

where 548

Gy = cov[y, y] (14b)

is equivalently the mutational covariance matrix (of controls) 549

and the additive genetic covariance matrix of controls (cf. Eq. 6.1 550

of Dieckmann and Law 1996, Eq. 23 of Durinx et al. 2008, p. 332 551

of Fisher 1922, and Eq. 12 of Morrissey 2015). The canonical 552

equation typically involves an additional scalar proportional 553

to mutation rate and population size (cf. Eq. 6.1 of Dieckmann 554

and Law 1996 and Eq. 23 of Durinx et al. 2008) but Eq. (14a) 555

does not because of our assumption of deterministic population 556

dynamics, consistently with previous results (e.g., Eqs. 6 and 25 557

of Wagner 1989). 558

From our definition of y, Gy is a block matrix whose aj-th 559

block entry is the matrix Gya ,yj = cov[ya, yj], which is the muta- 560

tional or additive genetic cross-covariance matrix of the controls 561

ya at age a with the controls yj at age j. In turn, the ik-th entry of 562

Gya ,yj is Gyia ,ykj = cov[yia, ykj] which is the mutational or addi- 563

tive genetic covariance between the control yia and the control 564

ykj. Since y ∈ RNa Nc×1, then Gy ∈ RNa Nc×Na Nc . 565

Using a modification of the terminology of Houle (2001) and 566

Klingenberg (2005, 2010), we say that there are no genetic con- 567

straints for a vector ζ if and only if all the eigenvalues of its 568

additive genetic covariance matrix Gζ are equal and positive; 569

that there are only relative genetic constraints if and only if Gζ 570

has different eigenvalues but all are positive; and that there are 571

absolute genetic constraints if and only if Gζ has at least one zero 572
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eigenvalue (i.e., Gζ is singular). If ζ = y, we speak of mutational573

rather than genetic constraints. For example, we say there are574

absolute mutational constraints if and only if Gy is singular, in575

which case there is no mutational variation in some directions of576

control space. Hence, if there are absolute mutational constraints577

(i.e., Gy is singular), the evolutionary dynamics of controls can578

stop (i.e., ∆ȳ/∆τ = 0) with a non-zero total selection gradient of579

controls (i.e., dλ/dy|y=ȳ 6= 0) (because a homogeneous system580

Ax = 0 has non-zero solutions x with A singular if there is any581

solution to the system).582

As the resident controls evolve, the resident state variables583

evolve. Specifically, at a given evolutionary time τ, from Eq. (8)584

resident states are given by the recurrence equation585

x̄a+1 = g◦a = ga(z̄a, z̄, ε̄εεa), (14c)

for all a ∈ {1, . . . , Na − 1} with x̄1 constant and ε̄εεa = ha(z̄a, z̄, τ).586

Intuitively, the evolutionary dynamics of states thus occur as587

an outgrowth of the evolutionary dynamics of controls and are588

modulated by the environmental dynamics.589

Eq. (14a) describes the evolutionary dynamics of controls and590

Eq. (14c) describes the developmental dynamics of states, so to-591

gether Eqs. (14) describe the evo-devo dynamics. To characterize592

the evo-devo process, we obtain general expressions for the total593

selection gradient of controls and for the evolutionary dynamics594

of the phenotype and the metaphenotype. To do this, we first de-595

rive the classical form of the selection gradient in age-structured596

populations, upon which we build our derivations.597

Selection gradient in age-structured populations598

To calculate the evo-devo dynamics given by Eqs. (14), we need599

to calculate the total selection gradient of controls dλ/dy|y=ȳ.600

Since the life cycle is age structured (Eq. 11 and Fig. 4), the601

total selection gradient of controls has the form of the selection602

gradient in age structured populations, which is well-known603

but we re-derive it here for ease of reference.604

We first use an eigenvalue perturbation theorem to write the605

selection gradient, which suggests a definition of relative fitness.606

Let ζ̄ and ζ respectively denote a resident and mutant trait value607

(or more specifically, ζ̄ is an entry of m̄ and ζ is an entry of m).608

From a theorem on eigenvalue perturbation (Eq. 9 of Caswell609

1978 or Eq. 9.10 of Caswell 2001), the selection gradient of ζ is610

∂λ

∂ζ

∣∣∣∣
y=ȳ

=
1

v◦ᵀu◦
v◦ᵀ

(
∂J
∂ζ

∣∣∣∣
y=ȳ

)
u◦

=
1

v◦ᵀu◦
Na

∑
i=1

Na

∑
j=1

v◦i

(
∂Jij

∂ζ

∣∣∣∣
y=ȳ

)
u◦j , (15)

where v and u are respectively dominant left and right eigenvec-611

tors of J (Eq. 11). The vector v lists the mutant reproductive val-612

ues and the vector u lists the mutant stable age distribution. In613

turn, v◦ = v|y=ȳ lists the neutral (mutant) reproductive values614

and u◦ = u|y=ȳ lists the neutral (mutant) stable age distribution.615

Substituting Jij for the entries in Eq. (11) yields616

∂λ

∂ζ

∣∣∣∣
y=ȳ

=
1

v◦ᵀu◦
Na

∑
j=1

u◦j

(
v◦1

∂ f j

∂ζ

∣∣∣∣
y=ȳ

+ v◦j+1
∂pj

∂ζ

∣∣∣∣
y=ȳ

)
, (16)

where we let vNa+1 = 0 without loss of generality. Eq. (15) moti-617

vates the definition of the relative fitness of a mutant individual618

per unit of generation time as619

w =
1

v◦ᵀu◦
v◦ᵀJu◦ =

1
v◦ᵀu◦

Na

∑
i=1

Na

∑
j=1

v◦i Jiju◦j (17)

(cf. Lande 1982, his Eq. 12c) and of the relative fitness of a mutant 620

individual of age j per unit of generation time as 621

wj =
1

v◦ᵀu◦
Na

∑
i=1

v◦i Jiju◦j =
1

v◦ᵀu◦
u◦j
(

v◦1 f j + v◦j+1 pj

)
. (18)

We now obtain that relative fitness depends on the so-called 622

forces of selection, which decrease with age. Age-specific relative 623

fitness (Eq. 18) depends on the neutral stable age distribution 624

u◦j and the neutral reproductive value v◦j+1, which are well- 625

known quantities but we re-derive them in Appendix 2 for ease 626

of reference. We obtain that the neutral stable age distribution 627

and neutral reproductive value are 628

u◦j =`◦j u◦1 (19a)

v◦j =
1
`◦j

v◦1
Na

∑
k=j

`◦k f ◦k , (19b)

for j ∈ {1, . . . , Na} and where u◦1 and v◦1 can take any positive 629

value. The quantity `◦j = ∏
j−1
k=1 p◦k is the survivorship of neutral 630

mutants from age 1 to age j. Hence, the weights on fertility and 631

survival in Eq. (18) are 632

u◦j v◦1
v◦ᵀu◦

=
1
T
`◦j (20a)

u◦j v◦j+1

v◦ᵀu◦
=

1
T

1
p◦j

Na

∑
k=j+1

`◦k f ◦k , (20b)

where generation time is 633

T =
Na

∑
j=1

j`◦j f ◦j (21)

(Charlesworth 1994, Eq. 1.47c; Bulmer 1994, Eq. 25, Ch. 25; Bi- 634

envenu and Legendre 2015, Eqs. 5 and 12). Eqs. (19) and (20) 635

recover classic equations (Hamilton 1966 and Caswell 1978, his 636

Eqs. 11 and 12). We denote the forces of selection on fertility at 637

age j as 638

φj(z̄) = `◦j (22a)

and on survival at age j as 639

πj(z̄) =
1
p◦j

Na

∑
k=j+1

`◦k f ◦k , (22b)

which are independent from the mutant trait value because they 640

are evaluated at the resident trait value. It is easily checked that 641

φj and πj decrease with j (respectively, if p◦j < 1 and f ◦j+1 > 0 642

provided that p◦j changes smoothly with age). 643

We can then obtain a biologically informative expression for 644

the selection gradient in terms relative fitness. Using Eqs. (18), 645

(20), and (22), a mutant’s relative fitness at age j is 646

wj =
1
T

(
φj f j + πj pj

)
, (23)

or with explicit arguments using Eq. (12), 647

wj(zj, z̄, εεεj) =
1
T

[
φj(z̄) f j(zj, z̄, εεεj) + πj(z̄)pj(zj, z̄, εεεj)

]
. (24)

Using Eqs. (17), (18), and (23), a mutant’s relative fitness is 648

w =
Na

∑
j=1

wj =
1
T

Na

∑
j=1

(
φj f j + πj pj

)
, (25)
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or with explicit arguments,649

w(z, z̄, εεε) =
Na

∑
j=1

wj(zj, z̄, εεεj). (26)

From Eqs. (15) and (17), the selection gradient entry for trait ζ is650

∂λ

∂ζ

∣∣∣∣
y=ȳ

=
∂w
∂ζ

∣∣∣∣
y=ȳ

=
Na

∑
j=1

∂wj

∂ζ

∣∣∣∣
y=ȳ

.

The same procedure applies for total rather than partial deriva-651

tives, so the total selection gradient of ζ is652

dλ

dζ

∣∣∣∣
y=ȳ

=
dw
dζ

∣∣∣∣
y=ȳ

=
Na

∑
j=1

dwj

dζ

∣∣∣∣
y=ȳ

. (27)

It is often convenient to write selection gradients in terms653

of lifetime reproductive success if possible. In Appendix 3, we654

re-derive that the selection gradients can be expressed in terms655

of expected lifetime reproductive success, as previously known656

(Bulmer 1994; Caswell 2009), because of our assumption that657

mutants arise when residents are at carrying capacity (Mylius658

and Diekmann 1995). For our life cycle, a mutant’s expected659

lifetime reproductive success is660

R0 =
Na

∑
j=1

`j f j, (28)

(Caswell 2001). In Appendix 3, we show that the selection gradi-661

ent can be written as662

∂λ

∂ζ

∣∣∣∣
y=ȳ

=
1
T

∂R0
∂ζ

∣∣∣∣
y=ȳ

, (29a)

and that the total selection gradient can be written as663

dλ

dζ

∣∣∣∣
y=ȳ

=
1
T

dR0
dζ

∣∣∣∣
y=ȳ

, (29b)

which recover previous equations (Bulmer 1994, Eq. 25 of Ch. 5;664

and Caswell 2009, Eqs. 58-61).665

Data Availability666

All data necessary for confirming the conclusions of the article667

are present within the article, figures, tables, and appendices.668

Results669

We obtain a series of equations that describe the evolutionary670

dynamics of genetic and developed traits as well as the environ-671

ment. Since developmental (Eq. 8) and environmental (Eq. 9)672

constraints are explicit, these equations provide formulas for ge-673

netic covariation and other high-level quantities from low-level674

mechanistic processes. We term the resulting set of equations675

the “evo-devo process”. It is convenient to arrange the evo-676

devo process in a layered structure, where each layer is formed677

by components in layers below (Fig. 5). We thus present the678

evo-devo process starting from the lowest-level layer up to the679

highest. The derivations of all these equations are provided in680

the Appendices.681

Layer 1: elementary components 682

All the components of the evo-devo process can be calculated 683

from models or estimation of five elementary components. These 684

elementary components are the mutational covariance matrix 685

Gy, fertility fa(za, z̄, εεεa), survival probability pa(za, z̄, εεεa), devel- 686

opmental map ga(za, z̄, εεεa), and environmental map ha(za, z̄, τ) 687

for all ages a (Fig. 5, Layer 1). 688

Layer 2: direct effects 689

We now obtain the equations for the next layer, that of the direct- 690

effect matrices which constitute nearly elementary components 691

of the evo-devo process. Direct-effect matrices measure the effect 692

that a variable has on another variable without considering any 693

constraints. Direct-effect matrices capture various effects of 694

age structure, including the declining forces of selection as age 695

advances. 696

Direct-effect matrices include Lande’s (1979) selection gradi- 697

ents, which have the following structure due to age-structure. 698

The selection gradient of states or, equivalently, the block column 699

vector of direct effects of a mutant’s states on fitness is 700

∂w
∂x

∣∣∣∣
y=ȳ
≡
(

∂w
∂x1

; · · · ;
∂w

∂xNa

)∣∣∣∣
y=ȳ

=

(
∂w1
∂x1

; · · · ;
∂wNa

∂xNa

)∣∣∣∣
y=ȳ
∈ RNa Ns×1, (30)

which measures directional selection on developed traits (Lande 701

1979). Note that the second line in Eq. (30) takes the derivative 702

of fitness at each age, which from Eq. (24) contains weighted 703

fertility and survival effects of states at each age. Similarly, the 704

selection gradient of controls or, equivalently, the block column 705

vector of direct effects of a mutant’s controls on fitness is 706

∂w
∂y

∣∣∣∣
y=ȳ
≡
(

∂w
∂y1

; · · · ;
∂w

∂yNa

)∣∣∣∣
y=ȳ

=

(
∂w1
∂y1

; · · · ;
∂wNa

∂yNa

)∣∣∣∣
y=ȳ
∈ RNa Nc×1, (31)

which measures directional selection on controls (Lande 1979). 707

The selection gradient of the environment or, equivalently, the block 708

column vector of direct effects of a mutant’s environment on fitness 709

is 710

∂w
∂εεε

∣∣∣∣
y=ȳ
≡
(

∂w
∂εεε1

; · · · ;
∂w

∂εεεNa

)∣∣∣∣
y=ȳ

=

(
∂w1
∂εεε1

; · · · ;
∂wNa

∂εεεNa

)∣∣∣∣
y=ȳ
∈ RNa Ne×1, (32)

which measures the environmental sensitivity of selection 711

(Chevin et al. 2010). The selection gradients in Eqs. (30)–(32) 712

capture the declining forces of selection in that increasingly 713

rightward block entries have smaller magnitude if survival and 714

fertility effects are of the same magnitude as age increases. 715

We use the above definitions to form the selection gradients 716

of the phenotype and metaphenotype. The selection gradient of 717

the phenotype is 718

∂w
∂z

∣∣∣∣
y=ȳ
≡
(

∂w
∂x

;
∂w
∂y

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×1,

and the selection gradient of the metaphenotype is 719

∂w
∂m

∣∣∣∣
y=ȳ
≡
(

∂w
∂x

;
∂w
∂y

;
∂w
∂εεε

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc+Ne)×1.
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Developmental
bias
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H

on mutant’s environmenton mutant’s states on her fitness on her states
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on her states

Effects on
environment
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states
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on states

Environmental
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Environmental effects
on states

quantifies:
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of mutant’s controls, environment, or
partner’s controls or states on her states

of mutant’s controls
on her environment

of mutant’s states or controls of social partners’ states or controls of mutant’s environment
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Mutational covariation Fertility Survival Development EnvironmentI

Layer 5:
stabilized effects

of a focal individual’s controls onE of focal’s states on
partners’ states

of a focal individual’s environment on

Breeding value of Stabilized breeding value
of 

Additive genetic 
cross-covariance matrix of    and 

If development is non-social

so

of mutant’s controls on her controls,
and of mutant’s states on her states

of mutant’s controls
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of mutant’s controls
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Additive genetic
covariance matrix
of

Additive socio-genetic
cross-covariance
matrix of

Selection
response

Exogenous
plastic response

B Evolutionary dynamics of the phenotype C Evolutionary dynamics of the metaphenotype

phenotypestatescontrols phenotypestatescontrols

Figure 5 The evo-devo process and its layered structure. Here we summarize the equations composing the evo-devo process ar-
ranged in a layered structure. Each layer is formed by components in layers below. Layer 7 describes the evolutionary dynamics
equivalently as (A) evo-devo dynamics, as (B) evolutionary dynamics of the phenotype, or as (C) evolutionary dynamics of the
metaphenotype. (D) Layer 6 describes genetic covariation. (E) Layer 5 describes stabilized effects (total derivatives after socio-devo
stabilization, denoted by s/s). (F) Layer 4 describes total effects (total derivatives before socio-devo stabilization, denoted by d/d,
which consider both developmental and environmental constraints). (G) Layer 3 describes semi-total effects (semi-total deriva-
tives, denoted by δ/δ, that is, total derivatives considering environmental but not developmental constraints). (H) Layer 2 describes
direct effects (partial derivatives, denoted by ∂/∂, which do not consider any constraints). (I) Layer 1 comprises the elementary
components of the evo-devo process that generate all layers above. All derivatives are evaluated at y = ȳ. See text for the equations
of direct-effect matrices, which have structure due to age structure. See Fig. 2 and Table 1 for the meaning of symbols.

Direct-effect matrices also include matrices that measure de-720

velopmental bias. These matrices have specific, sparse structure721

due to the arrow of developmental time: changing a trait at a given722

age cannot have effects on the developmental past of the indi-723

vidual and only directly affects the developmental present or724

immediate future. The block matrix of direct effects of a mutant’s725

states on her states is726

∂xᵀ

∂x

∣∣∣∣
y=ȳ
≡


∂xᵀ1
∂x1

· · ·
∂xᵀNa

∂x1
...

. . .
...

∂xᵀ1
∂xNa

· · ·
∂xᵀNa

∂xNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



I
∂xᵀ2
∂x1

· · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I
∂xᵀNa

∂xNa−1

0 0 · · · 0 I



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(33a)

∈ RNa Ns×Na Ns ,

which can be understood as measuring developmental bias from 727

states. The equality (33a) follows because the direct effects of a 728

mutant’s states on her states are only non-zero at the next age 729

(from the developmental constraint in Eq. 8) or when states are 730

differentiated with respect to themselves. Analogously, the block 731

matrix of direct effects of a mutant’s controls on her states is 732

∂xᵀ

∂y

∣∣∣∣
y=ȳ
≡



∂xᵀ1
∂y1

· · ·
∂xᵀNa

∂y1
...

. . .
...

∂xᵀ1
∂yNa

· · ·
∂xᵀNa

∂yNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
∂xᵀ2
∂y1

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
∂xᵀNa

∂yNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(33b)

∈ RNa Nc×Na Ns ,
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which can be understood as measuring developmental bias from733

controls. Note that the main block diagonal is zero.734

Direct-effect matrices also include a matrix measuring plas-735

ticity. Indeed, the block matrix of direct effects of a mutant’s envi-736

ronment on her states is737

∂xᵀ

∂εεε

∣∣∣∣
y=ȳ
≡


∂xᵀ1
∂εεε1

· · ·
∂xᵀNa

∂εεε1
...

. . .
...

∂xᵀ1
∂εεεNa

· · ·
∂xᵀNa

∂εεεNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
∂xᵀ2
∂εεε1

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
∂xᵀNa

∂εεεNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(33c)

∈ RNa Ne×Na Ns ,

which can be understood as measuring plasticity (Noble et al.738

2019).739

In turn, direct-effect matrices include matrices describing740

niche construction. The block matrix of direct effects of a mutant’s741

states or controls on her environment is742

∂εεεᵀ

∂ζ

∣∣∣∣
y=ȳ
≡


∂εεεᵀ1
∂ζ1

· · ·
∂εεεᵀNa

∂ζ1
...

. . .
...

∂εεεᵀ1
∂ζNa

· · ·
∂εεεᵀNa

∂ζNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



∂εεεᵀ1
∂ζ1

0 · · · 0 0

0
∂εεεᵀ2
∂ζ2

· · · 0 0

...
...

. . .
...

...

0 0 · · ·
∂εεεᵀNa−1

∂ζNa−1
0

0 0 · · · 0
∂εεεᵀNa

∂ζNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(33d)

for ζ ∈ {x, y}, which can be understood as measuring niche con-743

struction by states or controls. The equality (33d) follows from744

the environmental constraint in Eq. (9) since the environment745

faced by a mutant at a given age is directly affected by mutant746

states or controls at the same age only (i.e., ∂εεεᵀj /∂ζa = 0 for747

a 6= j).748

Direct-effect matrices also include matrices describing mutual749

environmental dependence. The block matrix of direct effects of a750

mutant’s environment on itself is751

∂εεεᵀ

∂εεε

∣∣∣∣
y=ȳ
≡


∂εεεᵀ1
∂εεε1

· · ·
∂εεεᵀNa

∂εεε1
...

. . .
...

∂εεεᵀ1
∂εεεNa

· · ·
∂εεεᵀNa

∂εεεNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



∂εεεᵀ1
∂εεε1

0 · · · 0 0

0
∂εεεᵀ2
∂εεε2

· · · 0 0

...
...

. . .
...

...

0 0 · · ·
∂εεεᵀNa−1

∂εεεNa−1
0

0 0 · · · 0
∂εεεᵀNa

∂εεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

= I ∈ RNa Ne×Na Ne , (34)

which measures mutual environmental dependence. The second- 752

to-last equality follows from the environmental constraint (Eq. 9) 753

and the last equality follows from our assumption that environ- 754

mental variables are mutually independent, so ∂εεεᵀa /∂εεεa|y=ȳ = I 755

for all a ∈ {1, . . . , Na}. It is conceptually useful to write 756

∂εεεᵀ/∂εεε|y=ȳ rather than only I, and we do so throughout. 757

Additionally, direct-effect matrices include matrices describ- 758

ing social developmental bias, which capture effects of extra- 759

genetic inheritance and indirect genetic effects. The block matrix 760

of direct effects of social partners’ states or controls on a mutant’s 761

states is 762

∂xᵀ

∂ζ̄

∣∣∣∣∣
y=ȳ

≡



∂xᵀ1
∂ζ̄1

· · ·
∂xᵀNa

∂ζ̄1
...

. . .
...

∂xᵀ1
∂ζ̄Na

· · ·
∂xᵀNa

∂ζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
∂xᵀ2
∂ζ̄1

· · ·
∂xᵀNa

∂ζ̄1

0
∂xᵀ2
∂ζ̄2

· · ·
∂xᵀNa

∂ζ̄2
...

...
. . .

...

0
∂xᵀ2

∂ζ̄Na

· · ·
∂xᵀNa

∂ζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (35)

for ζ̄ ∈ {x̄, ȳ}, where the equality follows because states x1 at the 763

initial age are constant. The matrix in Eq. (35) can be understood 764

as measuring social developmental bias from either states or 765

controls, including extra-genetic inheritance and indirect genetic 766

effects. This matrix can be less sparse than previous direct-effect 767

matrices because the mutant’s states can be affected by the states 768

or controls of social partners of any age. 769

Direct-effect matrices also include matrices describing social 770

niche construction. The block matrix of direct effects of social 771

partners’ states or controls on a mutant’s environment is 772

∂εεεᵀ

∂ζ̄

∣∣∣∣∣
y=ȳ

≡



∂εεεᵀ1
∂ζ̄1

· · ·
∂εεεᵀNa

∂ζ̄1
...

. . .
...

∂εεεᵀ1
∂ζ̄Na

· · ·
∂εεεᵀNa

∂ζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (36)

for ζ̄ ∈ {x̄, ȳ}, which can be understood as measuring social 773

niche construction by either states or controls. This matrix does 774

not contain any zero entries in general because the mutant’s 775
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environment at any age can be affected by the states or controls776

of social partners of any age.777

We use the above definitions to form direct-effect matrices778

measuring niche construction by the phenotype and social niche779

construction by partners’ phenotypes. The block matrix of direct780

effects of a mutant’s phenotype on her environment is781

∂εεεᵀ

∂z

∣∣∣∣
y=ȳ
≡
(

∂εεεᵀ

∂x
;

∂εεεᵀ

∂y

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na Ne , (37)

which measures niche construction by the phenotype. The block782

matrix of direct effects of social partners’ phenotypes on a mutant’s783

environment is784

∂εεεᵀ

∂z̄

∣∣∣∣
y=ȳ

=

(
∂εεεᵀ

∂x̄
;

∂εεεᵀ

∂ȳ

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na Ne , (38)

which measures social niche construction by partners’ pheno-785

types.786

We will see that the evolutionary dynamics of the environ-787

ment depends on a matrix measuring “inclusive” niche con-788

struction. This matrix is the transpose of the matrix of direct789

social effects of a focal individual’s phenotype on hers and a partner’s790

environment791

∂(εεε + ε̌εε)

∂zᵀ

∣∣∣∣
y=ȳ

=

(
∂εεε

∂zᵀ
+

∂εεε

∂z̄ᵀ

)∣∣∣∣
y=ȳ
∈ RNa Ne×Na(Ns+Nc), (39)

where we denote by ε̌εε the environment a resident experiences792

when she develops in the context of mutants (a donor perspec-793

tive for the mutant). Thus, this matrix can be interpreted as794

inclusive niche construction by the phenotype. Note that the sec-795

ond term on the right-hand side of Eq. (39) is the direct effects796

of social partners’ phenotypes on a focal mutant (a recipient797

perspective for the mutant). Thus, inclusive niche construction798

by the phenotype can be equivalently interpreted either from a799

donor or a recipient perspective.800

Layer 3: semi-total effects801

We now proceed to obtain the equations of the next layer of the802

evo-devo process, that of semi-total effects. Semi-total-effect803

matrices measure the total effects that a variable has on another804

variable considering environmental constraints, without consid-805

ering developmental constraints (Appendix 16).806

Semi-total-effect matrices include semi-total selection gradi-807

ents, which capture some of the effects of niche construction.808

The semi-total selection gradient of vector ζ ∈ {x, y, z} is809

δw
δζ

∣∣∣∣
y=ȳ

=

(
∂w
∂ζ

+
∂εεεᵀ

∂ζ

∂w
∂εεε

)∣∣∣∣
y=ȳ

. (40)

Thus, the semi-total selection gradient of ζ depends on direc-810

tional selection on ζ, niche construction by ζ, and environmental811

sensitivity of selection, without considering developmental con-812

straints. Consequently, semi-total selection gradients measure813

semi-total selection, which is directional selection in the fitness814

landscape modified by the interaction of niche construction and815

environmental sensitivity of selection.816

Semi-total selection on the environment equals directional817

selection on the environment because we assume environmen-818

tal variables are mutually independent. The semi-total selection819

gradient of the environment is820

δw
δεεε

∣∣∣∣
y=ȳ

=

(
∂εεεᵀ

∂εεε

∂w
∂εεε

)∣∣∣∣
y=ȳ
∈ RNa Ne×1. (41)

Given our assumption that environmental variables are mutually 821

independent, the matrix of direct effects of the environment 822

on itself is the identity matrix. Thus, the semi-total selection 823

gradient of the environment equals the selection gradient of the 824

environment. 825

Semi-total-effect matrices also include matrices describing 826

semi-total developmental bias, which capture additional effects 827

of niche construction. The block matrix of semi-total effects of 828

ζ ∈ {x, y, x̄, ȳ} on a mutant’s states is 829

δxᵀ

δζ

∣∣∣∣
y=ȳ

=

(
∂xᵀ

∂ζ
+

∂εεεᵀ

∂ζ

∂xᵀ

∂εεε

)∣∣∣∣
y=ȳ

. (42)

Thus, the semi-total effects of ζ on states depend on the devel- 830

opmental bias from ζ, niche construction by ζ, and plasticity, 831

without considering developmental constraints. Consequently, 832

semi-total effects on states can be interpreted as measuring semi- 833

total developmental bias, which measures developmental bias in 834

the developmental process modified by the interaction of niche 835

construction and plasticity. 836

Finally, semi-total-effect matrices include matrices describing 837

semi-total plasticity, which equals plasticity because environ- 838

mental variables are mutually independent. The block matrix of 839

semi-total effects of a mutant’s environment on her states is 840

δxᵀ

δεεε

∣∣∣∣
y=ȳ

=
∂εεεᵀ

∂εεε

∂xᵀ

∂εεε

∣∣∣∣
y=ȳ
∈ RNa Ne×Na Ns . (43)

Given our assumption that environmental variables are mutually 841

independent, the matrix of direct effects of the environment on 842

itself is the identity matrix. Thus, the semi-total effects of the 843

environment on the states, or semi-total plasticity, equal the 844

direct effects of the environment on states, that is, plasticity. 845

Layer 4: total effects 846

We now move to obtain equations for the next layer of the evo- 847

devo process, that of total-effect matrices. Total-effect matrices 848

measure the total effects of a variable on another one consid- 849

ering both developmental and environmental constraints, but 850

before the effects of social development have stabilized in the 851

population. 852

The total effects of states on themselves describe developmen- 853

tal feedback. The block matrix of total effects of a mutant’s states 854

on her states is 855

dxᵀ

dx

∣∣∣∣
y=ȳ

=

(
2I− δxᵀ

δx

)−1
∣∣∣∣∣
y=ȳ

=
Na

∑
a=1

(
δxᵀ

δx
− I
)a−1

(44)

∈ RNa Ns×Na Ns ,

which we prove is always invertible (Appendix 4, Eq. A32). This 856

matrix can be interpreted as a lifetime collection of developmen- 857

tally immediate pulses of semi-total effects of states on them- 858

selves. Thus, total effects of states on themselves describe total 859

developmental bias from states, or developmental feedback which 860

may cause major phenotypic effects at subsequent ages. By 861

depending on semi-total developmental bias from states, devel- 862

opmental feedback depends on developmental bias from states, 863

niche-construction by states, and plasticity (Eq. 42). Eq. (44) has 864

the same form of an equation provided by Morrissey (2014) for 865

his total-effect matrix of traits on themselves (his Eq. 2) if there 866

is no plasticity or niche construction by states. 867
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The total effects of controls on states correspond to Wagner’s868

developmental matrix. The block matrix of total effects of a mu-869

tant’s controls on her states is given by870

dxᵀ

dy

∣∣∣∣
y=ȳ

=

(
δxᵀ

δy
dxᵀ

dx

)∣∣∣∣
y=ȳ
∈ RNa Nc×Na Ns , (45)

which is singular because initial states are not affected by any871

control and final controls do not affect any state (so dxᵀ/dy|y=ȳ872

has rows and columns that are zero; Appendix 5, Eq. A54). From873

Eq. (45), this matrix can be interpreted as involving a devel-874

opmentally immediate pulse caused by a change in controls875

followed by the developmental feedback triggered among states.876

The matrix of total effects of controls on states measures total877

developmental bias from controls and corresponds to Wagner’s878

(1984, 1989) developmental matrix (his B) (see also Martin 2014).879

The total effects of the environment on states measure total880

plasticity. The block matrix of total effects of a mutant’s environment881

on her states is882

dxᵀ

dεεε

∣∣∣∣
y=ȳ

=

(
δxᵀ

δεεε

dxᵀ

dx

)∣∣∣∣
y=ȳ
∈ RNa Ne×Na Ns , (46)

which measures total plasticity, considering both environmen-883

tal and developmental constraints. Thus, total plasticity can884

be interpreted as a developmentally immediate pulse of plas-885

tic change followed by the developmental feedback triggered886

among states.887

The total effects of social partners’ controls or states on states888

measure total social developmental bias. The block matrix of889

total effects of social partners’ states or controls on a mutant’s states is890

dxᵀ

dζ̄

∣∣∣∣∣
y=ȳ

=

(
δxᵀ

δζ̄

dxᵀ

dx

)∣∣∣∣∣
y=ȳ

(47)

for ζ̄ ∈ {x̄, ȳ}. This matrix can be interpreted as measuring total891

social developmental bias from states or controls, as well as total892

effects on states of extra-genetic inheritance, and total indirect893

genetic effects. From Eq. (47), total social developmental bias can894

be interpreted as a developmentally immediate pulse caused by895

a change in social partners’ traits followed by the developmental896

feedback triggered among the mutant’s states.897

Total effects on controls are simple since controls are open-898

loop. The block matrix of total effects of a mutant’s controls on899

themselves is900

dyᵀ

dy

∣∣∣∣
y=ȳ

= I ∈ RNa Nc×Na Nc , (48)

and the block matrix of total effects of a vector ζ ∈901

{x, εεε, x̄, ȳ, z̄, ε̄εε, m̄} on a mutant’s controls is902

dyᵀ

dζ

∣∣∣∣
y=ȳ

= 0.

These two equations follow because controls are open-loop (Ap-903

pendix 5, Eq. A51).904

Total effects of states and controls on the environment quan-905

tify total niche construction. Total niche construction by states is906

quantified by the block matrix of total effects of a mutant’s states907

on her environment908

dεεεᵀ

dx

∣∣∣∣
y=ȳ

=

(
dxᵀ

dx
∂εεεᵀ

∂x

)∣∣∣∣
y=ȳ

=

(
dzᵀ

dx
∂εεεᵀ

∂z

)∣∣∣∣
y=ȳ
∈ RNa Ns×Na Ne , (49)

which can be interpreted as showing that developmental feed- 909

back of states occurs first and then direct niche-constructing 910

effects by states follow. Similarly, total niche construction by 911

controls is quantified by the block matrix of total effects of a mu- 912

tant’s controls on her environment 913

dεεεᵀ

dy

∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
∂εεεᵀ

∂x
+

∂εεεᵀ

∂y

)∣∣∣∣
y=ȳ

=

(
dzᵀ

dy
∂εεεᵀ

∂z

)∣∣∣∣
y=ȳ
∈ RNa Nc×Na Ne , (50)

which depends on niche construction by controls and on total 914

developmental bias from controls followed by niche construc- 915

tion by states. The analogous relationship holds for total niche 916

construction by the phenotype, quantified by the block matrix 917

of total effects of a mutant’s phenotype on her environment 918

dεεεᵀ

dz

∣∣∣∣
y=ȳ

=

(
dzᵀ

dz
∂εεεᵀ

∂z

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na Ne , (51)

which depends on developmental feedback across the pheno- 919

type and niche construction by the phenotype. 920

Total effects of the environment on itself quantify environ- 921

mental feedback. The block matrix of total effects of a mutant’s 922

environment on her environment is 923

dεεεᵀ

dεεε

∣∣∣∣
y=ȳ

=

(
∂εεεᵀ

∂εεε
+

dxᵀ

dεεε

∂εεεᵀ

∂x

)∣∣∣∣
y=ȳ
∈ RNa Ne×Na Ne , (52)

measuring environmental feedback, which includes mutual envi- 924

ronmental dependence plus total plasticity followed by niche 925

construction by states. 926

We can use some of the previous total-effect matrices to con- 927

struct the following total-effect matrices. The block matrix of 928

total effects of a mutant’s states on her phenotype is 929

dzᵀ

dx

∣∣∣∣
y=ȳ
≡
(

dxᵀ

dx
dyᵀ

dx

)∣∣∣∣
y=ȳ

=

(
dxᵀ

dx
0
)∣∣∣∣

y=ȳ
∈ RNa Ns×Na(Ns+Nc), (53)

measuring total developmental bias from states on the pheno- 930

type. The block matrix of total effects of controls on her phenotype 931

is 932

dzᵀ

dy

∣∣∣∣
y=ȳ
≡
(

dxᵀ

dy
dyᵀ

dy

)∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
I
)∣∣∣∣

y=ȳ
∈ RNa Nc×Na(Ns+Nc), (54)

measuring total developmental bias from controls on the phe- 933

notype. When we later consider additive genetic covariances, it 934

will be important that this matrix dzᵀ/dy is singular since it has 935

fewer rows than columns (Horn and Johnson 2013, p. 14). 936

The block matrix of total effects of a mutant’s phenotype on her 937

phenotype is 938

dzᵀ

dz

∣∣∣∣
y=ȳ
≡


dxᵀ

dx
dyᵀ

dx
dxᵀ

dy
dyᵀ

dy


∣∣∣∣∣∣∣∣
y=ȳ

=


dxᵀ

dx
0

dxᵀ

dy
I


∣∣∣∣∣∣∣∣
y=ȳ

(55)
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∈ RNa(Ns+Nc)×Na(Ns+Nc),

which can be interpreted as measuring developmental feedback939

across the phenotype. Since dzᵀ/dz|y=ȳ is square and block940

lower triangular, and since dxᵀ/dx|y=ȳ is non-singular (Ap-941

pendix 4, Eq. A32), we have that dzᵀ/dz|y=ȳ is non-singular.942

The block matrix of total effects of a mutant’s states on her943

metaphenotype is944

dmᵀ

dx

∣∣∣∣
y=ȳ
≡
(

dxᵀ

dx
dyᵀ

dx
dεεεᵀ

dx

)∣∣∣∣
y=ȳ

=

(
dxᵀ

dx
0

dεεεᵀ

dx

)∣∣∣∣
y=ȳ

(56)

∈ RNa Ns×Na(Ns+Nc+Ne),

measuring total developmental bias from states on the metaphe-945

notype. The block matrix of total effects of a mutant’s controls on946

her metaphenotype is947

dmᵀ

dy

∣∣∣∣
y=ȳ
≡
(

dxᵀ

dy
dyᵀ

dy
dεεεᵀ

dy

)∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
I

dεεεᵀ

dy

)∣∣∣∣
y=ȳ

(57)

∈ RNa Nc×Na(Ns+Nc+Ne),

measuring total developmental bias from controls on the948

metaphenotype, and which is singular because it has fewer rows949

than columns.950

The block matrix of total effects of a mutant’s environment on her951

metaphenotype is952

dmᵀ

dεεε

∣∣∣∣
y=ȳ

=

(
dxᵀ

dεεε

dyᵀ

dεεε

dεεεᵀ

dεεε

)∣∣∣∣
y=ȳ

=

(
dxᵀ

dεεε
0

dεεεᵀ

dεεε

)∣∣∣∣
y=ȳ

(58)

∈ RNa Ne×Na(Ns+Nc+Ne),

measuring total plasticity of the metaphenotype. The block953

matrix of total effects of a mutant’s phenotype on her metaphenotype954

is955

dmᵀ

dz

∣∣∣∣
y=ȳ
≡


dmᵀ

dx
dmᵀ

dy


∣∣∣∣∣∣∣∣
y=ȳ

=


dxᵀ

dx
0

dεεεᵀ

dx
dxᵀ

dy
I

dεεεᵀ

dy


∣∣∣∣∣∣∣∣
y=ȳ

(59)

∈ RNa(Ns+Nc)×Na(Ns+Nc+Ne),

measuring total developmental bias from the phenotype on the956

metaphenotype. The block matrix of total effects of a mutant’s957

metaphenotype on her metaphenotype is958

dmᵀ

dm

∣∣∣∣
y=ȳ

=



dmᵀ

dx
dmᵀ

dy
dmᵀ

dεεε



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



dxᵀ

dx
0

dεεεᵀ

dx
dxᵀ

dy
I

dεεεᵀ

dy
dxᵀ

dεεε
0

dεεεᵀ

dεεε



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(60)

∈ RNa(Ns+Nc+Ne)×Na(Ns+Nc+Ne),

measuring developmental feedback across the metaphenotype,959

and which we show is non-singular (Appendix 12).960

We will see that the evolutionary dynamics of developed 961

traits depends on a matrix measuring “inclusive” total develop- 962

mental bias. This matrix is the transpose of the matrix of total 963

social effects of a focal individual’s controls or states on hers and a 964

partner’s states 965

d(x + x̌)
dζᵀ

∣∣∣∣
y=ȳ

=

(
dx

dζᵀ
+

dx

dζ̄ᵀ

)∣∣∣∣∣
y=ȳ

, (61)

for ζ ∈ {x, y} where we denote by x̌ the states that a resident 966

develops in the context of mutants (a donor perspective for the 967

mutant). Thus, this matrix can be interpreted as measuring in- 968

clusive total developmental bias. Note that the second term on 969

the right-hand side of Eq. (61) is the total effects of social part- 970

ners’ states or controls on a focal mutant (a recipient perspective 971

for the mutant). Thus, inclusive total developmental bias can 972

be equivalently interpreted either from a donor or a recipient 973

perspective. 974

Having written expressions for the above total-effect matrices, 975

we can now write the total selection gradients, which measure 976

directional selection considering both developmental and en- 977

vironmental constraints. In Appendices 4-8, we show that the 978

total selection gradient of vector ζ ∈ {x, y, z, εεε, m} is 979

dw
dζ

∣∣∣∣
y=ȳ

=

(
dmᵀ

dζ

∂w
∂m

)∣∣∣∣
y=ȳ

, (62)

which has the form of the chain rule in matrix notation. Hence, 980

the total selection gradient of ζ depends on directional selec- 981

tion on the metaphenotype and the total effects of ζ on the 982

metaphenotype. Consequently, the total selection gradient of 983

ζ measures total selection on ζ, which is directional selection 984

on the metaphenotype transformed by the total effects of ζ on 985

the metaphenotype considering developmental and environ- 986

mental constraints. Total selection gradients closely correspond 987

to Morrissey’s (2014, 2015) notion of extended selection gradi- 988

ent (denoted by him as η). Total selection gradients take the 989

following particular forms. 990

The total selection gradient of states is 991

dw
dx

∣∣∣∣
y=ȳ

=

(
dxᵀ

dx
∂w
∂x

+
dεεεᵀ

dx
∂w
∂εεε

)∣∣∣∣
y=ȳ

(63)

=

(
dxᵀ

dx
δw
δx

)∣∣∣∣
y=ȳ

=

(
dzᵀ

dx
δw
δz

)∣∣∣∣
y=ȳ

=

(
dmᵀ

dx
∂w
∂m

)∣∣∣∣
y=ȳ

.

This gradient depends on directional selection on states (Eq. 30) 992

and directional selection on the environment (Eq. 32). It also 993

depends on developmental feedback (Eq. 44) and total niche 994

construction by states, which also depends on developmental 995

feedback (Eq. 49). Consequently, the total selection gradient of 996

states can be interpreted as measuring total selection on devel- 997

oped traits in the fitness landscape modified by developmental 998

feedback and by the interaction of total niche construction and 999

environmental sensitivity of selection. 1000

The total selection gradient of controls is 1001

dw
dy

∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
∂w
∂x

+
∂w
∂y

+
dεεεᵀ

dy
∂w
∂εεε

)∣∣∣∣
y=ȳ

(64)

14 González-Forero & Gardner

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc-nd/4.0/


=

(
dxᵀ

dy
δw
δx

+
δw
δy

)∣∣∣∣
y=ȳ

=

(
dzᵀ

dy
δw
δz

)∣∣∣∣
y=ȳ

=

(
dmᵀ

dy
∂w
∂m

)∣∣∣∣
y=ȳ

=

(
δxᵀ

δy
dw
dx

+
δw
δy

)∣∣∣∣
y=ȳ

.

This gradient not only depends on directional selection on states1002

and the environment, but also on directional selection on con-1003

trols (Eq. 31). It also depends on Wagner’s (1984, 1989) develop-1004

mental matrix (Eq. 45) and on total niche construction by con-1005

trols, which also depends on the developmental matrix (Eq. 50).1006

Consequently, the total selection gradient of controls can be1007

interpreted as measuring total genetic selection in a fitness land-1008

scape modified by the interaction of total developmental bias1009

from controls and directional selection on developed traits and1010

by the interaction of total niche construction by controls and1011

environmental sensitivity of selection.1012

To derive equations describing the evolutionary dynamics of1013

the metaphenotype, we make use of the total selection gradient1014

of the environment, although such gradient is not necessary to1015

obtain equations describing the evolutionary dynamics of the1016

phenotype. The total selection gradient of the environment is1017

dw
dεεε

∣∣∣∣
y=ȳ

=

(
dxᵀ

dεεε

∂w
∂x

+
dεεεᵀ

dεεε

∂w
∂εεε

)∣∣∣∣
y=ȳ

(65)

=

(
dxᵀ

dεεε

δw
δx

+
δw
δεεε

)∣∣∣∣
y=ȳ

=

(
dmᵀ

dεεε

∂w
∂m

)∣∣∣∣
y=ȳ

=

(
δxᵀ

δεεε

dw
dx

+
δw
δεεε

)∣∣∣∣
y=ȳ

.

This gradient depends on total plasticity and on environmental1018

feedback, which in turn depends on total plasticity and niche1019

construction by states (Eq. 52). Consequently, the total selection1020

gradient of the environment can be understood as measuring1021

total selection on the environment in a fitness landscape modi-1022

fied by environmental feedback and by the interaction of total1023

plasticity and directional selection on developed traits.1024

We can combine our expressions for the total selection gradi-1025

ents of states (x) and controls (y) into the total selection gradient1026

of the phenotype (z = (x; y)). The total selection gradient of the1027

phenotype is1028

dw
dz

∣∣∣∣
y=ȳ

=

(
dzᵀ

dz
∂w
∂z

+
dεεεᵀ

dz
∂w
∂εεε

)∣∣∣∣
y=ȳ

(66)

=

(
dzᵀ

dz
δw
δz

)∣∣∣∣
y=ȳ

=

(
dmᵀ

dz
∂w
∂m

)∣∣∣∣
y=ȳ

.

Thus, the total selection gradient of the phenotype can be in-1029

terpreted as measuring total phenotypic selection in a fitness1030

landscape modified by developmental feedback across the phe-1031

notype and by the interaction of total niche construction by the1032

phenotype and environmental sensitivity of selection. In turn, 1033

the total selection gradient of the metaphenotype is 1034

dw
dm

∣∣∣∣
y=ȳ

=

(
dmᵀ

dm
∂w
∂m

)∣∣∣∣
y=ȳ

, (67)

which can be interpreted as measuring total metaphenotypic 1035

selection in a fitness landscape modified by developmental feed- 1036

back across the metaphenotype. 1037

Layer 5: stabilized effects 1038

We now move on to obtain equations for the next layer of the evo- 1039

devo process, that of stabilized-effect matrices. Stabilized-effect 1040

matrices measure the total effects of a variable on another one 1041

considering both developmental and environmental constraints, 1042

now after the effects of social development have stabilized in 1043

the population. Stabilized-effect matrices arise in the derivation 1044

of the evolutionary dynamics of states and environment as a 1045

result of social development. If development is not social (i.e., 1046

dxᵀ/dz̄|y=ȳ = 0), then all stabilized-effect matrices (sζᵀ/sξ|y=ȳ) 1047

except one (sxᵀ/sx̄|y=ȳ) reduce to corresponding total-effect 1048

matrices (dζᵀ/dξ|y=ȳ). 1049

The stabilized effects of a focal individual’s states on social 1050

partners’ states measure social feedback. The transpose of the 1051

matrix of stabilized effects of a focal individual’s states on social 1052

partners’ states is 1053

sx
sx̄ᵀ

∣∣∣
y=ȳ

=

(
I− dx̌

dxᵀ

∣∣∣∣
y=ȳ

)−1

=

(
I− dx

dx̄ᵀ

∣∣∣∣
y=ȳ

)−1

=
∞

∑
θ=1

(
dx

dx̄ᵀ

)θ−1
∣∣∣∣∣
y=ȳ

∈ RNa Ns×Na Ns , (68)

where the last equality follows by the geometric series of matri- 1054

ces. The matrix sx/sx̄ᵀ|y=ȳ is invertible by our assumption that 1055

all eigenvalues of dx/dx̄ᵀ|y=ȳ have absolute value strictly less 1056

than one, to guarantee that the resident is socio-devo stable. The 1057

matrix sx/sx̄ᵀ|y=ȳ can be interpreted as as a collection of total 1058

effects of a focal individual’s states on social partners’ states over 1059

socio-devo stabilization (Eq. 4); or vice versa, of social partners’ 1060

states on a focal individual’s states. Thus, the matrix sx/sx̄ᵀ|y=ȳ 1061

describes social feedback arising from social development. This 1062

matrix closely corresponds to an analogous matrix found in the 1063

indirect genetic effects literature (Moore et al. 1997, Eq. 19b and 1064

subsequent text). If development is not social from states (i.e., 1065

dxᵀ/dx̄|y=ȳ = 0), then the matrix sx/sx̄ᵀ|y=ȳ is the identity ma- 1066

trix. This is the only stabilized-effect matrix that does not reduce 1067

to the corresponding total-effect matrix when development is 1068

not social. 1069

The stabilized effects of a focal individual’s states or controls 1070

on her states measure stabilized developmental bias. We define 1071

the transpose of the matrix of stabilized effects of a focal individual’s 1072

states or controls on states as 1073

sx
sζᵀ

∣∣∣∣
y=ȳ

=

(
sx

sx̄ᵀ
d(x + x̌)

dζᵀ

)∣∣∣∣
y=ȳ

, (69a)

for ζ ∈ {x, y}. This matrix can be interpreted as measuring 1074

stabilized developmental bias from ζ, where a focal individual’s 1075

controls or states first affect the development of her own and 1076

social partners’ states which then feedback to affect the individ- 1077

ual’s states. Stabilized developmental bias is “inclusive” in that 1078

it includes both the effects of the focal individual on herself and 1079
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on social partners. Note that if development is not social (i.e.,1080

dxᵀ/dz̄|y=ȳ = 0), then a stabilized developmental bias matrix1081

(sx/sζᵀ|y=ȳ) reduces to the corresponding total developmental1082

bias matrix (dx/dζᵀ|y=ȳ).1083

The stabilized effects of the environment on states measure1084

stabilized plasticity. The transpose of the matrix of stabilized1085

effects of a focal individual’s environment on states is1086

sx
sεεεᵀ

∣∣∣
y=ȳ

=

(
sx

sx̄ᵀ
dx

dεεεᵀ

)∣∣∣∣
y=ȳ
∈ RNa Ns×Na Ne . (69b)

This matrix can be interpreted as measuring stabilized plasticity,1087

where the environment first causes total plasticity in a focal1088

individual and then the focal individual causes stabilized social1089

effects on social partners. Stabilized plasticity does not consider1090

inclusive effects of the environment. If development is not social1091

(i.e., dxᵀ/dz̄|y=ȳ = 0), then stabilized plasticity reduces to total1092

plasticity.1093

The stabilized effects on controls are simple since controls are1094

open-loop. The transpose of the matrix of stabilized effects of a1095

focal individual’s states or environment on controls is1096

sy
sζᵀ

∣∣∣∣
y=ȳ

=
dy
dζᵀ

∣∣∣∣
y=ȳ

= 0, (70a)

for ζ ∈ {x, εεε} and the transpose of the matrix of stabilized effects1097

of a focal individual’s controls on controls is1098

sy
syᵀ

∣∣∣∣
y=ȳ

=
dy

dyᵀ

∣∣∣∣
y=ȳ

= I ∈ RNa Nc×Na Nc . (70b)

These two equations follow because controls are open-loop.1099

The stabilized effects of states or controls on the environment
measure stabilized niche construction. Although the matrix

sεεε

sxᵀ

∣∣∣
y=ȳ

appears in some of the matrices we construct, it is irrelevant as1100

it disappears in the matrix products we encounter. The follow-1101

ing matrix does not disappear. The transpose of the matrix of1102

stabilized effects of a focal individual’s controls on the environment is1103

sεεε

syᵀ

∣∣∣∣
y=ȳ

=

(
∂(εεε + ε̌εε)

∂zᵀ
sz

syᵀ

)∣∣∣∣
y=ȳ
∈ RNa Ne×Na Nc , (71a)

which is formed by stabilized developmental bias from controls1104

on the phenotype followed by inclusive niche construction by1105

the phenotype. This matrix can be interpreted as measuring1106

stabilized niche construction by controls. Note that if develop-1107

ment is not social (i.e., dxᵀ/dz̄|y=ȳ = 0), then stabilized niche1108

construction by controls reduces to total niche construction by1109

controls (see Eqs. 50 and 39).1110

The stabilized effects of the environment on itself measure1111

stabilized environmental feedback. The transpose of the ma-1112

trix of stabilized effects of a focal individual’s environment on the1113

environment is1114

sεεε

sεεεᵀ

∣∣∣
y=ȳ

=

(
∂(εεε + ε̌εε)

∂zᵀ
sz

sεεεᵀ
+

∂εεε

∂εεεᵀ

)∣∣∣∣
y=ȳ
∈ RNa Ne×Na Ne , (71b)

which is formed by stabilized plasticity of the phenotype, fol-1115

lowed by inclusive niche construction by the phenotype, plus1116

mutual environmental dependence.1117

The following stabilized-effect matrices are simply collections1118

of already defined stabilized-effect matrices. The transpose of1119

the matrix of stabilized effects of a focal individual’s controls on the 1120

phenotype is 1121

sz
syᵀ

∣∣∣∣
y=ȳ
≡
(

sx
syᵀ

;
sy

syᵀ

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na Nc , (72a)

measuring stabilized developmental bias from controls on the 1122

phenotype. The transpose of the matrix of stabilized effects of a 1123

focal individual’s environment on the phenotype is 1124

sz
sεεεᵀ

∣∣∣
y=ȳ
≡
( sx

sεεεᵀ
;

sy
sεεεᵀ

)∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na Ne , (72b)

measuring stabilized plasticity of the phenotype. The transpose 1125

of the matrix of stabilized effects of a focal individual’s phenotype on 1126

the phenotype is 1127

sz
szᵀ

∣∣∣
y=ȳ
≡


sx

sxᵀ
sx

syᵀ

sy
sxᵀ

sy
syᵀ


∣∣∣∣∣∣∣∣
y=ȳ

=


sx

sxᵀ
sx

syᵀ

0 I


∣∣∣∣∣∣∣
y=ȳ

(73)

∈ RNa(Ns+Nc)×Na(Ns+Nc),

measuring stabilized developmental feedback across the phe- 1128

notype. The transpose of the matrix of stabilized effects of a focal 1129

individual’s controls on the metaphenotype is 1130

sm
syᵀ

∣∣∣∣
y=ȳ
≡
(

sx
syᵀ

;
sy

syᵀ
;

sεεε

syᵀ

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc+Ne)×Na Nc ,

(74a)

measuring stabilized developmental bias from controls on the 1131

metaphenotype. The transpose of the matrix of stabilized effects 1132

of a focal individual’s environment on the metaphenotype is 1133

sm
sεεεᵀ

∣∣∣
y=ȳ
≡
( sx

sεεεᵀ
;

sy
sεεεᵀ

;
sεεε

sεεεᵀ

)∣∣∣
y=ȳ
∈ RNa(Ns+Nc+Ne)×Na Ne ,

(74b)

measuring stabilized plasticity of the metaphenotype. Finally, 1134

the transpose of the matrix of stabilized effects of a focal individual’s 1135

metaphenotype on the metaphenotype is 1136

sm
smᵀ

∣∣∣
y=ȳ
≡



sx
sxᵀ

sx
syᵀ

sx
sεεεᵀ

sy
sxᵀ

sy
syᵀ

sy
sεεεᵀ

sεεε

sxᵀ
sεεε

syᵀ
sεεε

sεεεᵀ



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



sx
sxᵀ

sx
syᵀ

sx
sεεεᵀ

0 I 0

sεεε

sxᵀ
sεεε

syᵀ
sεεε

sεεεᵀ



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(75)

∈ RNa(Ns+Nc+Ne)×Na(Ns+Nc+Ne),

measuring stabilized developmental feedback across the 1137

metaphenotype. 1138
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Layer 6: genetic covariation1139

We now move to the next layer of the evo-devo process, that of1140

genetic covariation. To present this layer, we first define breeding1141

value under our adaptive dynamics assumptions, which allows1142

us to define additive genetic covariance matrices under our as-1143

sumptions. Then, we define (socio-devo) stabilized breeding1144

value, which generalizes the notion of breeding value to con-1145

sider the effects of social development. Using stabilized breeding1146

value, we define additive socio-genetic cross-covariance matri-1147

ces, which generalize the notion of additive genetic covariance1148

to consider the effects of social development.1149

We follow the standard definition of breeding value to define1150

it under our assumptions. The breeding value of a trait is de-1151

fined under under quantitative genetics assumptions as the best1152

linear prediction of the trait from gene content (Lynch and Walsh1153

1998; Walsh and Lynch 2018). Specifically, under quantitative1154

genetics assumptions, a trait value x is written as x = ∑i αiyi + e,1155

where yi is the i-th predictor (gene content in i-th locus), αi is1156

the least-square regression coefficient for the i-th predictor, and1157

e is the error; the breeding value of x is a = ∑i αiyi. Accordingly,1158

we define the breeding value aζ of a vector ζ as its first-order1159

prediction with respect to controls y around the resident controls1160

ȳ:1161

aζ ≡ ζ|y=ȳ +
dζ

dyᵀ

∣∣∣∣
y=ȳ

(y− ȳ) = ζ̄ +
dζ

dyᵀ

∣∣∣∣
y=ȳ

(y− ȳ). (76)

With this definition, the entries of dζ/dyᵀ|y=ȳ correspond to1162

Fisher’s additive effects of gene content on trait value (his α;1163

see Eq. I of Fisher 1918 and p. 72 of Lynch and Walsh 1998).1164

Moreover, such matrix dζ/dyᵀ|y=ȳ corresponds to Wagner’s1165

(1984, 1989) developmental matrix, particularly when ζ = x (his1166

B; see Eq. 1 of Wagner 1989).1167

Our definition of breeding value recovers Fisher’s (1918) in-1168

finitesimal model under certain conditions, although we do not1169

need to assume the infinitesimal model. According to Fisher’s1170

(1918) infinitesimal model, the normalized breeding value excess1171

is normally distributed as the number of loci approaches infinity.1172

Indeed, for the i-th entry of aζ we have the breeding value excess1173

aζi − ζ̄i =
Nc

∑
k=1

Na

∑
a=1

dζi
dyka

∣∣∣∣
y=ȳ

(yka − ȳka).

Let us denote the mutational variance for the k-th control at age1174

a by1175

σ2
ka = E[(yka − ȳka)

2],

and let us denote the total mutational variance by1176

s2
Nc Na

=
Nc

∑
k=1

Na

∑
a=1

σ2
ka.

If the Lyapunov’s condition is satisfied, from the Lyapunov1177

central limit theorem we have that, as either the number of1178

controls Nc or the number of ages Na tends to infinity (e.g., by1179

reducing the age bin size), the normalized breeding value excess1180

1
sNc Na

(aζi − ζ̄i)

is normally distributed with mean zero and variance 1. Thus,1181

this limit yields the so-called Fisher’s (1918) infinitesimal model,1182

although note we do not need to assume such limit. Conse- 1183

quently, our framework recovers the infinitesimal model as a 1184

particular case, when either Nc or Na approaches infinity. 1185

From our definition of breeding value, we have that the breed- 1186

ing value of controls is simply the controls themselves. From 1187

Eq. (76), the expected breeding value of vector ζ is 1188

āζ ≡ E[aζ ] = ζ̄.

In turn, the breeding value of controls y is 1189

ay = ȳ +
dy

dyᵀ

∣∣∣∣
y=ȳ

(y− ȳ) = ȳ + y− ȳ = y,

since dy/dyᵀ|y=ȳ = I because, by assumption, controls do not 1190

have developmental constraints and are open-loop (Layer 4; 1191

Eq. 48). 1192

We now define additive genetic covariance matrices under 1193

our assumptions. The additive genetic variance of a trait is 1194

defined under quantitative genetics assumptions as the variance 1195

of its breeding value, which is extended to the multivariate case 1196

so the additive genetic covariance matrix of a set of traits is 1197

the covariance matrix of the traits’ breeding values (Lynch and 1198

Walsh 1998; Walsh and Lynch 2018). Accordingly, we define the 1199

additive genetic covariance matrix of a vector ζ ∈ Rm×1 as the 1200

covariance matrix of its breeding value: 1201

Gζ ≡ cov[aζ , aζ ]

= E[(aζ − āζ)(aζ − āζ)
ᵀ] = E[(aζ − ζ̄)(aζ − ζ̄)ᵀ]

= E

[(
dζ

dyᵀ

∣∣∣∣
y=ȳ

(y− ȳ)

)(
dζ

dyᵀ

∣∣∣∣
y=ȳ

(y− ȳ)

)ᵀ]

= E

[
dζ

dyᵀ

∣∣∣∣
y=ȳ

(y− ȳ)(y− ȳ)ᵀ
dζᵀ

dy

∣∣∣∣
y=ȳ

]

=
dζ

dyᵀ

∣∣∣∣
y=ȳ

E [(y− ȳ)(y− ȳ)ᵀ]
dζᵀ

dy

∣∣∣∣
y=ȳ

=

(
dζ

dyᵀ
Gy

dζᵀ

dy

)∣∣∣∣
y=ȳ
∈ Rm×m, (77)

where the fourth line follows from the property of the transpose 1202

of a product (i.e., (AB)ᵀ = BᵀAᵀ) and the last line follows since 1203

the additive genetic covariance matrix of controls y is 1204

Gy ≡ cov[ay, ay] = cov[y, y] ∈ RNa Nc×Na Nc .

Eq. (77) corresponds to previous expressions of the additive 1205

genetic covariance matrix (see Eq. II of Fisher 1918, Eq. + of 1206

Wagner 1984, Eq. 3.5b of Barton and Turelli 1987, and Eq. 4.23b 1207

of Lynch and Walsh 1998; see also Eq. 22a of Lande 1980, Eq. 3 1208

of Wagner 1989, and Eq. 9 of Charlesworth 1990). 1209

In some cases, Eq. (77) allows one to immediately determine 1210

whether an additive genetic covariance matrix is singular. In- 1211

deed, since a matrix with fewer rows than columns is necessarily 1212

singular (Horn and Johnson 2013, p. 14), and since a well-defined 1213

product of matrices where the rightmost matrix is singular yields 1214

a singular matrix, from Eq. (77) it follows that Gζ is necessarily 1215

singular if y has fewer entries than ζ (i.e., if NaNc < m). 1216

The additive genetic covariance matrix of states takes the 1217

following form. Evaluating Eq. (77) at ζ = x, the additive genetic 1218

covariance matrix of states x ∈ RNa Ns×1 is 1219

Gx =

(
dx

dyᵀ
Gy

dxᵀ

dy

)∣∣∣∣
y=ȳ
∈ RNa Ns×Na Ns , (78)

Prepared for GENETICS 17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc-nd/4.0/


which is singular because the developmental matrix dxᵀ/dy|y=ȳ1220

is singular since initial states are not affected by any control and1221

final controls do not affect any state (Appendix 5, Eq. A54). How-1222

ever, evolutionary dynamic equations for states alone having1223

an associated Gx-matrix are dynamically insufficient in general.1224

This is because the evolutionary dynamics of states generally1225

depends on the evolutionary dynamics of controls, in particular,1226

because the developmental matrix depends on resident controls1227

in general (Eq. 45; e.g., due to non-linearities in the develop-1228

mental map involving products between controls, or between1229

controls and states, or between controls and environmental vari-1230

ables, that is, gene-gene interaction, gene-phenotype interaction,1231

and gene-environment interaction, respectively). To guarantee1232

dynamic sufficiency, one needs to consider the evolutionary1233

dynamics of both states and controls, that is, of the phenotype,1234

which depends on an associated Gz-matrix rather than Gx alone.1235

The additive genetic covariance matrix of the phenotype1236

takes the following form. Evaluating Eq. (77) at ζ = z,1237

the additive genetic covariance matrix of the phenotype z ∈1238

RNa(Ns+Nc)×1 is1239

Gz =

(
dz

dyᵀ
Gy

dzᵀ

dy

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na(Ns+Nc). (79)

This matrix is necessarily singular because the phenotype z1240

includes controls y so dzᵀ/dy has fewer rows than columns if1241

Ns > 0 (i.e., NaNc < Na(Ns + Nc); Eq. 54). This entails that Gz1242

has at least NaNs eigenvalues that are exactly zero. That is, Gz1243

is singular if there is at least one trait that is developmentally1244

constructed according to the developmental map (Eq. 8).1245

Another way to see the singularity of Gz is the following.1246

From Eq. (79), we can write the additive genetic covariance of1247

the phenotype as1248

Gz =
(

Gzx Gzy

)
,

where the additive genetic cross-covariance matrix of z and x is1249

Gzx =

(
dz

dyᵀ
Gy

dxᵀ

dy

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na Ns ,

and the additive genetic cross-covariance matrix of z and y is1250

Gzy =

(
dz

dyᵀ
Gy

dyᵀ

dy

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na Nc .

Thus, using Eq. (48), we have that1251

Gzx = Gzy
dxᵀ

dy

∣∣∣∣
y=ȳ

. (80)

That is, some columns of Gz (i.e., those in Gzx) are linear combi-1252

nations of other columns of Gz (i.e., those in Gzy). Hence, Gz is1253

singular.1254

The additive genetic covariance matrix of the phenotype is1255

singular because the phenotype includes controls (“gene con-1256

tent”). This is because the breeding value of states is a linear1257

combination of the breeding value of controls, by definition of1258

breeding value, regardless of whether states are linear functions1259

of controls and regardless of the number of states or controls.1260

In quantitative genetics terms, this can be understood as the1261

G-matrix being a function of allele frequencies, say ȳ, so dy-1262

namic sufficiency requires that allele frequencies are part of the1263

dynamic variables considered; consequently, if the phenotypic1264

vector z̄ includes allele frequencies ȳ, then G is necessarily sin- 1265

gular since by definition, breeding value under quantitative ge- 1266

netics assumptions is a linear combination of gene content. The 1267

singularity of Gz implies that if there is only one state and one 1268

control, with a single age each, then there is a perfect correlation 1269

between their breeding values (i.e., their correlation coefficient 1270

is 1). This also holds under quantitative genetics assumptions, 1271

where the breeding value a of a trait x is a linear combination 1272

of predictors yi, so the additive genetic covariance matrix of 1273

z = (x; y) is singular; in particular, if there is only one predictor 1274

y, the breeding value a and predictor y are perfectly correlated 1275

(i.e., cov[a, y]/
√

var[a]var[y] = cov[αy, y]/
√

var[αy]var[y] = 1276

(α/α)cov[y, y]/
√

var[y]var[y] = 1). The perfect correlation be- 1277

tween breeding value and a single predictor arises because, by 1278

definition, breeding value excludes prediction error e. Note 1279

this does not mean that states and controls are linearly related: 1280

it is breeding values and controls that are linearly related by 1281

definition of breeding value (Eq. 76). A standard approach to 1282

remove the singularity of an additive genetic covariance matrix 1283

is to remove some traits from the analysis (Lande 1979). To 1284

remove the singularity of Gz we would need to remove either 1285

all states or all controls from the analysis. However, removing 1286

states from the analysis prevents study of the evolution of devel- 1287

oped traits whereas removing controls from the analysis renders 1288

the analysis dynamically insufficient in general because some 1289

dynamic variables are not followed. Thus, to guarantee that a 1290

dynamically sufficient study of the evolution of developed traits 1291

is carried out, we must keep the singularity of Gz. 1292

Consider now the following slight generalization of the ad- 1293

ditive genetic covariance matrix. We define the additive ge- 1294

netic cross-covariance matrix of a vector ζ ∈ Rm×1 and a vector 1295

ξ ∈ Rp×1 as the cross-covariance matrix of their breeding value: 1296

Gζξ ≡ cov[aζ , aξ ] =

(
dζ

dyᵀ
Gy

dξᵀ

dy

)∣∣∣∣
y=ȳ
∈ Rm×p. (81)

Thus, Gζζ = Gζ . Again, from Eq. (81) it follows that Gζξ is 1297

necessarily singular if there are fewer entries in y than in ξ (i.e., 1298

if NaNc < p). 1299

We now use stabilized-effect matrices (Layer 5) to extend 1300

the notion of breeding value (Eq. 76). We define the stabilized 1301

breeding value of a vector ζ as: 1302

bζ ≡ ζ|y=ȳ +
sζ

syᵀ

∣∣∣∣
y=ȳ

(y− ȳ) = ζ̄ +
sζ

syᵀ

∣∣∣∣
y=ȳ

(y− ȳ). (82)

Recall that the stabilized-effect matrix sξ/syᵀ|y=ȳ equals the 1303

total-effect matrix dξ/dyᵀ|y=ȳ if development is non-social. 1304

Thus, if development is non-social, the stabilized breeding value 1305

bζ equals the breeding value aζ . Also, note that E[bζ ] = ζ̄. 1306

We extend the notion of additive genetic covariance matrix 1307

to include the effects of socio-devo stabilization as follows. We 1308

define the additive socio-genetic cross-covariance matrix of ζ ∈ Rm×1
1309

as 1310

Hζ ≡ cov[bζ , aζ ] =

(
sζ

syᵀ
Gy

dζᵀ

dy

)∣∣∣∣
y=ȳ
∈ Rm×m. (83)

Thus, if development is non-social, Hζ equals Gζ . 1311

Similarly, we generalize this notion and define the additive 1312

socio-genetic cross-covariance matrix of ζ ∈ Rm×1 and ξ ∈ Rp×1 as 1313

Hζξ ≡ cov[bζ , aξ ] =

(
sζ

syᵀ
Gy

dξᵀ

dy

)∣∣∣∣
y=ȳ
∈ Rm×p. (84)
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Again, if development is non-social, Hζξ equals Gζξ .1314

Therefore, an additive socio-genetic cross-covariance matrix1315

Hζξ is singular if ξ has more entries than y. Consequently, the1316

matrix1317

Hζz =

(
sζ

syᵀ
Gy

dzᵀ

dy

)∣∣∣∣
y=ȳ
∈ Rm×Na(Ns+Nc) (85)

is singular if there is at least one state (i.e., if Ns > 0). Moreover,1318

Hζz has at least NaNs eigenvalues that are exactly zero. Now,1319

the matrix1320

Hζm =

(
sζ

syᵀ
Gy

dmᵀ

dy

)∣∣∣∣
y=ȳ
∈ Rm×(1+Na)(Ns+Nc+Ne) (86)

is singular if there is at least one state or one environmental1321

variable (i.e., if Ns > 0 or Ne > 0). Thus, Hζm has at least1322

Na(Ns + Ne) eigenvalues that are exactly zero. In contrast, the1323

additive socio-genetic cross-covariance matrix of ζ ∈ {y, z, m}1324

and y1325

Hζy =

(
sζ

syᵀ
Gy

)∣∣∣∣
y=ȳ
∈ Rm×Na Nc (87)

is non-singular if Gy is non-singular (Appendices 10 and 12).1326

The matrices of additive socio-genetic covariance share various1327

properties with similar generalizations of the G-matrix arising1328

in the indirect genetic effects literature (Kirkpatrick and Lande1329

1989; Moore et al. 1997; Townley and Ezard 2013).1330

Layer 7: evolutionary dynamics1331

Finally, we move to the top layer of the evo-devo process, that of1332

evolutionary dynamics. This layer contains equations describing1333

the evolutionary dynamics under explicit developmental and1334

environmental constraints. In Appendices 1 and 9-12, we show1335

that the evolutionary dynamics of states, controls, phenotype,1336

environment, and metaphenotype (i.e., for ζ ∈ {x, y, z, εεε, m})1337

are given by1338

dζ̄

dτ
=

(
Hζm

∂w
∂m

+
sζ

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣
y=ȳ

, (88a)

which must satisfy both the developmental constraint1339

x̄a + 1 = ga(z̄a, z̄, ε̄εεa) for all a ∈ {1, . . . , Na − 1} with fixed x̄1,
(88b)

and the environmental constraint1340

ε̄εεa = ha(z̄a, z̄, τ) for all a ∈ {1, . . . , Na}. (88c)

If ζ = z in Eq. (88a), then the equations in layers 2-6 guarantee1341

that the developmental constraint is satisfied for all τ > τ1 given1342

that it is satisfied at the initial evolutionary time τ1. If ζ = m in1343

Eq. (88a), then the equations in layers 2-6 guarantee that both the1344

developmental and environmental constraints are satisfied for1345

all τ > τ1 given that they are satisfied at the initial evolutionary1346

time τ1. Both the developmental and environmental constraints1347

can evolve as the phenotype and environment evolve and such1348

constraints can involve any family of curves (as long as they are1349

differentiable).1350

Eq. (88a) describes the evolutionary dynamics as consisting1351

of selection response and exogenous plastic response. Eq. (88a)1352

contains the term1353 (
Hζm

∂w
∂m

)∣∣∣∣
y=ȳ

, (89)

which comprises directional selection on the metapheno- 1354

type (∂w/∂m|y=ȳ) and socio-genetic covariation of ζ and the 1355

metaphenotype (Hζm). Thus, the term in Eq. (89) is the selection 1356

response of ζ and is a generalization of Lande’s (1979) generaliza- 1357

tion of the univariate breeder’s equation (Lush 1937; Walsh and 1358

Lynch 2018). Additionally, Eq. (88a) contains the term 1359(
sζ

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣
y=ȳ

, (90)

which comprises the vector of environmental change due to ex- 1360

ogenous causes (∂ε̄εε/∂τ) and the matrix of stabilized plasticity 1361

(sζ/sεεεᵀ|y=ȳ). Thus, the term in Eq. (90) is the exogenous plas- 1362

tic response of ζ and is a generalization of previous equations 1363

(cf. Eq. A3 of Chevin et al. 2010). Note that the endogenous plastic 1364

response of ζ (i.e., the plastic response due to endogenous en- 1365

vironmental change arising from niche construction) is part of 1366

both the selection response and the exogenous plastic response 1367

(Layers 2-6). 1368

Selection response is relatively incompletely described by 1369

directional selection on the metaphenotype. We saw that the 1370

matrix Hζm is always singular if there is at least one state or 1371

one environmental variable (Layer 6, Eq. 86). Consequently, 1372

evolutionary equilibria of ζ can invariably occur with persis- 1373

tent directional selection on the metaphenotype, regardless of 1374

whether there is exogenous plastic response. 1375

Selection response is also relatively incompletely described by 1376

semi-total selection on the phenotype. We can rewrite the selec- 1377

tion response, so the evolutionary dynamics of ζ ∈ {x, y, z, εεε, m} 1378

(Eq. 88a) is equivalently given by 1379

dζ̄

dτ
=

(
Hζz

δw
δz

+
sζ

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣
y=ȳ

. (91)

This equation now depends on semi-total selection on the phe- 1380

notype (δw/δz|y=ȳ), which measures directional selection on 1381

the phenotype considering environmental constraints (Lande’s 1382

selection gradient does not consider any constraints on the traits; 1383

Appendix 16). We saw that the semi-total selection gradient of 1384

the phenotype can be interpreted as pointing in the direction of 1385

steepest ascent on the fitness landscape in phenotype space after 1386

the landscape is modified by the interaction of niche construc- 1387

tion and environmental sensitivity of selection (Layer 3, Eq. 40). 1388

We also saw that the matrix Hζz is always singular if there is 1389

at least one state (Layer 6, Eq. 85). Consequently, evolutionary 1390

equilibria can invariably occur with persistent directional selec- 1391

tion on the phenotype after niche construction has modified the 1392

phenotype’s fitness landscape, regardless of whether there is 1393

exogenous plastic response. 1394

In contrast, selection response is relatively completely de- 1395

scribed by total genetic selection. We can further rewrite selec- 1396

tion response, so the evolutionary dynamics of ζ ∈ {x, y, z, εεε, m} 1397

(Eq. 88a) is equivalently given by 1398

dζ̄

dτ
=

(
Hζy

dw
dy

+
sζ

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣
y=ȳ

. (92)

This equation now depends on total genetic selection 1399

(dw/dy|y=ȳ), which measures directional selection on controls 1400

considering developmental and environmental constraints. We 1401

saw that the total selection gradient of controls can be inter- 1402

preted as pointing in the direction of steepest ascent on the 1403

fitness landscape in control space after the landscape is modified 1404

by the interaction of total developmental bias from controls and 1405
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directional selection on developed traits and by the interaction1406

of total niche construction by controls and environmental sen-1407

sitivity of selection (Layer 4, Eq. 64). In contrast to the other1408

arrangements of selection response, in Appendices 10 and 121409

we show that Hζy is non-singular for all ζ ∈ {y, z, m} if Gy is1410

non-singular (i.e., if there is mutational variation in all directions1411

of control space). Consequently, evolutionary equilibria of con-1412

trols, phenotype, or metaphenotype can only occur when total1413

genetic selection vanishes if there is mutational variation in all1414

directions of control space and if exogenous plastic response is1415

absent.1416

Importantly, although Eq. (88a) and its equivalents describe1417

the evolutionary dynamics of ζ, such equations are guaranteed1418

to be dynamically sufficient only for certain ζ. Eq. (88a) and its1419

equivalents are dynamically sufficient if ζ is the controls, the1420

phenotype, or the metaphenotype, provided that the develop-1421

mental and environmental constrains are satisfied throughout1422

and the five elementary components of the evo-devo process are1423

known (Layer 1, Fig. 5). In contrast, Eq. (88a) and its equivalents1424

are generally dynamically insufficient if ζ is the states or the en-1425

vironment, because the evolution of controls is not followed but1426

it generally affects the system.1427

In particular, the evolutionary dynamics of states are gen-1428

erally dynamically insufficient if considered on their own.1429

Let us temporarily assume that the following four condi-1430

tions hold: (1) development is non-social (dxᵀ/dz̄|y=ȳ =1431

0), and there is (2) no exogenous plastic response of states1432

([(dx/dεεεᵀ)(∂ε̄εε/∂τ)] |y=ȳ = 0), (3) no semi-total selection on1433

controls (δw/δy|y=ȳ = 0), and (4) no niche-constructed effects1434

of states on fitness ([(∂εεεᵀ/∂x)(∂w/∂εεε)] |y=ȳ = 0). Then, the1435

evolutionary dynamics of states reduces to1436

dx̄
dτ

= Gx
∂w
∂x

∣∣∣∣
y=ȳ

. (93)

This recovers Lande’s (1979) equation for states, where the ad-1437

ditive genetic covariance matrix of states (Layer 6, Eq. 78) is1438

singular because initial states are not affected by any control and1439

final controls do not affect any state (so dxᵀ/dy|y=ȳ has rows1440

and columns that are zero; Appendix 5, Eq. A54). Yet, the evolu-1441

tionary dynamics of states is not necessarily fully determined1442

by the evolutionary dynamics of states alone because such sys-1443

tem depends on resident controls whose evolution must also be1444

followed. In particular, setting dx̄/dτ = 0 does not generally1445

imply an evolutionary equilibrium, or evolutionary stasis, but1446

only an evolutionary isocline in states, that is, a transient lack of1447

evolutionary change in states. To guarantee a complete descrip-1448

tion of the evolutionary dynamics of states, we must consider1449

the evolutionary dynamics of states and controls, that is, the1450

phenotype.1451

Indeed, the evolutionary dynamics of the phenotype is dy-1452

namically sufficient more generally. Let us instead assume1453

that the following three conditions hold: (i) development is1454

non-social (dxᵀ/dz̄|y=ȳ = 0), and there is (ii) no exogenous1455

plastic response of states ([(dx/dεεεᵀ)(∂ε̄εε/∂τ)] |y=ȳ = 0), and1456

(iii) no niche-constructed effects of the phenotype on fitness1457

([(∂εεεᵀ/∂z)(∂w/∂εεε)] |y=ȳ = 0). Then, the evolutionary dynam-1458

ics of the phenotype reduces to1459

dz̄
dτ

= Gz
∂w
∂z

∣∣∣∣
y=ȳ

. (94)

This recovers Lande’s (1979) equation, this time for the phe-1460

notype, where the additive genetic covariance matrix of the1461

phenotype (Layer 6, Eq. 79) is singular because the phenotype 1462

z includes controls y (so dzᵀ/dy has fewer rows than columns; 1463

Layer 4, Eq. 54). That is, Gz is singular if there is at least one 1464

trait that is developmentally constructed according to the de- 1465

velopmental map (Eq. 88b). The evolutionary dynamics of the 1466

phenotype is now fully determined by Eq. (94) provided that i-iii 1467

hold and that the developmental (Eq. 88b) and environmental 1468

(Eq. 88c) constraints are met. In such case, setting dz̄/dτ = 0 1469

does imply an evolutionary equilibrium, but this does not im- 1470

ply absence of directional selection on the phenotype (i.e., it is 1471

possible that ∂w/∂z|y=ȳ 6= 0) since Gz is always singular. Due 1472

to this singularity, if there is any evolutionary equilibrium, there 1473

is an infinite number of them. Kirkpatrick and Lofsvold (1992) 1474

showed that if Gz is singular and constant, then the evolutionary 1475

equilibrium that is achieved depends on the initial conditions. 1476

Our results extend the relevance of Kirkpatrick and Lofsvold’s 1477

(1992) insight by showing that Gz is always singular and re- 1478

mains so as it evolves. Moreover, since both the developmental 1479

(Eq. 88b) and environmental (Eq. 88c) constraints must be sat- 1480

isfied throughout the evolutionary process, the developmental 1481

and environmental constraints determine the admissible evolu- 1482

tionary trajectory and the admissible evolutionary equilibria if 1483

mutational variation exists in all directions of control space. 1484

Since selection response is relatively completely described 1485

by total genetic selection, further insight can be gained by rear- 1486

ranging Lande’s equation for the phenotype (Eq. 94) in terms of 1487

total genetic selection. Using the rearrangement in Eq. (92) and 1488

making the assumptions i-iii in the previous paragraph, Lande’s 1489

equation (Eq. 94) becomes 1490

dz̄
dτ

= Hzy
dw
dy

∣∣∣∣
y=ȳ

. (95)

Here, if the mutational covariance matrix Gy is non-singular, 1491

then the matrix Hzy is non-singular so evolutionary equilib- 1492

rium (dz̄/dτ = 0) implies absence of total genetic selection (i.e., 1493

dw/dy|y=ȳ = 0). Hence, lack of total genetic selection provides 1494

a first-order condition for evolutionary equilibria in the absence 1495

of exogenous environmental change and of absolute mutational 1496

constraints. Consequently, evolutionary equilibria depend on 1497

development and niche construction since total genetic selec- 1498

tion depends on Wagner’s (1984, 1989) developmental matrix 1499

and on total niche construction by controls (Layer 4; Eq. 64). 1500

Since dw/dy|y=ȳ = 0 has only as many equations as there are 1501

controls and since there are not only controls but also states 1502

and environmental variables to determine, then dw/dy|y=ȳ = 0 1503

provides fewer equations than variables to solve for. Hence, ab- 1504

sence of total genetic selection still implies an infinite number of 1505

evolutionary equilibria. Again, only the subset of evolutionary 1506

equilibria that satisfy the developmental (Eq. 88b) and environ- 1507

mental (Eq. 88c) constraints are admissible, and the number 1508

of admissible evolutionary equilibria may be finite. Therefore, 1509

admissible evolutionary equilibria have a dual dependence on 1510

developmental and environmental constraints: first, by the con- 1511

straints’ influence on total genetic selection and so on evolution- 1512

ary equilibria; and second, by the constraints’ specification of 1513

which equilibria are admissible. 1514

Because we assume that mutants arise when residents are at 1515

carrying capacity, the analogous statements can be made for the 1516

evolutionary dynamics of a resident vector in terms of lifetime 1517

reproductive success (Eq. 28). Using the relationship between 1518

selection gradients in terms of fitness and of expected lifetime 1519

reproductive success (Eqs. 29), the evolutionary dynamics of 1520
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ζ ∈ {x, y, z, εεε, m} (Eq. 88a) are equivalently given by1521

dζ̄

dτ
=

(
1
T

Hζm
∂R0
∂m

+
sζ

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣
y=ȳ

(96a)

=

(
1
T

Hζz
δR0
δz

+
sζ

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣
y=ȳ

(96b)

=

(
1
T

Hζy
dR0
dy

+
sζ

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣
y=ȳ

. (96c)

To close, the evolutionary dynamics of the environment can1522

be written in a particular form that is insightful. In Appendix1523

11, we show that the evolutionary dynamics of the environment1524

is given by1525

dε̄εε

dτ
=

(
∂(εεε + ε̌εε)

∂zᵀ
dz̄
dτ

+
∂εεε

∂τ

)∣∣∣∣
y=ȳ

. (97)

Thus, the evolutionary change of the environment comprises1526

“inclusive” endogenous environmental change and exogenous1527

environmental change.1528

Discussion1529

We have addressed the question of how development affects evo-1530

lution by formulating a mathematical framework that integrates1531

explicit developmental dynamics into evolutionary dynamics.1532

Previous understanding suggested that development affects evo-1533

lution by inducing genetic covariation and genetic constraints,1534

although the nature of such constraints had remained uncertain.1535

We have found that development has major evolutionary effects.1536

First, the G-matrix is singular in phenotype space if controls1537

are included in the analysis to achieve dynamic sufficiency, so1538

genetic covariation is necessarily absent in some directions of1539

phenotype space; that is, there necessarily are absolute genetic1540

constraints. Second, since G is singular in phenotype space,1541

directional selection is insufficient to identify evolutionary equi-1542

libria. In contrast, total genetic selection, which depends on1543

development, is sufficient to identify evolutionary equilibria if1544

there are no absolute mutational constraints and no exogenous1545

plastic response. Third, since G is singular in phenotype space, if1546

there is any evolutionary equilibrium and no exogenous plastic1547

response, then there is an infinite number of evolutionary equi-1548

libria, and development determines the admissible evolutionary1549

trajectory and so the admissible equilibria. We have derived1550

a collection of equations that describe the evo-devo dynamics1551

with explicit population and environmental dynamics. These1552

equations provide a theory of constrained evolutionary dynam-1553

ics, where the developmental and environmental constraints1554

determine the admissible evolutionary path (Eq. 88).1555

We find that the G-matrix is necessarily singular in pheno-1556

type space if at least one trait is developmentally constructed1557

according to the developmental map (Eq. 88b). This singular-1558

ity arises because the evolution of both genetic and developed1559

traits is followed for the evolutionary system to be dynamically1560

sufficient in general. In quantitative genetics, the evolution of a1561

multivariate phenotype is traditionally followed without simul-1562

taneously following allele frequency change (e.g., Lande 1979;1563

Wagner 1984; Barton and Turelli 1987; Wagner 1989; Martin 2014;1564

Morrissey 2014, 2015; Engen and Sæther 2021). We show that the1565

G-matrix generally depends on resident controls (which play an1566

analogous role to that of allele frequencies under quantitative ge-1567

netics assumptions). Thus, following the evolution of developed1568

traits without simultaneously tracking the evolution of controls1569

is generally dynamically insufficient. The G-matrix generally 1570

depends on resident controls via both the mutational covariance 1571

matrix and the developmental matrix. The developmental ma- 1572

trix depends on resident controls particularly due to gene-gene 1573

interaction, gene-phenotype interaction, and gene-environment 1574

interaction (see text below Eq. 78). The analogous dependence 1575

of G on allele frequency should hold under quantitative genetics 1576

assumptions for the same reasons, thus requiring consideration 1577

of allele frequency as part of the dynamic variables. If under a 1578

quantitative genetics framework, allele frequency were consid- 1579

ered as part of the multivariate phenotype in order to render the 1580

system dynamically sufficient in general, then the associated G- 1581

matrix would be necessarily singular, with at least as many zero 1582

eigenvalues as there are traits that are not allele frequency. This 1583

is because, by definition, breeding values are linear combina- 1584

tions of gene content; thus, some columns in G (the covariances 1585

between the breeding values of all traits and the breeding values 1586

of traits that are not gene content, Gzx) are linear combinations 1587

of other columns (the covariances between the breeding values 1588

of all traits and the breeding values of gene content, Gzy), which 1589

means that G is singular (Eq. 80). Including controls as part of 1590

the phenotype might seem to trivially enforce singularity of G, 1591

but such inclusion is needed to guarantee dynamic sufficiency. 1592

Consequently, lack of selection response in phenotype space gen- 1593

erally occurs with persistent directional selection in phenotype 1594

space. The singularity of G in phenotype space persists despite 1595

evolution of the developmental map, regardless of the num- 1596

ber of controls or states provided there is any state, and in the 1597

presence of endogenous or exogenous environmental change. 1598

The singularity remains if states directly depend on controls 1599

(Eq. 88b) so that there is genetic input fed directly into states, 1600

although the singularity may disappear if every state at every 1601

age is exclusively directly genetically encoded: that is, if there 1602

are no developed traits but only genetic traits (or in a standard 1603

quantitative genetics framework, if only allele frequency change 1604

is followed). 1605

Extensive research efforts have been devoted to determin- 1606

ing the relevance of constraints in adaptive evolution (Arnold 1607

1992; Hine and Blows 2006; Hansen and Houle 2008; Jones et al. 1608

2014; Hine et al. 2014; Engen and Sæther 2021). Empirical re- 1609

search has found that the smallest eigenvalue of G is often close 1610

to zero (Kirkpatrick and Lofsvold 1992; Hine and Blows 2006; 1611

McGuigan and Blows 2007). However, Mezey and Houle (2005) 1612

found a non-singular G-matrix for 20 traits in fruit flies; our re- 1613

sults suggest G singularity would still arise in this case if enough 1614

traits are included so as to guarantee dynamic sufficiency (i.e., 1615

if allele frequency change were tracked). Previous theory has 1616

offered limited predictions as to when the G-matrix would be 1617

singular. These include that more traits render G more likely to 1618

be singular as traits are more likely to be genetically correlated, 1619

such as in infinite-dimensional traits (Gomulkiewicz and Kirk- 1620

patrick 1992; Kirkpatrick and Lofsvold 1992). But as noted by 1621

Kirkpatrick and Lofsvold (1992, p. 959), “The small number of 1622

evolutionary degrees of freedom found in the mouse population 1623

is a strictly empirical finding not predicted by [previous] theory.” 1624

Our results are in line with those of Kirkpatrick and Lofsvold 1625

(1992, p. 962 onwards) who showed that, assuming that G is 1626

singular and constant, then the evolutionary trajectory and equi- 1627

libria depend on the initial conditions. Our results substantiate 1628

Kirkpatrick and Lofsvold’s (1992) assumption of singular G by 1629

our point that G is always singular in phenotype space, even 1630

with few traits and evolving G. Our results extend Kirkpatrick 1631
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and Lofsvold’s (1992) insight that the evolutionary trajectory1632

and equilibria depend on the initial conditions by our observa-1633

tion that the evolutionary trajectory and equilibria depend on1634

development. In Appendix 17, we show that such evolutionary1635

trajectory corresponds to a “genetic line of least resistance” (a1636

line parallel to a leading eigenvector of G) (Schluter 1996) if there1637

is a single control and a single age (this may hold for an arbitrary1638

number of controls and ages but we do not prove it). In this case1639

of a single control and single age, developmental constraints can1640

then be interpreted as determining genetic lines of least resis-1641

tance, the number of which is infinite, and as determining the1642

admissible one along which evolution proceeds.1643

Multiple mathematical models have addressed the question1644

of the singularity of G. Recently, simulation work studying the1645

effect of pleiotropy on the structure of the G-matrix found that1646

the smallest eigenvalue of G is very small but positive (Engen1647

and Sæther 2021, Tables 3 and 5). Our findings indicate that1648

this model and others (e.g., Wagner 1984; Barton and Turelli1649

1987; Wagner 1989; Martin 2014; Morrissey 2014, 2015) would1650

recover G-singularity by considering allele frequency as part1651

of the phenotype. Other recent simulation work found that a1652

singular G-matrix arising from few segregating alleles still al-1653

lows the population to reach fitness optima as all directions of1654

phenotype space are eventually available in the long run (Bar-1655

ton 2017, Fig. 3). Our results indicate that such a model would1656

recover that unconstrained fitness optima in phenotype space1657

are not necessarily achieved by incorporating developmental1658

constraints, which induce convergence to constrained fitness op-1659

tima. Convergence to constrained fitness optima rather than to1660

unconstrained fitness optima still occurs with the fewest number1661

of traits allowed in our framework: two, that is, one control and1662

one state with one age each (or in a standard quantitative genet-1663

ics framework, allele frequency at a locus and one quantitative1664

trait that is a function of such allele frequency). Such constrained1665

adaptation has substantial implications (see e.g., Kirkpatrick and1666

Lofsvold 1992; Gomulkiewicz and Kirkpatrick 1992) and is con-1667

sistent with empirical observations of lack of selection response1668

in the wild despite selection and genetic variation (Merilä et al.1669

2001; Hansen and Houle 2004; Pujol et al. 2018), and of relative1670

lack of stabilizing selection (Kingsolver et al. 2001; Kingsolver1671

and Diamond 2011).1672

Our results provide a mechanistic theory of breeding value,1673

thus allowing for insight regarding the structure and evolution1674

of the G-matrix. We have obtained G-matrices in terms of total-1675

effect matrices, in accordance with previous results (Fisher 1918;1676

Wagner 1984; Barton and Turelli 1987; Lynch and Walsh 1998;1677

Martin 2014; Morrissey 2014). Total-effect matrices correspond1678

to Wagner’s (1984, 1989) developmental matrix (denoted by him1679

as B). Wagner (1984, 1989) constructed and analysed evolu-1680

tionary models considering developmental maps, and wrote1681

the G-matrix in terms of his developmental matrix to assess its1682

impact on the maintenance of genetic variation. Yet, as is tradi-1683

tionally done, Wagner (1984, 1988, 1989) did not simultaneously1684

track the evolution of what we call controls and states, so he did1685

not conclude that the associated G-matrix is necessarily singular1686

or that the developmental matrix affects evolutionary equilibria.1687

Wagner’s (1984, 1989) models have been used to devise mod-1688

els of constrained adaptation in a fitness landscape, borrowing1689

ideas from computer science (Altenberg 1995, his Fig. 2). This1690

and other models (Houle 1991, his Fig. 2 and Kirkpatrick and1691

Lofsvold 1992, their Fig. 5) have suggested how constrained evo-1692

lutionary dynamics could proceed although they have lacked1693

a mechanistic theory of breeding value and thus of G and its 1694

evolutionary dynamics. Other models borrowing ideas from 1695

computer science have found that epistasis can cause the evo- 1696

lutionary dynamics to take an exponentially long time to reach 1697

fitness peaks (Kaznatcheev 2019). We obtain equations allow- 1698

ing one to mechanistically construct breeding value and the 1699

G-matrix from low-level mechanistic components, providing a 1700

mechanistic theory of breeding value and opening the door to 1701

further insight regarding the structure and evolution of G. Our 1702

point that the G-matrix in phenotype space has at least NaNs 1703

eigenvalues that are exactly zero entails that even if there were 1704

infinite time, the population does not necessarily reach a fitness 1705

peak in phenotype space, although it may in control space. 1706

We find that total genetic selection can provide more infor- 1707

mation than directional selection regarding selection response. 1708

As the G-matrix is singular in phenotype space, directional se- 1709

lection on the phenotype is insufficient to identify evolutionary 1710

equilibria as has been previously realized (Lande 1979; Via and 1711

Lande 1985; Kirkpatrick and Lofsvold 1992; Gomulkiewicz and 1712

Kirkpatrick 1992). Evolutionary analysis with singular G, includ- 1713

ing identification of evolutionary equilibria, has been hampered 1714

by the lack of mechanistic theory for breeding value and thus 1715

of G (Via and Lande 1985; Kirkpatrick and Lofsvold 1992; Go- 1716

mulkiewicz and Kirkpatrick 1992). Our results show that evolu- 1717

tionary analysis despite singular G is facilitated by considering 1718

total genetic selection, revealing that evolutionary equilibria de- 1719

pend on development rather than exclusively on (unconstrained) 1720

selection. Additionally, development determines the admissible 1721

evolutionary trajectory along which developmental and envi- 1722

ronmental constraints are satisfied. These findings indicate that 1723

development has a major evolutionary role. 1724

Total genetic selection is measured by a total selection gradi- 1725

ent, and total selection gradients closely correspond to Morris- 1726

sey’s (2014, 2015) notion of extended selection gradient. Total 1727

selection gradients measure directional selection taking into ac- 1728

count developmental and environmental constraints, as opposed 1729

to Lande’s (1979) selection gradients which measure directional 1730

selection without considering constraints. We obtained compact 1731

expressions for total selection gradients as linear transformations 1732

of Lande’s selection gradients, arising from the chain rule in ma- 1733

trix notation (Eq. 62). Morrissey (2014) defined the extended 1734

selection gradient as η = Φβ, where β is Lande’s selection gradi- 1735

ent and Φ is the matrix of total effects of all traits on themselves. 1736

Morrissey (2014) provided an equation for Φ (his Eq. 2), which 1737

has the form of our matrix describing developmental feedback 1738

among states (dxᵀ/dx|y=ȳ; Eq. 44). Thus, interpreting Φ as our 1739

dxᵀ/dx|y=ȳ and β as our ∂w/∂x|y=ȳ, then Eq. (63) shows that 1740

η = Φβ corresponds to the total selection gradient of states 1741

dw/dx|y=ȳ if there is no niche construction by states (i.e., if 1742

∂εεεᵀ/∂x|y=ȳ = 0). The equation for Φ provided by Morrissey 1743

(2014) (his Eq. 2) does not correspond to the expressions we 1744

found for other total-effect matrices (e.g., for dxᵀ/dy|y=ȳ in 1745

Eq. 45, dzᵀ/dz|y=ȳ in Eq. 55, or dmᵀ/dm|y=ȳ in Eq. 60). Yet, if 1746

we interpret Φ as our dzᵀ/dz|y=ȳ and β as our ∂w/∂z|y=ȳ, then 1747

Eq. (66) shows that η = Φβ corresponds to the total selection gra- 1748

dient of the phenotype dw/dz|y=ȳ if there is no niche construc- 1749

tion by the phenotype (i.e., if ∂εεεᵀ/∂z|y=ȳ = 0). Alternatively, if 1750

we interpret Φ as our dmᵀ/dm|y=ȳ and β as our ∂w/∂m|y=ȳ, 1751

then Eq. (67) shows that η = Φβ corresponds to the total selec- 1752

tion gradient of the metaphenotype dw/dm|y=ȳ regardless of 1753

whether there is niche construction by states or the phenotype. 1754

We show in Appendices 10 and 12 that selection response can 1755
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be written in terms of the total selection gradients of the pheno-1756

type dw/dz|y=ȳ and metaphenotype dw/dm|y=ȳ, but such total1757

selection gradients are insufficient to predict evolutionary equi-1758

libria because they are premultiplied by a singular socio-genetic1759

cross-covariance matrix. In a subsequent paper, Morrissey (2015)1760

provided a symbolic definition for Φ (his Eq. 6) which suggests1761

interpreting it as our dmᵀ/dy|y=ȳ (although he used partial1762

derivatives). Thus, interpreting Φ as our dmᵀ/dy|y=ȳ and β as1763

our ∂w/∂m|y=ȳ, then Eq. (62) shows that η = Φβ corresponds1764

to the total selection gradient of controls dw/dy|y=ȳ, which we1765

have shown can predict evolutionary equilibria. Morrissey gave1766

a different treatment to linear (Morrissey 2014) and non-linear1767

(Morrissey 2015) (implicit) developmental maps, so in the latter1768

case he did not write evolutionary change as a Lande’s type1769

equation. We obtain equations describing evolutionary change1770

involving a Lande’s type term despite non-linear developmental1771

maps because we linearize invasion fitness by assuming weak1772

mutation (Eq. 13) (Dieckmann and Law 1996).1773

Our results allow for the modelling of evo-devo dynamics in1774

a wide array of settings. First, developmental and environmen-1775

tal constraints (Eqs. 88b and 88c) can mechanistically describe1776

development, gene-gene interaction, and gene-environment in-1777

teraction, while allowing for arbitrary non-linearities and evolu-1778

tion of the developmental map (or genotype-phenotype map).1779

Many previous approaches have modelled gene-gene interac-1780

tion, such as by considering multiplicative gene effects, but1781

general frameworks mechanistically linking gene-gene interac-1782

tion, gene-environment interaction, developmental dynamics,1783

and evolutionary dynamics have previously remained elusive1784

(Rice 1990; Hansen and Wagner 2001; Rice 2002; Hermisson et al.1785

2003; Carter et al. 2005). A historically dominant yet debated1786

view is that gene-gene interaction has minor evolutionary ef-1787

fects as phenotypic evolution depends on additive rather than1788

epistatic effects to a first-order of approximation, so epistasis1789

would act by influencing a seemingly effectively non-singular G1790

(Hansen 2013; Nelson et al. 2013; Paixão and Barton 2016; Barton1791

2017). Our results show that G is singular and that evolution-1792

ary equilibria depend on development and so on gene-gene1793

and gene-environment interaction. Hence, gene-gene and gene-1794

environment interaction may have strong and permanent evolu-1795

tionary effects (e.g., via developmental feedbacks described by1796

dxᵀ/dx|y=ȳ).1797

Second, our results allow for the study of the evolution of1798

the G-matrix as an emergent property of the evolution of the1799

phenotype and environment (i.e., the metaphenotype) rather1800

than treating G as another dynamic variable as is traditionally1801

done (Bulmer 1971; Lande 1979; Bulmer 1980; Lande 1980; Lande1802

and Arnold 1983; Barton and Turelli 1987; Turelli 1988; Gavrilets1803

and Hastings 1994; Carter et al. 2005). Third, our results allow1804

for the study of the effects of developmental bias, biased genetic1805

variation, and modularity (Wagner 1996; Pavlicev et al. 2011;1806

Wagner and Zhang 2011; Pavlicev and Wagner 2012; Watson et al.1807

2013). Indeed, while we have assumed that mutation is unbiased1808

for genetic traits, our equations allow for the developmental map1809

to lead to biases in genetic variation for developed traits. This1810

may lead to modular effects of mutations, whereby altering a1811

control tends to affect some states but not others.1812

Fourth, our equations allow for the study of the evolutionary1813

dynamics of life-history models with dynamic constraints. Life-1814

history models with dynamic constraints have previously been1815

restricted to evolutionary equilibria (e.g., González-Forero et al.1816

2017; González-Forero and Gardner 2018). Previous frameworks1817

of evolutionary dynamics of functioned-valued traits allow for 1818

the modelling of evolutionary dynamics of traits that vary over 1819

age or stage, but such frameworks do not generally consider 1820

dynamic constraints (i.e., they consider the evolution of control 1821

variables but allow for state variables on a case by case basis at 1822

most) (Kirkpatrick and Heckman 1989; Dieckmann et al. 2006; 1823

Coulson et al. 2010; Parvinen et al. 2013; Metz et al. 2016; Rees 1824

and Ellner 2016). Fifth, our framework allows for the modelling 1825

of the evo-devo dynamics of pattern formation by implementing 1826

reaction-diffusion equations in discrete space in the developmen- 1827

tal map (e.g., Eq. 6.1 of Turing 1952; Tomlin and Axelrod 2007). 1828

Sixth, our framework also allows for the mechanistic modelling 1829

of adaptive plasticity, for instance, by implementing reinforce- 1830

ment learning or supervised learning in the developmental map 1831

(Sutton and Barto 2018; Paenke et al. 2007). To model evo-devo 1832

dynamics, it may often be simpler to compute the evolution- 1833

ary dynamics of controls and the developmental dynamics of 1834

states, rather than the evolutionary dynamics of the phenotype 1835

or metaphenotype. In such cases, after solving for the evo-devo 1836

dynamics, one can then compute the matrices composing the 1837

evolutionary dynamics of the phenotype and metaphenotype 1838

to gain a detailed understanding of the evolutionary factors at 1839

play, including the evolution of the G-matrix. 1840

By allowing development to be social, our framework allows 1841

for a mechanistic description of extra-genetic inheritance and in- 1842

direct genetic effects. Extra-genetic inheritance can be described 1843

since the states at a given age can be an identical or modified 1844

copy of the states of social partners. Thus, social development 1845

allows for the modelling of social learning (Sutton and Barto 1846

2018; Paenke et al. 2007) and epigenetic inheritance (Jablonka 1847

et al. 1992; Slatkin 2009; Day and Bonduriansky 2011). However, 1848

we have only considered social interactions among non-relatives, 1849

so our framework at present only allows for social learning or 1850

epigenetic inheritance from non-relatives. Additionally, indi- 1851

rect genetic effects, where genes partly or completely causing 1852

a phenotype may be located in another individual (Moore et al. 1853

1997), can be mechanistically described by social development 1854

since the controls or states of social partners influence the devel- 1855

oped phenotype. Indirect genetic effect approaches model the 1856

phenotype as a linear regression of individual’s phenotype on 1857

social partner’s phenotype (Kirkpatrick and Lande 1989; Moore 1858

et al. 1997; Townley and Ezard 2013), whereas our approach con- 1859

structs individual’s phenotype from development depending 1860

on social partners’ phenotypes. We have found that social de- 1861

velopment generates social feedback (described by sx/sx̄ᵀ|y=ȳ, 1862

Eq. 68), which closely though not entirely corresponds to social 1863

feedback found in the indirect genetic effects literature (Moore 1864

et al. 1997, Eq. 19b and subsequent text). The social feedback we 1865

obtain depends on total social developmental bias from states 1866

(dx/dx̄ᵀ|y=ȳ, Eq. 47); analogously, social feedback in the indirect 1867

genetic effects literature depends on the matrix of interaction 1868

coefficients (Ψ) which contains the regression coefficients of 1869

phenotype on social partner’s phenotype. Social development 1870

leads to a generalization of additive genetic covariance matrices 1871

G = cov[a, a] into additive socio-genetic cross-covariance ma- 1872

trices H = cov[b, a]; similarly, indirect genetic effects involve a 1873

generalization of the G-matrix, involving Caz = cov[a, z] which 1874

is the cross-covariance matrix between multivariate breeding 1875

value and phenotype (Kirkpatrick and Lande 1989; Moore et al. 1876

1997; Townley and Ezard 2013). However, there are differences 1877

between our results and those in the indirect genetic effects 1878

literature: for instance, social feedback appears twice in the evo- 1879
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lutionary dynamics under indirect genetic effects (see Eqs. 201880

and 21 of Moore et al. 1997) while it only appears once in our1881

evolutionary dynamics equations through sx/sx̄ᵀ|y=ȳ (Eq. 84);1882

additionally, our H matrices make the evolutionary dynamics1883

equations depend on total social developmental bias from con-1884

trols (dx/dȳᵀ|y=ȳ, Eq. 69a) in a non-feedback manner (specifi-1885

cally, not in an inverse matrix) but this type of dependence does1886

not occur in the evolutionary dynamics under indirect genetic1887

effects (Eqs. 20 and 21 of Moore et al. 1997); moreover, “social1888

selection” (i.e., ∂w/∂z̄) plays no role in our results in principle1889

because we assume there is no kin selection, but social selection1890

plays an important role in the indirect genetic effects literature1891

even if relatedness is zero (McGlothlin et al. 2010, e.g., setting1892

r = 0 in their Eq. 10 still leaves an effect of social selection on1893

selection response). This raises the question of whether some1894

of these differences disappear if controls are closed-loop (e.g., if1895

gene expression depends on social partners’ phenotypes).1896

Our results clarify the role of several developmental factors1897

previously suggested to be evolutionarily important. We have1898

arranged the evo-devo process in a layered structure, where a1899

given layer is formed by components of layers below (Fig. 5).1900

This layered structure helps see that several developmental fac-1901

tors previously suggested to have important evolutionary ef-1902

fects (Laland et al. 2014) but with little clear connection (Welch1903

2017) can be viewed as basic elements of the evolutionary pro-1904

cess. Direct-effect matrices (Layer 2) are basic in that they form1905

all the components of the evolutionary dynamics (Layer 7) ex-1906

cept mutational variation and exogenous environmental change.1907

Direct-effect matrices quantify (i) directional selection, (ii) de-1908

velopmental bias, (iii) niche construction, (iv) social develop-1909

mental bias (e.g., extra-genetic inheritance and indirect genetic1910

effects; Moore et al. 1997), (v) social niche construction, (vi) envi-1911

ronmental sensitivity of selection (Chevin et al. 2010), and (vii)1912

phenotypic plasticity. These factors variously affect selection1913

and development, thus affecting evolutionary equilibria and the1914

admissible evolutionary trajectory.1915

Our approach uses discrete rather than continuous age, which1916

substantially simplifies the mathematics. We recover Lande’s1917

(1979) equation—which slightly differs from Lande’s (1982) age-1918

structured equation—despite having age structure by discretiz-1919

ing age and making use of matrix calculus notation, which al-1920

lows for compact expressions that incorporate the effects of1921

age structure. This treatment allows for the derivation of ana-1922

lytic expressions for what is otherwise a difficult mathematical1923

challenge if age is continuous (Kirkpatrick and Heckman 1989;1924

Dieckmann et al. 2006; Avila et al. 2021). For instance, we obtain1925

formulas for the total selection gradient of states (Eq. 63), and1926

in Appendix 13 we show that such gradient is proportional to1927

costate variables (Eq. A96). Costate variables are key in dynamic1928

optimization as used in life-history models (Sydsæter et al. 2008),1929

but formulas for costate variables are often unavailable and it1930

can be difficult to interpret how costate variables relate to the1931

evolutionary process. We show that the total selection gradient1932

of states, and so costate variables, affect the evolutionary process1933

by affecting total genetic selection (fifth line of Eq. 64), thus influ-1934

encing evolutionary equilibria. Although discretization of age1935

may induce numerical imprecision if the continuous age depen-1936

dence were known (Kirkpatrick and Heckman 1989), precision1937

may be increased by reducing the age bin size (e.g., to represent1938

months or days rather than years; Caswell 2001), potentially at a1939

computational cost.1940

By simplifying the mathematics, our approach yields insight1941

that has been otherwise challenging to gain. Life-history models 1942

with dynamic constraints generally find that costate variables 1943

are non-zero under optimal controls (Gadgil and Bossert 1970; 1944

Taylor et al. 1974; León 1976; Schaffer 1983; Houston et al. 1988; 1945

Houston and McNamara 1999; Sydsæter et al. 2008). This means 1946

that there is persistent total selection on states at evolutionary 1947

equilibrium. Our findings clarify that this is to be expected be- 1948

cause of the arrow of developmental time, since controls at a 1949

given age cannot adjust states at the same age but only at a later 1950

age (i.e., the matrix of semi-total effects of controls on states 1951

is singular; Eq. A48). Thus, total genetic selection may gener- 1952

ally vanish with persistent total selection on states (fifth line of 1953

Eq. 64). Moreover, life-history models with explicit developmen- 1954

tal constraints have found that their predictions can be substan- 1955

tially different from those found without explicit developmental 1956

constraints. In particular, with developmental constraints, the 1957

outcome of parent-offspring conflict over sex allocation has been 1958

found to be that preferred by the mother (Avila et al. 2019), 1959

whereas without developmental constraints the outcome has 1960

been found to be an intermediate between those preferred by 1961

mother and offspring (Reuter and Keller 2001). Our results show 1962

that the particular form of the developmental map may induce 1963

substantial changes in predictions by influencing total genetic 1964

selection and the admissible evolutionary equilibria. 1965

We have obtained a term that we call exogenous plastic re- 1966

sponse, which is the plastic response to exogenous environmen- 1967

tal change over an evolutionary time step (Eq. 90). An analogous 1968

term occurs in previous equations (Eq. A3 of Chevin et al. 2010). 1969

Additionally, endogenous plastic response may occur due to niche 1970

construction (i.e., endogenous environmental change) and it 1971

affects both the selection response and the exogenous plastic 1972

response. Exogenous plastic response does not involve change 1973

in gene frequency, but it affects the evolutionary dynamics. An 1974

immediate evolutionary effect of exogenous plastic response is 1975

as follows. At an evolutionary equilibrium where exogenous 1976

plastic response is absent, the introduction of exogenous plas- 1977

tic response generally changes socio-genetic covariation or dir- 1978

fectional selection at a subsequent evolutionary time, thereby 1979

inducing selection response. This constitutes a simple form of 1980

“plasticity-first” evolution (West-Eberhard 2003), whereby plas- 1981

tic change precedes genetic change, although the plastic change 1982

may not be adaptive and the induced genetic change may have 1983

a different direction to that of the plastic change. 1984

To conclude, we have formulated a framework that synthe- 1985

sizes developmental and evolutionary dynamics yielding a the- 1986

ory of constrained evolutionary dynamics under age structure. 1987

This framework shows that development has major evolutionary 1988

effects as it affects both evolutionary equilibria and the admissi- 1989

ble evolutionary path. Our results provide a tool to chart major 1990

territory on how development affects evolution. 1991
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Appendix 1: canonical equation 2448

Here we derive the equation describing the evolutionary dynam- 2449

ics of controls. This derivation closely follows that of Dieckmann 2450

and Law (1996) except in a few places, particularly in that we 2451

consider deterministic population dynamics so the only source 2452

of stochasticity in our framework is due to mutation. Denote 2453

by ȳ′(τ + ∆τ) a multivariate random variable describing the 2454

possible residents at time τ + ∆τ following fixation of mutants 2455

arising at time τ. Let this random variable have probability 2456

density function P(ȳ′, τ + ∆τ) at time τ + ∆τ, with support in 2457

RNa Nc . Hence, the expected resident controls at time τ + ∆τ are 2458

E[ȳ′(τ + ∆τ)] =
∫

RNa Nc

ȳ′P(ȳ′, τ + ∆τ)dȳ′ ≡ ȳ(τ + ∆τ).

The evolutionary change in resident controls thus satisfies 2459

∆ȳ
∆τ

=
E[ȳ′(τ + ∆τ)]− E[ȳ′(τ)]

∆τ

=
1

∆τ

 ∫
RNa Nc

ȳ′P(ȳ′, τ + ∆τ)dȳ′ −
∫

RNa Nc

ȳ′P(ȳ′, τ)dȳ′

 .

Factorizing yields 2460

∆ȳ
∆τ

=
∫

RNa Nc

ȳ′
P(ȳ′, τ + ∆τ)− P(ȳ′, τ)

∆τ
dȳ′

=
∫

RNa Nc

ȳ′
∆P(ȳ′, τ)

∆τ
dȳ′.

Now, the evolutionary change in the resident-control distribu- 2461

tion satisfies the master equation 2462

∆P(ȳ′, τ)

∆τ
=

∫
RNa Nc

[
ω(y→ ȳ′)P(y, τ)−ω(ȳ′ → y)P(ȳ′, τ)

]
dy,

where ω(y→ ȳ′) is the rate at which a resident y is replaced by 2463

ȳ′. Then, the evolutionary change in controls is 2464

∆ȳ
∆τ

=
∫

RNa Nc

ȳ′
( ∫

RNa Nc

[ω(y→ ȳ′)P(y, τ)

−ω(ȳ′ → y)P(ȳ′, τ)]dy
)

dȳ′.

Since the integral is a linear operator, we have 2465

∆ȳ
∆τ

=
∫

RNa Nc

∫
RNa Nc

ȳ′ω(y→ ȳ′)P(y, τ)dydȳ′
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−
∫

RNa Nc

∫
RNa Nc

ȳ′ω(ȳ′ → y)P(ȳ′, τ)dydȳ′.

Exchanging y for ȳ′ in the first term since they are dummy2466

variables yields2467

∆ȳ
∆τ

=
∫

RNa Nc

∫
RNa Nc

yω(ȳ′ → y)P(ȳ′, τ)dydȳ′

−
∫

RNa Nc

∫
RNa Nc

ȳ′ω(ȳ′ → y)P(ȳ′, τ)dydȳ′.

Factorizing yields2468

∆ȳ
∆τ

=
∫

RNa Nc

∫
RNa Nc

(y− ȳ′)ω(ȳ′ → y)P(ȳ′, τ)dydȳ′. (A1)

Assuming that invasion implies fixation, we let the rate at2469

which resident ȳ′ is replaced by y be2470

ω(ȳ′ → y) = δ(ȳ′ − ȳ)
M(y, ȳ′)
P(ȳ′, τ)

[λ(y, ȳ′)− 1], (A2)

where δ(·) is the Dirac delta function. This expression for2471

ω(ȳ′ → y) can be understood as comprising the probability2472

density δ(ȳ′ − ȳ) that the resident ȳ′ is ȳ, times the conditional2473

probability density M(y, ȳ′)/P(ȳ′, τ) that a mutant is y given2474

that the resident is ȳ′ at time τ, times the rate of substitution2475

λ(y, ȳ′)− 1 for a mutant y in the context of resident ȳ′. Substi-2476

tuting Eq. (A2) into Eq. (A1) using Eq. (13) yields2477

∆ȳ
∆τ

=
∫

RNa Nc

∫
RNa Nc

{
(y− ȳ′)δ(ȳ′ − ȳ)

M(y, ȳ′)
P(ȳ′, τ)[

(y− ȳ′)ᵀ
dλ

dy

∣∣∣∣
y=ȳ′

+ O(||y− ȳ′||2)
]

P(ȳ′, τ)

}
dydȳ′.

Cancelling P(ȳ′, τ) produces2478

∆ȳ
∆τ

=
∫

RNa Nc

∫
RNa Nc

{
(y− ȳ′)δ(ȳ′ − ȳ)M(y, ȳ′).

[
(y− ȳ′)ᵀ

dλ

dy

∣∣∣∣
y=ȳ′

+ O(||y− ȳ′||2)
]}

dydȳ′.

Using the integration property of the Dirac delta function [i.e.,2479 ∫
Rn F(y)δ(y− ȳ)dy = F(ȳ) for any function F(y) with y ∈ Rn],2480

∆ȳ
∆τ

=
∫

RNa Nc

{
(y− ȳ)M(y, ȳ)

[
(y− ȳ)ᵀ

dλ

dy

∣∣∣∣
y=ȳ

+ O(||y− ȳ||2)
]}

dy.

Since the integral is a linear operator and because the evaluation2481

at y = ȳ makes the gradient constant with respect to y, then2482

∆ȳ
∆τ

=

 ∫
RNa Nc

(y− ȳ)(y− ȳ)ᵀM(y, ȳ)dy

 dλ

dy

∣∣∣∣
y=ȳ

+
∫

RNa Nc

M(y, ȳ)O ((y− ȳ)(y− ȳ)ᵀ(y− ȳ))dy.

By definition of covariance matrix, we have 2483

∆ȳ
∆τ

= cov[y, y]
dλ

dy

∣∣∣∣
y=ȳ

+ O

 ∫
RNa Nc

M(y, ȳ) [(y− ȳ)(y− ȳ)ᵀ(y− ȳ)]dy

 .

The matrix cov[y, y] is the mutational covariance matrix (of con- 2484

trols). The big-O term on the right in the last equality is on the 2485

order of a measure of skewness of the mutational distribution. 2486

As we assume that the mutational distribution is symmetric, 2487

skewness vanishes, which yields 2488

∆ȳ
∆τ

= cov[y, y]
dλ

dy

∣∣∣∣
y=ȳ

. (A3)

This recovers a form of the canonical equation of adaptive dy- 2489

namics (cf. Eq. 6.1 of Dieckmann and Law 1996 and Eq. 23 of 2490

Durinx et al. 2008). 2491

We can rewrite the right-hand side of the canonical equation 2492

(A3) in a form that is reminiscent of the Price equation (Price 2493

1970). Indeed, subtracting E[λ] from Eq. (13) yields 2494

λ− E[λ] = 1− E[λ] + (y− ȳ)ᵀ
dλ

dy

∣∣∣∣
y=ȳ

+ O(||y− ȳ||2),

and premultiplying by (y− ȳ) produces 2495

(y− ȳ)(λ− E[λ]) = (y− ȳ)(1− E[λ])

+ (y− ȳ)(y− ȳ)ᵀ
dλ

dy

∣∣∣∣
y=ȳ

(A4)

+ O ((y− ȳ)(y− ȳ)ᵀ(y− ȳ)) .

Taking the expectation over the mutational distribution yields 2496

E[(y− ȳ)(λ− E[λ])] = E[(y− ȳ)(y− ȳ)ᵀ]
dλ

dy

∣∣∣∣
y=ȳ

+ O (E[(y− ȳ)(y− ȳ)ᵀ(y− ȳ)]) , (A5)

where the total selection gradient of controls is outside of the 2497

expectation because the evaluation at y = ȳ makes the gradi- 2498

ent constant with respect to y. From the definition of cross- 2499

covariance matrix, and since we assume that the mutational 2500

distribution is symmetric, Eq. (A5) becomes 2501

cov[y, λ] = cov[y, y]
dλ

dy

∣∣∣∣
y=ȳ

. (A6)

The left-hand side of Eq. (A6) is reminiscent of the Price equa- 2502

tion (Price 1970; Frank 2012), which states that the evolutionary 2503

change of a univariate trait in the absence of transmission bias 2504

equals the covariance of the trait and relative fitness. Yet, note 2505

that there are differences between invasion fitness and relative 2506

fitness; in particular, invasion fitness is not the relative number 2507

of descendants at evolutionary time τ + 1 of rare mutants at τ 2508

(for any λ > 1 all residents at τ + 1 are descendants of mutants 2509

at τ, yet for any λ < 1 none is). 2510

When deriving the evolutionary dynamics of the phenotype 2511

z, we will obtain dynamic equations in terms of additive ge- 2512

netic covariance matrices. In particular, we will see that the 2513

mutational covariance matrix cov[y, y] that we obtained in the 2514

canonical equation (A3) equals the additive genetic covariance 2515

matrix of controls. Indeed, in Eq. (77), we define the additive 2516
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genetic covariance matrix Gζ of a vector ζ ∈ Rm×1 under our2517

adaptive dynamics assumptions, and show that2518

Gζ =

(
dζ

dyᵀ
cov[y, y]

dζᵀ

dy

)∣∣∣∣
y=ȳ

.

In particular, as we will later show that, since controls do2519

not have developmental constraints and are open-loop so2520

dyᵀ/dy|y=ȳ = I (Eq. A51), it follows that the additive genetic co-2521

variance matrix of controls Gy equals the mutational covariance2522

matrix cov[y, y]. This and Eq. (A3) yield Eq. (14a).2523

Appendix 2: stable age distribution and reproductive2524

values2525

The mutant stable age distribution and mutant reproductive2526

value are given by dominant left and right eigenvectors v and u2527

of the mutant’s local stability matrix J in Eq. (11). That is, v and u2528

are defined respectively by λu = Ju and λvᵀ = vᵀJ. Expanding2529

these equations yields2530

λu1 =
Na

∑
j=1

f juj (A7a)

λuj =pj−1uj−1 for j ∈ {2, . . . , Na} (A7b)

λvj =v1 f j + vj+1 pj for j ∈ {1, . . . , Na}, (A7c)

since vNa+1 = 0 without loss of generality. Eqs. (A7b) and (A7c)2531

give the recurrence equations2532

uj =λ−1 pj−1uj−1

vj =
1

pj−1
λvj−1 −

1
pj−1

v1 f j−1,

for j ∈ {2, . . . , Na}, which iterating yield2533

uj = λ−j+1`ju1 (A9a)

vj =
1
`j

λj−1v1 − v1

j−1

∑
k=1

λj−1−k

`j/`k
fk

=
1
`j

λj−1v1

(
1−

j−1

∑
k=1

λ−k`k fk

)
, (A9b)

where `j = ∏
j−1
k=1 pk is mutant survivorship from age 1 to age j.2534

Eq. (A9b) can be rewritten in the standard form of Fisher’s (1927)2535

reproductive value in discrete time using the Euler-Lotka equa-2536

tion as follows. Defining `1 = 1 and since λ0 = 1, substituting2537

Eq. (A9a) in Eq. (A7a) and dividing both sides of the equation2538

by λu1 yields2539

1 =
Na

∑
j=1

λ−j`j f j, (A10)

which is the Euler-Lotka equation in discrete time (Charlesworth2540

1994, Eq. 1.42 and Caswell 2001, Eq. 4.42). Partitioning the sum2541

in Eq. (A10) yields2542

1−
m−1

∑
j=1

λ−j`j f j =
Na

∑
j=m

λ−j`j f j, (A11)

which substituted in Eq. (A9b) yields2543

vj =
1
`j

λj−1v1

Na

∑
k=j

λ−k`k fk. (A12)

This equation is the standard form of Fisher’s (1927) reproduc- 2544

tive value in discrete time (Eq. 4.89 of Caswell 2001). Hence, 2545

from Eqs. (A9a) and (A12), we obtain the mutant stable age 2546

distribution and mutant reproductive value: 2547

uj =λ−j+1`ju1

vj =
1
`j

λj−1v1

Na

∑
k=j

λ−k`k fk,

for j ∈ {2, . . . , Na}, where u1 and v1 can take any positive value. 2548

Evaluating at neutrality (y = ȳ), we have that λ◦ = λ|y=ȳ = 1, 2549

which yields Eqs. (19). 2550

Bienvenu and Legendre (2015) find that generation time can 2551

be measured by 2552

T =
v◦ᵀu◦

v◦ᵀF◦u◦
,

where we evaluate at resident trait values given our adaptive 2553

dynamics assumptions, and where F is given by Eq. (11) setting 2554

all pj to zero. Using Eq. (A7a), it is easily checked that v◦ᵀF◦u◦ = 2555

v◦1u◦1 . In turn, we have that the numerator is 2556

v◦ᵀu◦ =
Na

∑
j=1

v◦j u◦j .

Thus, using Eqs. (19) yields 2557

T =
v◦ᵀu◦

v◦1u◦1
=

v◦1u◦1 + ∑Na
j=2 v◦j u◦j

v◦1u◦1

=
v◦1u◦1 + v◦1u◦1 ∑Na

j=2 ∑Na
k=j `

◦
k f ◦k

v◦1u◦1

= 1 +
Na

∑
j=2

Na

∑
k=j

`◦k f ◦k . (A14)

We further manipulate this expression to recover a standard 2558

expression of generation time (Charlesworth 1994, Eq. 1.47c; Bul- 2559

mer 1994, Eq. 25, Ch. 25; Bienvenu and Legendre 2015, Eq. 5). 2560

Evaluating the Euler-Lotka equation (A10) at the resident con- 2561

trols (so λ|y=ȳ = 1), we obtain that a neutral mutant’s expected 2562

lifetime reproductive success is 2563

R◦0 =
Na

∑
j=1

`◦j f ◦j = 1. (A15)

Therefore, Eq. (A14) is 2564

T = 1 +
Na

∑
j=2

Na

∑
k=j

`◦k f ◦k = R◦0 +
Na

∑
j=2

Na

∑
k=j

`◦k f ◦k

=
Na

∑
j=1

`◦j f ◦j +
Na

∑
j=2

Na

∑
k=j

`◦k f ◦k

= `◦1 f ◦1 +
Na

∑
j=2

`◦j f ◦j +
Na

∑
j=2

Na

∑
k=j

`◦k f ◦k

= `◦1 f ◦1 +
Na

∑
j=2

`◦j f ◦j +
Na

∑
k=j

`◦k f ◦k

 .
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Expanding the rightmost sum yields2565

T = `◦1 f ◦1 +
Na

∑
j=2

(
`◦j f ◦j + `◦j f ◦j + `◦j+1 f ◦j+1 + · · ·+ `◦Na

f ◦Na

)
Expanding the remaining sum yields2566

T = `◦1 f ◦1 +
(
`◦2 f ◦2 + `◦2 f ◦2 + `◦3 f ◦3 + · · ·+ `◦Na

f ◦Na

)
+
(
`◦3 f ◦3 + `◦3 f ◦3 + `◦4 f ◦4 + · · ·+ `◦Na

f ◦Na

)
+ · · ·
+
(
`◦Na−1 f ◦Na−1 + `◦Na−1 f ◦Na−1 + `◦Na

f ◦Na

)
+
(
`◦Na

f ◦Na
+ `◦Na

f ◦Na

)
.

Collecting common terms yields2567

T = `◦1 f ◦1 + 2`◦2 f ◦2 + 3`◦3 f ◦3 + 4`◦4 f ◦4
+ · · ·+ Na`

◦
Na

f ◦Na

=
Na

∑
j=1

j`◦j f ◦j , (A16)

which is Eq. (21). This expression recovers a standard measure2568

of generation time (Charlesworth 1994, Eq. 1.47c; Bulmer 1994,2569

Eq. 25, Ch. 25; Bienvenu and Legendre 2015, Eq. 5).2570

Appendix 3: selection gradient in terms of R02571

Following Hamilton (1966) (see also Eqs. 58-61 in Caswell 2009),
we differentiate the Euler-Lotka equation (A10) implicitly with
respect to a mutant trait value ζ, which yields

0 =
Na

∑
j=1

(
λ−j ∂`j f j

∂ζ
− j`j f jλ

−j−1 ∂λ

∂ζ

)∣∣∣∣
y=ȳ

.

Noting that λ|y=ȳ = 1 and solving for the selection gradient, we2572

obtain2573

∂λ

∂ζ

∣∣∣∣
y=ȳ

=
1

∑Na
j=1 j`◦j f ◦j

Na

∑
j=1

∂`j f j

∂ζ

∣∣∣∣
y=ȳ

=
1
T

∂R0
∂ζ

∣∣∣∣
y=ȳ

, (A17)

where we use Eqs. (28) and (A16). This is Eq. (29a). The same2574

procedure using total derivatives yields Eq. (29b).2575

Appendix 4: total selection gradient of states2576

Here we derive the total selection gradient of states dλ/dx|y=ȳ,2577

which is part of and simpler to derive than the total selection2578

gradient of controls dλ/dy|y=ȳ.2579

Total selection gradient of states in terms of direct fitness ef-2580

fects2581

We start by considering the total selection gradient entry for the2582

i-th state variable at age a. By this, we mean the total selection2583

gradient of a perturbation of xia taken as initial condition of2584

the recurrence equation (8) when applied at the ages {a, . . . , n}.2585

Consequently, a state perturbation at a given age does not affect2586

states at earlier ages, in short, due to the arrow of developmental2587

time. By letting ζ in Eq. (27) be xia, we have2588

dλ

dxia

∣∣∣∣
y=ȳ

=
dw
dxia

∣∣∣∣
y=ȳ

=
Na

∑
j=1

dwj

dxia

∣∣∣∣
y=ȳ

. (A18)

Note that the total derivatives of a mutant’s relative fitness at age 2589

j in Eq. (A18) are with respect to the individual’s state variables 2590

at possibly another age a. From Eq. (24), we have that a mutant’s 2591

relative fitness at age j, wj(zj, z̄, hj(zj, z̄, τ)), depends on the in- 2592

dividual’s state variables at the current age (recall zj = (xj; yj)), 2593

but from the developmental constraint in Eq. (8) the state vari- 2594

ables at a given age depend on state variables at previous ages. 2595

We must then calculate the total derivatives of fitness in Eq. (A18) 2596

in terms of direct (i.e., partial) derivatives, thus separating the 2597

effects of state variables at the current age from those of state 2598

variables at other ages. 2599

To do this, we start by applying the chain rule, and since 2600

we assume that controls are open-loop (hence, controls do not 2601

depend on states, so dyj/dxia = 0 for all i ∈ {1, . . . , Ns} and all 2602

a, j ∈ {1, . . . , Na}), we obtain 2603

dwj

dxia

∣∣∣∣
y=ȳ

=

(
Ns

∑
k=1

∂wj

∂xkj

dxkj

dxia
+

Ns

∑
k=1

Ne

∑
r=1

∂wj

∂εrj

∂εrj

∂xkj

dxkj

dxia

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation (Appendix 14), this is 2604

dwj

dxia

∣∣∣∣
y=ȳ

=

(
dxᵀj
dxia

∂wj

∂xj
+

Ns

∑
k=1

∂εεεᵀj

∂xkj

∂wj

∂εεεj

dxkj

dxia

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields 2605

dwj

dxia

∣∣∣∣
y=ȳ

=

(
dxᵀj
dxia

∂wj

∂xj
+

dxᵀj
dxia

∂εεεᵀj

∂xj

∂wj

∂εεεj

)∣∣∣∣∣
y=ȳ

.

Factorizing, we have 2606

dwj

dxia

∣∣∣∣
y=ȳ

=

[
dxᵀj
dxia

(
∂wj

∂xj
+

∂εεεᵀj

∂xj

∂wj

∂εεεj

)]∣∣∣∣∣
y=ȳ

. (A19)

Eq. (A19) now contains only partial derivatives of age-specific 2607

fitness. 2608

We now write Eq. (A19) in terms of partial derivatives of 2609

lifetime fitness. Consider the selection gradient of states at age j or, 2610

equivalently, the column vector of direct effects of a mutant’s states 2611

at age j on fitness defined as 2612

∂w
∂xj

∣∣∣∣∣
y=ȳ

≡
(

∂w
∂x1j

, . . . ,
∂w

∂xNs j

)ᵀ∣∣∣∣∣
y=ȳ

∈ RNs×1.

Such selection gradient of states at age j forms the selection 2613

gradient of states for all ages (Eq. 30). Similarly, the column 2614

vector of direct effects of a mutant’s environment at age j on fitness is 2615

∂w
∂εεεj

∣∣∣∣∣
y=ȳ

≡
(

∂w
∂ε1j

, . . . ,
∂w

∂εNe j

)ᵀ∣∣∣∣∣
y=ȳ

∈ RNe×1,

and the matrix of direct effects of a mutant’s states at age j on her 2616

environment at age j is 2617

∂εεεᵀj

∂xj

∣∣∣∣∣
y=ȳ

≡



∂ε1j

∂x1j
· · ·

∂εNe j

∂x1j
...

. . .
...

∂ε1j

∂xNs j
· · ·

∂εᵀNe j

∂xNs j



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNs×Ne .
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From Eq. (26), w only depends directly on xj, yj, and εεεj through2618

wj. So,2619

∂wj

∂xj
=

∂w
∂xj

(A20a)

∂wj

∂yj
=

∂w
∂yj

(A20b)

∂wj

∂εεεj
=

∂w
∂εεεj

, (A20c)

which substituted in Eq. (A19) yields2620

dwj

dxia

∣∣∣∣
y=ȳ

=

[
dxᵀj
dxia

(
∂w
∂xj

+
∂εεεᵀj

∂xj

∂w
∂εεεj

)]∣∣∣∣∣
y=ȳ

=

(
dxᵀj
dxia

δw
δxj

)∣∣∣∣∣
y=ȳ

, (A21)

where the semi-total selection gradient of states at age j or, equiva-2621

lently, the column vector of semi-total effects of a mutant’s states at2622

age j on fitness (i.e., the total gradient considering environmental2623

but not developmental constraints) is2624

δw
δxj

∣∣∣∣∣
y=ȳ

=

(
∂w
∂xj

+
∂εεεᵀj

∂xj

∂w
∂εεεj

)∣∣∣∣∣
y=ȳ

∈ RNs×1. (A22)

Consider now the semi-total selection gradient of states for
all ages. The block column vector of semi-total effects of a mutant’s
states on fitness is

δw
δx

∣∣∣∣
y=ȳ
≡
(

δw
δx1

; · · · ;
δw

δxNa

)∣∣∣∣
y=ȳ
∈ RNa Ns×1.

Using Eq. (33d), we have that2625

∂εεεᵀ

∂x
∂w
∂εεε

=

(
Na

∑
k=1

∂εεεᵀk
∂xj

∂w
∂εεεk

)
=

(
∂εεεᵀj

∂xj

∂w
∂εεεj

)
(A23)

is a block column vector whose j-th entry equals the rightmost2626

term in Eq. (A22). Thus, from Eqs. (A22), (30), and (A23), it2627

follows that the semi-total selection gradient of states is given2628

by Eq. (40).2629

Now, we write the total selection gradient of xia in terms of2630

the semi-total selection gradient of states. Substituting Eq. (A21)2631

in Eq. (A18) yields2632

dw
dxia

∣∣∣∣
y=ȳ

=
Na

∑
j=1

(
dxᵀj
dxia

δw
δxj

)∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dxia

δw
δx

)∣∣∣∣
y=ȳ

,

where we use the block row vector2633

dxᵀ

dxia
=

(
dxᵀ0
dxia

, . . . ,
dxᵀNa

dxia

)
∈ R1×Na Ns .

Therefore, the total selection gradient of all state variables across2634

all ages is2635

dw
dx

∣∣∣∣
y=ȳ

=

(
dxᵀ

dx
δw
δx

)∣∣∣∣
y=ȳ
∈ RNa Ns×1, (A24)

where the semi-total selection gradient of states is given by 2636

Eq. (40) and the block matrix of total effects of a mutant’s states on 2637

her states is 2638

dxᵀ

dx

∣∣∣∣
y=ȳ
≡


dxᵀ1
dx1

· · ·
dxᵀNa

∂x1
...

. . .
...

dxᵀ1
dxNa

· · ·
dxᵀNa

dxNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa Ns×Na Ns .

Using Eq. (40), expression (A24) is now in terms of partial deriva- 2639

tives of fitness, partial derivatives of the environment, and total 2640

effects of a mutant’s states on her states, dxᵀ/dx, which we now 2641

proceed to write in terms of partial derivatives only. 2642

Matrix of total effects of a mutant’s states on her states 2643

From the developmental constraint (8) for the k-th state 2644

variable at age j ∈ {2, . . . , Na} we have that xkj = 2645

gk,j−1(zj−1, z̄, hj−1(zj−1, z̄, τ)), so using the chain rule since con- 2646

trols are open-loop we obtain 2647

dxkj

dxia

∣∣∣∣
y=ȳ

=

(
Ns

∑
l=1

∂gk,j−1

∂xl,j−1

dxl,j−1

dxia

+
Ns

∑
l=1

Ne

∑
r=1

∂gk,j−1

∂εr,j−1

∂εr,j−1

∂xl,j−1

dxl,j−1

dxia

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation (Appendix 14), this is 2648

dxkj

dxia

∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dxia

∂gk,j−1

∂xj−1
+

Ns

∑
l=1

∂εεεᵀj−1

∂xl,j−1

∂gk,j−1

∂εεεj−1

dxl,j−1

dxia

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields 2649

dxkj

dxia

∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dxia

∂gk,j−1

∂xj−1
+

dxᵀj−1

dxia

∂εεεᵀj−1

∂xj−1

∂gk,j−1

∂εεεj−1

)∣∣∣∣∣
y=ȳ

.

Factorizing, we have 2650

dxkj

dxia

∣∣∣∣
y=ȳ

=

[
dxᵀj−1

dxia

(
∂gk,j−1

∂xj−1
+

∂εεεᵀj−1

∂xj−1

∂gk,j−1

∂εεεj−1

)]∣∣∣∣∣
y=ȳ

.

Rewriting gk,j−1 as xkj yields 2651

dxkj

dxia

∣∣∣∣
y=ȳ

=

[
dxᵀj−1

dxia

(
∂xkj

∂xj−1
+

∂εεεᵀj−1

∂xj−1

∂xkj

∂εεεj−1

)]∣∣∣∣∣
y=ȳ

.

Hence, 2652

dxᵀj
dxia

∣∣∣∣∣
y=ȳ

=

[
dxᵀj−1

dxia

(
∂xᵀj

∂xj−1
+

∂εεεᵀj−1

∂xj−1

∂xᵀj
∂εεεj−1

)]∣∣∣∣∣
y=ȳ

, (A25)

where we use the matrix of direct effects of a mutant’s states at age 2653

j on her states at age j + 1 2654

∂xᵀj+1

∂xj

∣∣∣∣∣
y=ȳ

≡



∂x1,j+1

∂x1j
· · ·

∂xNs,j+1

∂x1j
...

. . .
...

∂x1,j+1

∂xNs j
· · ·

∂xNs,j+1

∂xNs j



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNs×Ns ,
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and the matrix of direct effects of a mutant’s environment at age j on2655

her states at age j + 12656

∂xᵀj+1

∂εεεj

∣∣∣∣∣
y=ȳ

≡



∂x1,j+1

∂ε1j
· · ·

∂xNs,j+1

∂ε1j
...

. . .
...

∂x1,j+1

∂εNe j
· · ·

∂xNs,j+1

∂εNe j



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNe×Ns .

We can more succinctly write Eq. (A25) as2657

dxᵀj
dxia

∣∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dxia

δxᵀj
δxj−1

)∣∣∣∣∣
y=ȳ

, (A26)

where we use the matrix of semi-total effects of a mutant’s states at2658

age j on her states at age j + 12659

δxᵀj+1

δxj

∣∣∣∣∣
y=ȳ

=

(
∂xᵀj+1

∂xj
+

∂εεεᵀj

∂xj

∂xᵀj+1

∂εεεj

)∣∣∣∣∣
y=ȳ

∈ RNs×Ns . (A27)

The block matrix of semi-total effects a mutant’s states on her2660

states is2661

δxᵀ

δx

∣∣∣∣
y=ȳ
≡


δxᵀ1
δx1

· · ·
δxᵀNa

δx1
...

. . .
...

δxᵀ1
δxNa

· · ·
δxᵀNa

δxNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



I
δxᵀ2
δx1

· · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I
δxᵀNa

δxNa−1

0 0 · · · 0 I



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(A28)

∈ RNa Ns×Na Ns .

The equality (A28) follows because semi-total effects of a mu-2662

tant’s states on her states are only non-zero at the next age (from2663

the developmental constraint (8)) or when a variable is differen-2664

tiated with respect to itself. Using Eqs. (33d) and (33c), we have2665

that2666

∂εεεᵀ

∂x
∂xᵀ

∂εεε
=

(
Na

∑
k=1

∂εεεᵀk
∂xa

∂xᵀj
∂εεεk

)
=




∂εεεᵀa
∂xa

∂xᵀj
∂εεεa

for j = a + 1

0 for j 6= a + 1

 ,

(A29)

which equals the rightmost term in Eq. (A27) for j = a + 1. Thus,2667

from Eqs. (A27), (33a), (A28), and (A29), it follows that the block2668

matrix of semi-total effects of a mutant’s states on her states2669

satisfies Eq. (42).2670

Eq. (A26) gives the matrix of total effects of a mutant’s i-th2671

state at age a on her states at age j. Then, it follows that the2672

matrix of total effects of all of a mutant’s states at age a on her2673

states at age j is2674

dxᵀj
dxa

∣∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dxa

δxᵀj
δxj−1

)∣∣∣∣∣
y=ȳ

. (A30)

Eq. (A30) is a recurrence equation for dxᵀj /dxa over age j ∈ 2675

{2, . . . , Na}. Because of the arrow of developmental time (due to 2676

the developmental constraint (8)), perturbations in an individ- 2677

ual’s late state variables do not affect the individual’s early state 2678

variables (i.e., dxᵀj /dxa = 0 for j < a and j ∈ {1, . . . , Na − 1})1. 2679

Additionally, from the arrow of developmental time (Eq. 8), a 2680

perturbation in an individual’s state variable at a given age 2681

does not affect any other of the individual’s state variables at 2682

the same age (i.e., dxᵀa /dxa = I where I is the identity matrix). 2683

Hence, expanding the recurrence in Eq. (A30), we obtain for 2684

j ∈ {1, . . . , Na} that 2685

dxᵀj
dxa

∣∣∣∣∣
y=ȳ

=



(
dxᵀa
dxa

δxᵀa+1
δxa

· · ·
δxᵀj

δxj−1

)∣∣∣∣∣
y=ȳ

for j > a

dxᵀa
dxa

∣∣∣∣
y=ȳ

for j = a

0 for j < a

=



(
δxᵀa+1

δxa
· · ·

δxᵀj
δxj−1

)∣∣∣∣∣
y=ȳ

for j > a

I for j = a
0 for j < a.

(A31)

Thus, the block matrix of total effects of a mutant’s states on her 2686

states is 2687

dxᵀ

dx

∣∣∣∣
y=ȳ

=


dxᵀ1
dx1

· · ·
dxᵀNa

dx1
...

. . .
...

dxᵀ1
dxNa

· · ·
dxᵀNa

dxNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



I
dxᵀ2
dx1

· · ·
dxᵀNa−1

dx1

dxᵀNa

dx1

0 I · · ·
dxᵀNa−1

dx2

dxᵀNa

dx2
...

...
. . .

...
...

0 0 · · · I
dxᵀNa

dxNa−1

0 0 · · · 0 I



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(A32)

∈ RNa Ns×Na Ns ,

which is block upper triangular and its aj-th entry is given by 2688

dxᵀj
dxa

=



y
j−1

∏
k=a

δxᵀk+1
δxk

=
δxᵀa+1

δxa
· · ·

δxᵀj
δxj−1

for j > a

I for j = a
0 for j < a.

(A33)

Since matrix multiplication is not commutative, the y denotes 2689

right multiplication. Eqs. (A32) and (A33) write the matrix of 2690

total effects of a mutant’s states on her states in terms of partial 2691

derivatives, given Eq. (A27), as we sought. 2692

1 More specifically, we take the derivative dxᵀj /dxia as referring to the effect on xᵀj
of a perturbation of the initial condition xa of the difference equation (8) applied
at the ages {a, . . . , n}. Hence, if j < a, xᵀj is unmodified by a change in the initial
condition of (8) applied at the ages {a, . . . , n}.
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From Eq. (A32), it follows that the matrix of total effects of a2693

mutant’s states on her states dxᵀ/dx|y=ȳ is invertible. Indeed,2694

since dxᵀ/dx|y=ȳ is square and block upper triangular, then its2695

determinant is2696

det

(
dxᵀ

dx

∣∣∣∣
y=ȳ

)
= det

 dxᵀ1
dx1

∣∣∣∣∣
y=ȳ

 · · ·det

 dxᵀNa

dxNa

∣∣∣∣∣
y=ȳ


(Horn and Johnson 2013, p. 32). Since dxᵀa /dxa|y=ȳ = I,2697

then det(dxᵀa /dxa|y=ȳ) = 1 for all a ∈ {1, . . . , Na}. Hence,2698

det(dxᵀ/dx|y=ȳ) 6= 0, so dxᵀ/dx|y=ȳ is invertible.2699

We now obtain a more compact expression for the matrix of2700

total effects of a mutant’s states on her states in terms of partial2701

derivatives. From Eq. (A28), it follows that2702

δxᵀ

δx

∣∣∣∣
y=ȳ
− I =



0
δxᵀ2
δx1

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
δxᵀNa

δxNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (A34)

which is block 1-superdiagonal (i.e., only the entries in its first2703

block super diagonal are non-zero). By definition of matrix2704

power, we have that (δxᵀ/δx− I)0 = I. Now, from Eq. (A34),2705

we have that2706

δxᵀ

δx
− I =




δxᵀj
δxa

if j = a + 1

0 otherwise

 .

Using Eq. (A34), taking the second power yields2707 (
δxᵀ

δx
− I
)2

=

(
δxᵀ

δx
− I
)(

δxᵀ

δx
− I
)

=




δxᵀa+1
δxa

δxᵀj
δxa+1

if j = a + 2

0 otherwise

 ,

which is block 2-superdiagonal. This suggests the inductive2708

hypothesis that2709

(
δxᵀ

δx
− I
)i

=




y
j−1

∏
k=a

δxᵀk+1
δxk

if j = a + i

0 otherwise

 (A35)

holds for some i ∈ {0, 1, . . .}, which is a block i-superdiagonal2710

matrix. If this is the case, then we have that2711 (
δxᵀ

δx
− I
)i+1

=

(
δxᵀ

δx
− I
)i ( δxᵀ

δx
− I
)

=




y
a+i−1

∏
k=a

δxᵀk+1
δxk

δxᵀj
δxa+i

if j = a + i + 1

0 otherwise



=




y
j−1

∏
k=a

δxᵀk+1
δxk

if j = a + i + 1

0 otherwise

 .

This proves by induction that Eq. (A35) holds for every i ∈ 2712

{0, 1, . . .}, which together with Eq. (A33) proves that 2713

(
δxᵀ

δx
− I
)i

=




dxᵀj
dxa

if j = a + i

0 otherwise


holds for all i ∈ {0, 1, . . . , Na}. Evaluating this result at various 2714

i, note that 2715

(
δxᵀ

δx
− I
)0

=




dxᵀj
dxa

if j = a

0 otherwise

 =

({
I if j = a
0 otherwise

)

is a block matrix of zeros except in its block main diagonal which 2716

coincides with the block main diagonal of Eq. (A32). Similarly, 2717

(
δxᵀ

δx
− I
)1

=




dxᵀa+1
dxa

if j = a + 1

0 otherwise


is a block matrix of zeros except in its first block super diagonal 2718

which coincides with the first block super diagonal of Eq. (A32). 2719

Indeed, 2720

(
δxᵀ

δx
− I
)i

=




dxᵀa+i
dxa

if j = a + i

0 otherwise


is a block matrix of zeros except in its i-th block super diagonal 2721

which coincides with the i-th block super diagonal of Eq. (A32) 2722

for all i ∈ {1, . . . , Na − 1}. Therefore, since any non-zero entry 2723

of the matrix (δxᵀ/δx− I)i corresponds to a zero entry for the 2724

matrix (δxᵀ/δx− I)j for any i 6= j with i, j ∈ {0, . . . , Na − 1}, it 2725

follows that 2726

dxᵀ

dx
=

Na−1

∑
i=0

(
δxᵀ

δx
− I
)i

. (A36)

From the geometric series of matrices we have that 2727

Na−1

∑
i=0

(
δxᵀ

δx
− I
)i

=

[
I−

(
δxᵀ

δx
− I
)]−1

[
I−

(
δxᵀ

δx
− I
)Na

]

=

(
2I− δxᵀ

δx

)−1
. (A37)

The last equality follows because δxᵀ/δx − I is strictly block 2728

triangular with block dimension Na and so δxᵀ/δx− I is nilpo- 2729

tent with index smaller than or equal to Na, which implies that 2730

(δxᵀ/δx− I)Na = 0. From Eq. (A28), the matrix 2I− δxᵀ/δx is 2731

block upper triangular with only identity matrices in its block 2732

main diagonal, so all the eigenvalues of 2I− δxᵀ/δx equal one 2733

and the matrix is invertible; thus, the inverse matrix in Eq. (A37) 2734

exists. Finally, using Eq. (A37) in (A36) yields (44), which is a 2735

compact expression for the matrix of total effects of a mutant’s 2736

states on her states in terms of partial derivatives only, once 2737

Eq. (42) is used. 2738

Conclusion 2739

Form 1 Using Eqs. (A24) and (40) for ζ = x, we have that the
total selection gradient of states is

dw
dx

∣∣∣∣
y=ȳ

=

[
dxᵀ

dx

(
∂w
∂x

+
∂εεεᵀ

∂x
∂w
∂εεε

)]∣∣∣∣
y=ȳ

.

Thus, using Eq. (49) yields the first line of Eq. (63). 2740
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Form 2 Using Eq. (A24), the total selection gradient of states is2741

given by the second line of Eq. (63).2742

Form 3 Using Eqs. (A24), (40) for ζ = z, and (53), we have that2743

the total selection gradient of states is given by the third line of2744

Eq. (63), where the semi-total selection gradient of the phenotype is2745

δw
δz

∣∣∣∣
y=ȳ
≡


δw
δx
δw
δy


∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa(Ns+Nc)×1. (A38)

Form 4 Finally, using the first line of Eqs. (63) and (56), we obtain2746

the fourth line of Eq. (63).2747

Appendix 5: total selection gradient of controls2748

Total selection gradient of controls in terms of direct fitness2749

effects2750

Here we derive the total selection gradient of controls following2751

an analogous procedure to the one used in Appendix 4 for the2752

total selection gradient of states. For the i-th control variable at2753

age a, letting ζ in Eq. (27) be yia, we have2754

dλ

dyia

∣∣∣∣
y=ȳ

=
dw
dyia

∣∣∣∣
y=ȳ

=
Na

∑
j=1

dwj

dyia

∣∣∣∣
y=ȳ

. (A39)

The total derivatives of a mutant’s relative fitness at age j in2755

Eq. (A39) are with respect to the individual’s control variables2756

at possibly another age a. We now seek to express such selection2757

gradient entry in terms of partial derivatives only.2758

From Eq. (24), we have wj(zj, z̄, hj(zj, z̄, τ)) and zj = (xj; yj),2759

so applying the chain rule, we obtain2760

dwj

dyia

∣∣∣∣
y=ȳ

=

(
Ns

∑
k=1

∂wj

∂xkj

dxkj

dyia
+

Nc

∑
k=1

∂wj

∂ykj

dykj

dyia

+
Ns

∑
k=1

Ne

∑
r=1

∂wj

∂εrj

∂εrj

∂xkj

dxkj

dyia

+
Nc

∑
k=1

Ne

∑
r=1

∂wj

∂εrj

∂εrj

∂ykj

dykj

dyia

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation (Appendix 14), this is2761

dwj

dyia

∣∣∣∣
y=ȳ

=

(
dxᵀj
dyia

∂wj

∂xj
+

dyᵀj
dyia

∂wj

∂yj
+

Ns

∑
k=1

∂εεεᵀj

∂xkj

∂wj

∂εεεj

dxkj

dyia

+
Nc

∑
k=1

∂εεεᵀj

∂ykj

∂wj

∂εεεj

dykj

dyia

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields2762

dwj

dyia

∣∣∣∣
y=ȳ

=

(
dxᵀj
dyia

∂wj

∂xj
+

dyᵀj
dyia

∂wj

∂yj
+

dxᵀj
dyia

∂εεεᵀj

∂xj

∂wj

∂εεεj

+
dyᵀj
dyia

∂εεεᵀj

∂yj

∂wj

∂εεεj

)∣∣∣∣∣
y=ȳ

.

Factorizing, we have2763

dwj

dyia

∣∣∣∣
y=ȳ

=

[
dxᵀj
dyia

(
∂wj

∂xj
+

∂εεεᵀj

∂xj

∂wj

∂εεεj

)

+
dyᵀj
dyia

(
∂wj

∂yj
+

∂εεεᵀj

∂yj

∂wj

∂εεεj

)]∣∣∣∣∣
y=ȳ

. (A40)

We now write Eq. (A40) in terms of partial derivatives of 2764

lifetime fitness. Consider the selection gradient of controls at age j 2765

or, equivalently, the column vector of direct effects of a mutant’s 2766

controls at age j on fitness 2767

∂w
∂yj

∣∣∣∣∣
y=ȳ

≡
(

∂w
∂y1j

, . . . ,
∂w

∂yNc j

)ᵀ∣∣∣∣∣
y=ȳ

∈ RNc×1,

and the matrix of direct effects of a mutant’s controls at age j on her 2768

environment at age j 2769

∂εεεᵀj

∂yj

∣∣∣∣∣
y=ȳ

≡



∂ε1j

∂y1j
· · ·

∂εNe j

∂y1j
...

. . .
...

∂ε1j

∂yNc j
· · ·

∂εᵀNe j

∂yNc j



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNc×Ne .

Using Eqs. (A20) and (A22) in Eq. (A40) yields 2770

dwj

dyia

∣∣∣∣
y=ȳ

=

[
dxᵀj
dyia

(
∂w
∂xj

+
∂εεεᵀj

∂xj

∂w
∂εεεj

)

+
dyᵀj
dyia

(
∂w
∂yj

+
∂εεεᵀj

∂yj

∂w
∂εεεj

)]∣∣∣∣∣
y=ȳ

=

(
dxᵀj
dyia

δw
δxj

+
dyᵀj
dyia

δw
δyj

)∣∣∣∣∣
y=ȳ

, (A41)

where we use the semi-total selection gradient of controls at age j or, 2771

equivalently, the semi-total effects of a mutant’s controls at age j on 2772

fitness 2773

δw
δyj

∣∣∣∣∣
y=ȳ

=

(
∂w
∂yj

+
∂εεεᵀj

∂yj

∂w
∂εεεj

)∣∣∣∣∣
y=ȳ

∈ RNc×1. (A42)

Consider now the semi-total selection gradient of controls for 2774

all ages. The semi-total selection gradient of controls or, equivalently, 2775

the block column vector of semi-total effects of a mutant’s controls 2776

on fitness is 2777

δw
δy

∣∣∣∣
y=ȳ
≡
(

δw
δy1

; · · · ;
δw

δyNa

)∣∣∣∣
y=ȳ
∈ RNa Nc×1.

Using Eq. (33d), we have that 2778

∂εεεᵀ

∂y
∂w
∂εεε

=

(
Na

∑
k=1

∂εεεᵀk
∂yj

∂w
∂εεεk

)
=

(
∂εεεᵀj

∂yj

∂w
∂εεεj

)
(A43)

is a block column vector whose j-th entry is the rightmost term 2779

in Eq. (A42). Thus, from Eqs. (A42), (31), and (A43), it follows 2780

that the semi-total selection gradient of controls satisfies Eq. (40). 2781

Now, we write the total selection gradient of yia in terms 2782

of the semi-total selection gradient of controls. Substituting 2783

Eq. (A41) in Eq. (A39) yields 2784

dw
dyia

∣∣∣∣
y=ȳ

=
Na

∑
j=1

(
dxᵀj
dyia

δw
δxj

+
dyᵀj
dyia

δw
δyj

)∣∣∣∣∣
y=ȳ
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=

(
dxᵀ

dyia

δw
δx

+
dyᵀ

dyia

δw
δy

)∣∣∣∣
y=ȳ

,

where we use the block row vectors2785

dxᵀ

dyia
≡
(

dxᵀ1
dyia

, . . . ,
dxᵀNa

dyia

)
∈ R1×Na Ns

dyᵀ

dyia
≡
(

dyᵀ1
dyia

, . . . ,
dyᵀNa

dyia

)
∈ R1×Na Nc .

Therefore, the total selection gradient of all control variables2786

across all ages is2787

dw
dy

∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
δw
δx

+
dyᵀ

dy
δw
δy

)∣∣∣∣
y=ȳ
∈ RNa Ns×1, (A44)

where we use the block matrix of total effects of a mutant’s controls2788

on her states2789

dxᵀ

dy

∣∣∣∣
y=ȳ
≡



dxᵀ1
dy1

· · ·
dxᵀNa

∂y1
...

. . .
...

dxᵀ1
dyNa

· · ·
dxᵀNa

dyNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa Nc×Na Ns ,

and the block matrix of total effects of a mutant’s controls on her2790

controls2791

dyᵀ

dy

∣∣∣∣
y=ȳ
≡



dyᵀ1
dy1

· · ·
dyᵀNa

∂y1
...

. . .
...

dyᵀ1
dyNa

· · ·
dyᵀNa

dyNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa Nc×Na Nc .

Expression (A44) is now in terms of partial derivatives of fitness,2792

partial derivatives of the environment, total effects of a mutant’s2793

controls on her states, dxᵀ/dy, and total effects of a mutant’s2794

controls on her controls, dyᵀ/dy, once Eq. (40) is used. We2795

now proceed to write dxᵀ/dy and dyᵀ/dy in terms of partial2796

derivatives only.2797

Matrix of total effects of a mutant’s controls on her states and2798

her controls2799

From the developmental constraint (8) for the k-th state2800

variable at age j ∈ {2, . . . , Na} we have that xkj =2801

gk,j−1(zj−1, z̄, hj−1(zj−1, z̄, τ)), so using the chain rule we obtain2802

dxkj

dyia

∣∣∣∣
y=ȳ

=

(
Ns

∑
l=1

∂gk,j−1

∂xl,j−1

dxl,j−1

dyia
+

Nc

∑
l=1

∂gk,j−1

∂yl,j−1

dyl,j−1

dyia

+
Ns

∑
l=1

Ne

∑
r=1

∂gk,j−1

∂εr,j−1

∂εr,j−1

∂xl,j−1

dxl,j−1

dyia

+
Nc

∑
l=1

Ne

∑
r=1

∂gk,j−1

∂εr,j−1

∂εr,j−1

∂yl,j−1

dyl,j−1

dyia

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation (Appendix 14), this is2803

dxkj

dyia

∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dyia

∂gk,j−1

∂xj−1
+

dyᵀj−1

dyia

∂gk,j−1

∂yj−1

+
Ns

∑
l=1

∂εεεᵀj−1

∂xl,j−1

∂gk,j−1

∂εεεj−1

dxl,j−1

dyia

+
Nc

∑
l=1

∂εεεᵀj−1

∂yl,j−1

∂gk,j−1

∂εεεj−1

dyl,j−1

dyia

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields 2804

dxkj

dyia

∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dyia

∂gk,j−1

∂xj−1
+

dyᵀj−1

dyia

∂gk,j−1

∂yj−1

+
dxᵀj−1

dyia

∂εεεᵀj−1

∂xj−1

∂gk,j−1

∂εεεj−1

+
dyᵀj−1

dyia

∂εεεᵀj−1

∂yj−1

∂gk,j−1

∂εεεj−1

)∣∣∣∣∣
y=ȳ

.

Factorizing, we have 2805

dxkj

dyia

∣∣∣∣
y=ȳ

=

[
dxᵀj−1

dyia

(
∂gk,j−1

∂xj−1
+

∂εεεᵀj−1

∂xj−1

∂gk,j−1

∂εεεj−1

)

+
dyᵀj−1

dyia

(
∂gk,j−1

∂yj−1
+

∂εεεᵀj−1

∂yj−1

∂gk,j−1

∂εεεj−1

)]∣∣∣∣∣
y=ȳ

.

Rewriting gk,j−1 as xkj yields 2806

dxkj

dyia

∣∣∣∣
y=ȳ

=

[
dxᵀj−1

dyia

(
∂xkj

∂xj−1
+

∂εεεᵀj−1

∂xj−1

∂xkj

∂εεεj−1

)

+
dyᵀj−1

dyia

(
∂xkj

∂yj−1
+

∂εεεᵀj−1

∂yj−1

∂xkj

∂εεεj−1

)]∣∣∣∣∣
y=ȳ

.

Hence, 2807

dxᵀj
dyia

∣∣∣∣∣
y=ȳ

=

[
dxᵀj−1

dyia

(
∂xᵀj

∂xj−1
+

∂εεεᵀj−1

∂xj−1

∂xᵀj
∂εεεj−1

)

+
dyᵀj−1

dyia

(
∂xᵀj

∂yj−1
+

∂εεεᵀj−1

∂yj−1

∂xᵀj
∂εεεj−1

)]∣∣∣∣∣
y=ȳ

, (A45)

where we use the matrix of direct effects of a mutant’s controls at 2808

age j on her states at age j + 1 2809

∂xᵀj+1

∂yj

∣∣∣∣∣
y=ȳ

≡



∂x1,j+1

∂y1j
· · ·

∂xNs,j+1

∂y1j
...

. . .
...

∂x1,j+1

∂yNc j
· · ·

∂xNs,j+1

∂yNc j



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNc×Ns .

We can write Eq. (A45) more succinctly as 2810

dxᵀj
dyia

∣∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dyia

δxᵀj
δxj−1

+
dyᵀj−1

dyia

δxᵀj
δyj−1

)∣∣∣∣∣
y=ȳ

, (A46)

where we use the matrix of semi-total effects of a mutant’s controls 2811

at age j on her states at age j + 1 2812

δxᵀj+1

δyj

∣∣∣∣∣
y=ȳ

=

(
∂xᵀj+1

∂yj
+

∂εεεᵀj

∂yj

∂xᵀj+1

∂εεεj

)∣∣∣∣∣
y=ȳ

∈ RNc×Ns . (A47)
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We also define the corresponding matrix across all ages.2813

Specifically, the block matrix of semi-total effects of a mutant’s2814

controls on her states is2815

δxᵀ

δy

∣∣∣∣
y=ȳ
≡



δxᵀ1
δy1

· · ·
δxᵀNa

δy1
...

. . .
...

δxᵀ1
δyNa

· · ·
δxᵀNa

δyNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
δxᵀ2
δy1

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
δxᵀNa

δyNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(A48)

∈ RNa Nc×Na Ns .

The equality (A48) follows because semi-total effects of a mu-2816

tant’s controls on her states are only non-zero at the next age2817

(from the developmental constraint (8)). Using Eqs. (33d) and2818

(33c), we have that2819

∂εεεᵀ

∂y
∂xᵀ

∂εεε
=

(
Na

∑
k=1

∂εεεᵀk
∂ya

∂xᵀj
∂εεεk

)
=




∂εεεᵀa
∂ya

∂xᵀj
∂εεεa

for j = a + 1

0 for j 6= a + 1

 ,

(A49)

which equals the rightmost term in Eq. (A47) for j = a + 1.2820

Thus, from Eqs. (A47)–(A49), it follows that the block matrix of2821

semi-total effects of a mutant’s controls on her states satisfies2822

Eq. (42).2823

Eq. (A46) gives the matrix of total effects of a mutant’s i-th2824

control at age a on her states at age j. Then, it follows that the2825

matrix of total effects of all of a mutant’s controls at age a on her2826

states at age j is2827

dxᵀj
dya

∣∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dya

δxᵀj
δxj−1

+
dyᵀj−1

dya

δxᵀj
δyj−1

)∣∣∣∣∣
y=ȳ

. (A50)

Eq. (A50) is a recurrence equation for dxᵀj /dya over age j ∈2828

{2, . . . , Na}. Since a given entry of the operator d/dy takes the2829

total derivative with respect to a given yia while keeping all the2830

other controls constant and controls are open-loop, a perturba-2831

tion in an individual’s control does not affect any other of the in-2832

dividual’s control variables (i.e., dyᵀa /dya = I and dyᵀj /dya = 02833

for j 6= a). Thus, the matrix of total effects of a mutant’s controls2834

on her controls is2835

dyᵀ

dy
=



dyᵀ1
dy1

· · ·
dyᵀNa

dy1
...

. . .
...

dyᵀ1
dyNa

· · ·
dyᵀNa

dyNa

 =



I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

0 0 · · · 0 I


= I ∈ RNa Nc×Na Nc . (A51)

Moreover, because of the arrow of developmental time (due 2836

to the developmental constraint (8)), perturbations in an indi- 2837

vidual’s late control variables do not affect the individual’s 2838

early state variables (i.e., dxᵀj /dya = 0 for j < a and j ∈ 2839

{1, . . . , Na − 1})2. Additionally, from the arrow of developmen- 2840

tal time (Eq. 8), a perturbation in an individual’s control variable 2841

at a given age does not affect any of the individual’s state vari- 2842

ables at the same age (i.e., dxᵀj /dya = 0 for j = a). Consequently, 2843

Eq. (A50) for j ∈ {1, . . . , Na} reduces to 2844

dxᵀj
dya

∣∣∣∣∣
y=ȳ

=



dxᵀj−1

dya

δxᵀj
δxj−1

+
dyᵀj−1

dya︸ ︷︷ ︸
0, from (A51)

δxᵀj
δyj−1


∣∣∣∣∣∣∣∣∣
y=ȳ

for j− 1 > a

 dxᵀj−1

dya︸ ︷︷ ︸
0, from (8)

δxᵀj
δxj−1

+
dyᵀj−1

dya︸ ︷︷ ︸
I, from (A51)

δxᵀj
δyj−1


∣∣∣∣∣∣∣∣∣
y=ȳ

for j− 1 = a

 dxᵀj−1

dya︸ ︷︷ ︸
0, from (8)

δxᵀj
δxj−1

+
dyᵀj−1

dya︸ ︷︷ ︸
0, from (A51)

δxᵀj
δyj−1


∣∣∣∣∣∣∣∣∣
y=ȳ

for j− 1 < a.

That is, 2845

dxᵀj
dya

∣∣∣∣∣
y=ȳ

=



(
dxᵀj−1

dya

δxᵀj
δxj−1

)∣∣∣∣∣
y=ȳ

for j− 1 > a

δxᵀj
δyj−1

∣∣∣∣∣
y=ȳ

for j− 1 = a

0 for j− 1 < a.

Expanding this recurrence yields 2846

dxᵀj
dya

∣∣∣∣∣
y=ȳ

=



(
dxᵀa+1
dya

δxᵀa+2
δxa+1

· · ·
δxᵀj

δxj−1

)∣∣∣∣∣
y=ȳ

for j− 1 > a

δxᵀa+1
δya

∣∣∣∣∣
y=ȳ

for j− 1 = a

0 for j− 1 < a.
(A52)

Evaluating Eq. (A52) at j = a + 1 yields 2847

dxᵀa+1
dya

∣∣∣∣∣
y=ȳ

=
δxᵀa+1
δya

∣∣∣∣∣
y=ȳ

,

2 Again, we take the derivative dxᵀj /dyia as referring to the effect on xᵀj of a
perturbation of the initial condition ya of the difference equation (8) applied at
the ages {a, . . . , n}. Hence, if j < a, xᵀj is unmodified by a change in the initial
condition of (8) applied at the ages {a, . . . , n}.
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which substituted back in the top line of Eq (A52) yields2848

dxᵀj
dya

∣∣∣∣∣
y=ȳ

=



(
δxᵀa+1
δya

δxᵀa+2
δxa+1

· · ·
δxᵀj

δxj−1

)∣∣∣∣∣
y=ȳ

for j− 1 > a

δxᵀa+1
δya

∣∣∣∣∣
y=ȳ

for j− 1 = a

0 for j− 1 < a.
(A53)

Hence, the block matrix of total effects of a mutant’s controls on her2849

states is2850

dxᵀ

dy

∣∣∣∣
y=ȳ

=



dxᵀ1
dy1

· · ·
dxᵀNa

dy1
...

. . .
...

dxᵀ1
dyNa

· · ·
dxᵀNa

dyNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
dxᵀ2
dy1

· · ·
dxᵀNa−1

dy1

dxᵀNa

dy1

0 0 · · ·
dxᵀNa−1

dy2

dxᵀNa

dy2
...

...
. . .

...
...

0 0 · · · 0
dxᵀNa

dyNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(A54)

∈ RNa Nc×Na Ns ,

whose aj-th entry is given by2851

dxᵀj
dya

=


δxᵀa+1
δya

dxᵀj
dxa+1

for j > a

0 for j ≤ a

=


δxᵀa+1
δya

y
j−1

∏
k=a+1

δxᵀk+1
δxk

for j > a

0 for j ≤ a

=


δxᵀa+1
δya

δxᵀa+2
δxa+1

· · ·
δxᵀj

δxj−1
for j > a

0 for j ≤ a,

(A55)

where we use Eq. (A33) and adopt the empty-product conven-2852

tion that2853

dxᵀa+1
dxa+1

=

y
a

∏
k=a+1

δxᵀk+1
δxk

= I.

Eqs. (A54) and (A55) write the matrix of total effects of a mu-2854

tant’s controls on her states in terms of partial derivatives, given2855

Eq. (A47), as we sought.2856

We now obtain a more compact expression for the matrix2857

of total effects of a mutant’s controls on her states in terms of2858

partial derivatives. To do this, we note a relationship between2859

the matrix of total effects of a mutant’s controls on her states2860

with the matrix of total effects of a mutant’s states on her states. 2861

Note that the aj-th entry of (δxᵀ/δy)(dxᵀ/dx) is 2862(
δxᵀ

δy
dxᵀ

dx

)
aj
=

Na

∑
k=1

δxᵀk
δya

dxᵀj
dxk

=
δxᵀa+1
δya

dxᵀj
dxa+1

=
dxᵀj
dya

,

where we use Eq. (A48) in the second equality and Eq. (A55) in 2863

the third equality, noting that dxᵀj /dxa+1 = 0 and dxᵀj /dya = 0 2864

for j ≤ a. Hence, Eq. (45) follows, which is a compact expression 2865

for the matrix of total effects of a mutant’s controls on her states 2866

in terms of partial derivatives only, once Eqs. (44) and (42) are 2867

used. 2868

Conclusion 2869

Form 1 Using Eqs. (A44), (A51), and (40) for ζ ∈ {x, y}, we have 2870

that the total selection gradient of controls is 2871

dw
dy

∣∣∣∣
y=ȳ

=

[
dxᵀ

dy

(
∂w
∂x

+
∂εεεᵀ

∂x
∂w
∂εεε

)
+

∂w
∂y

+
∂εεεᵀ

∂y
∂w
∂εεε

]∣∣∣∣
y=ȳ

.

Thus, using Eq. (50) yields the first line of Eq. (64). 2872

Form 2 Using Eqs. (A44) and (A51), the total selection gradient 2873

of controls is given by the second line of Eq. (64). 2874

Form 3 Using Eqs. (A44), (A38), and (54), we have that the total 2875

selection gradient of controls is given by the third line of Eq. (64). 2876

Form 4 Using the first line of Eqs. (64) and (57), we obtain the 2877

fourth line of Eq. (64). 2878

Form 5 Finally, we can rearrange total genetic selection (64) in 2879

terms of total selection on states. Using Eq. (45) in the second 2880

line of Eq. (64), and then using the second line of Eq. (63), we 2881

have that the total selection gradient of controls is given by the 2882

fifth line of Eq. (64). 2883

Appendix 6: total selection gradient of the environment 2884

Here proceed analogously to derive the total selection gradi- 2885

ent of the environment, which allows us to write an equation 2886

describing the evolutionary dynamics of the metaphenotype. 2887

Total selection gradient of the environment in terms of direct 2888

fitness effects 2889

As before, we start by considering the total selection gradient 2890

entry for the i-th environmental variable at age a. By this, we 2891

mean the total selection gradient of a perturbation of εia taken 2892

as initial condition of the developmental constraint (8) when 2893

applied at the ages {a, . . . , n}. Consequently, an environmental 2894

perturbation at a given age does not affect states at earlier ages 2895

due to the arrow of developmental time. By letting ζ in Eq. (27) 2896

be εia, we have 2897

dλ

dεia

∣∣∣∣
y=ȳ

=
dw
dεia

∣∣∣∣
y=ȳ

=
Na

∑
j=1

dwj

dεia

∣∣∣∣
y=ȳ

. (A56)

The total derivatives of a mutant’s relative fitness at age j in 2898

Eq. (A56) are with respect to the individual’s environmental 2899
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variables at possibly another age a. We now seek to express such2900

selection gradient in terms of partial derivatives only.2901

From Eq. (24), we have wj(zj, z̄, εεεj) and zj = (xj; yj), so ap-2902

plying the chain rule and, since we assume that controls are2903

open-loop (hence, controls do not depend on the environment,2904

so dyj/dεia = 0 for all i ∈ {1, . . . , Ns} and all a, j ∈ {1, . . . , Na}),2905

we obtain2906

dwj

dεia

∣∣∣∣
y=ȳ

=

(
Ns

∑
k=1

∂wj

∂xkj

dxkj

dεia
+

Ne

∑
k=1

∂wj

∂εkj

dεkj

dεia

)∣∣∣∣∣
y=ȳ

=

(
dxᵀj
dεia

∂wj

∂xj
+

dεεεᵀj

dεia

∂wj

∂εεεj

)∣∣∣∣∣
y=ȳ

.

In the last equality we applied matrix calculus notation (Ap-2907

pendix 14). Using Eq. (A20) we have2908

dwj

dεia

∣∣∣∣
y=ȳ

=

(
dxᵀj
dεia

∂w
∂xj

+
dεεεᵀj

dεia

∂w
∂εεεj

)∣∣∣∣∣
y=ȳ

. (A57)

Substituting Eq. (A57) in (A56) yields2909

dw
dεia

∣∣∣∣
y=ȳ

=
Na

∑
j=1

(
dxᵀj
dεia

∂w
∂xj

+
dεεεᵀj

dεia

∂w
∂εεεj

)∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dεia

∂w
∂x

+
dεεεᵀ

dεia

∂w
∂εεε

)∣∣∣∣
y=ȳ

.

Therefore, the total selection gradient of all environmental vari-2910

ables across all ages is2911

dw
dεεε

∣∣∣∣
y=ȳ

=

(
dxᵀ

dεεε

∂w
∂x

+
dεεεᵀ

dεεε

∂w
∂εεε

)∣∣∣∣
y=ȳ
∈ RNa Ne×1, (A58)

where we use the block matrix of total effects of a mutant’s environ-2912

ment on her states2913

dxᵀ

dεεε

∣∣∣∣
y=ȳ
≡


dxᵀ1
dεεε1

· · ·
dxᵀNa

∂εεε1
...

. . .
...

dxᵀ1
dεεεNa

· · ·
dxᵀNa

dεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa Ns×Na Ne

and the block matrix of total effects of a mutant’s environment on2914

her environment2915

dεεεᵀ

dεεε

∣∣∣∣
y=ȳ
≡


dεεεᵀ1
dεεε1

· · ·
dεεεᵀNa

∂εεε1
...

. . .
...

dεεεᵀ1
dεεεNa

· · ·
dεεεᵀNa

dεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa Ne×Na Ne .

Expression (A58) is now in terms of partial derivatives of fitness,2916

total effects of a mutant’s environment on her states, dxᵀ/dεεε,2917

and total effects of a mutant’s environment on her environment,2918

dεεεᵀ/dεεε. We now proceed to write dxᵀ/dεεε and dεεεᵀ/dεεε in terms2919

of partial derivatives only.2920

Matrix of total effects of a mutant’s environment on her envi- 2921

ronment 2922

From the environmental constraint (9) for the k-th environmental 2923

variable at age j ∈ {1, . . . , Na} we have that εkj = hkj(zj, z̄, τ), 2924

so using the chain rule since controls are open-loop yields 2925

dεkj

dεia

∣∣∣∣
y=ȳ

=



(
Ns

∑
l=1

∂hkj

∂xl j

dxl j

dεia

)∣∣∣∣∣
y=ȳ

for j > a

∂εkj

∂εia

∣∣∣∣
y=ȳ

for j = a

0 for j < a

=



(
dxᵀj
dεia

∂εkj

∂xj

)∣∣∣∣∣
y=ȳ

for j > a

∂εkj

∂εia

∣∣∣∣
y=ȳ

for j = a

0 for j < a.

In the last equality we used matrix calculus notation and rewrote 2926

hkj as εkj. Since we assume that environmental variables are mu- 2927

tually independent, we have that ∂εka/∂εia = 1 if i = k or 2928

∂εka/∂εia = 0 otherwise; however, we leave the partial deriva- 2929

tives ∂εka/∂εia unevaluated as it is conceptually useful. Hence, 2930

dεεεᵀj

dεia

∣∣∣∣∣
y=ȳ

=



(
dxᵀj
dεia

∂εεεᵀj

∂xj

)∣∣∣∣∣
y=ȳ

for j > a

∂εεεᵀj

∂εia

∣∣∣∣∣
y=ȳ

for j = a

0 for j < a.

Then, the matrix of total effects of a mutant’s environment at 2931

age a on her environment at age j is 2932

dεεεᵀj

dεεεa

∣∣∣∣∣
y=ȳ

=



(
dxᵀj
dεεεa

∂εεεᵀj

∂xj

)∣∣∣∣∣
y=ȳ

for j > a

∂εεεᵀj

∂εεεa

∣∣∣∣∣
y=ȳ

for j = a

0 for j < a.

(A59)

Hence, the block matrix of total effects of a mutant’s environment 2933

on her environment is 2934

dεεεᵀ

dεεε

∣∣∣∣
y=ȳ
≡


dεεεᵀ1
dεεε1

· · ·
dεεεᵀNa

dεεε1
...

. . .
...

dεεεᵀ1
dεεεNa

· · ·
dεεεᵀNa

dεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ
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=



∂εεεᵀ1
∂εεε1

dεεεᵀ2
dεεε1

· · ·
dεεεᵀNa−1

dεεε1

dεεεᵀNa

dεεε1

0
∂εεεᵀ2
∂εεε2

· · ·
dεεεᵀNa−1

dεεε2

dεεεᵀNa

dεεε2
...

...
. . .

...
...

0 0 · · ·
∂εεεᵀNa−1

∂εεεNa−1

dεεεᵀNa

dεεεNa−1

0 0 · · · 0
∂εεεᵀNa

∂εεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ
(A60)

∈ RNa Ne×Na Ne .

Note that the aj-th entry of (dxᵀ/dεεε)(∂εεεᵀ/∂x) for j > a is2935

(
dxᵀ

dεεε

∂εεεᵀ

∂x

)
aj
=

Na

∑
k=1

dxᵀk
dεεεa

∂εεεᵀj

∂xk
=

dxᵀj
dεεεa

∂εεεᵀj

∂xj
,

where we use Eq. (33d) in the second equality. Note also2936

that since environmental variables are mutually independent,2937

∂εεεᵀj /∂εεεa = 0 for j 6= a from the environmental constraint (9).2938

Finally, note that because of the arrow of developmental time,2939

∂xᵀj /∂εεεa = 0 for j < a due to the developmental constraint (8).2940

Hence, Eq. (52) follows, which is a compact expression for the2941

matrix of total effects of a mutant’s environment on itself in2942

terms of partial derivatives and the total effects of a mutant’s en-2943

vironment on her states, which we now write in terms of partial2944

derivatives only.2945

Matrix of total effects of a mutant’s environment on her states2946

From the developmental constraint (8) for the k-th state variable2947

at age j ∈ {2, . . . , Na}we have that xkj = gk,j−1(zj−1, z̄, εεεj−1), so2948

using the chain rule since controls are open-loop yields2949

dxkj

dεia

∣∣∣∣
y=ȳ

=

(
Ns

∑
l=1

∂gk,j−1

∂xl,j−1

dxl,j−1

dεia
+

Ne

∑
l=1

∂gk,j−1

∂εl,j−1

dεl,j−1

dεia

)∣∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dεia

∂xkj

∂xj−1
+

dεεεᵀj−1

dεia

∂xkj

∂εεεj−1

)∣∣∣∣∣
y=ȳ

.

In the last equality we used matrix calculus notation and rewrote2950

gk,j−1 as xkj. Hence,2951

dxᵀj
dεia

∣∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dεia

∂xᵀj
∂xj−1

+
dεεεᵀj−1

dεia

∂xᵀj
∂εεεj−1

)∣∣∣∣∣
y=ȳ

.

Then, the matrix of total effects of a mutant’s environment at2952

age a on her states at age j is2953

dxᵀj
dεεεa

∣∣∣∣∣
y=ȳ

=

(
dxᵀj−1

dεεεa

∂xᵀj
∂xj−1

+
dεεεᵀj−1

dεεεa

∂xᵀj
∂εεεj−1

)∣∣∣∣∣
y=ȳ

.

Using Eq. (A59) yields2954

dxᵀj
dεεεa

∣∣∣∣∣
y=ȳ

=



(
dxᵀj−1

dεεεa

∂xᵀj
∂xj−1

+
dxᵀj−1

dεεεa

∂εεεᵀj−1

∂xj−1

∂xᵀj
∂εεεj−1

)∣∣∣∣∣
y=ȳ

for j− 1 > a

 dxᵀa
dεεεa︸︷︷︸

0, from (8)

∂xᵀa+1
∂xa

+
∂εεεᵀa
∂εεεa

∂xᵀa+1
∂εεεa


∣∣∣∣∣∣∣∣∣
y=ȳ

for j− 1 = a

 dxᵀj−1

dεεεa︸ ︷︷ ︸
0, from (8)

∂xᵀj
∂xj−1


∣∣∣∣∣∣∣∣∣
y=ȳ

for j− 1 > a

=



[
dxᵀj−1

dεεεa

(
∂xᵀj

∂xj−1
+

∂εεεᵀj−1

∂xj−1

∂xᵀj
∂εεεj−1

)]∣∣∣∣∣
y=ȳ

for j− 1 > a

(
∂εεεᵀa
∂εεεa

∂xᵀj
∂εεεj−1

)∣∣∣∣∣
y=ȳ

for j− 1 = a

0 for j− 1 > a.

Using Eq. (A27), this reduces to 2955

dxᵀj
dεεεa

∣∣∣∣∣
y=ȳ

=



(
dxᵀj−1

dεεεa

δxᵀj
δxj−1

)∣∣∣∣∣
y=ȳ

for j− 1 > a

(
∂εεεᵀa
∂εεεa

∂xᵀa+1
∂εεεa

)∣∣∣∣∣
y=ȳ

for j− 1 = a

0 for j− 1 > a.

Expanding this recurrence yields 2956

dxᵀj
dεεεa

∣∣∣∣∣
y=ȳ

=



(
dxᵀa+1
dεεεa

δxᵀa+2
δxa+1

· · ·
δxᵀj

δxj−1

)∣∣∣∣∣
y=ȳ

for j− 1 > a

(
∂εεεᵀa
∂εεεa

∂xᵀa+1
∂εεεa

)∣∣∣∣∣
y=ȳ

for j− 1 = a

0 for j− 1 > a,

which using Eq. (A33) yields 2957

dxᵀj
dεεεa

∣∣∣∣∣
y=ȳ

=



(
∂εεεᵀa
∂εεεa

∂xᵀa+1
∂εεεa

dxᵀj
dxa+1

)∣∣∣∣∣
y=ȳ

for j− 1 > a

(
∂εεεᵀa
∂εεεa

∂xᵀa+1
∂εεεa

)∣∣∣∣∣
y=ȳ

for j− 1 = a

0 for j− 1 > a.
(A61)

It will be useful to denote the matrix of semi-total effects of a 2958

mutant’s environment at age j on her states at age j for j > 0 as 2959

δxᵀj
δεεεj−1

∣∣∣∣∣
y=ȳ

=
∂εεεᵀj−1

∂εεεj−1

∂xᵀj
∂εεεj−1

∣∣∣∣∣
y=ȳ

∈ RNe×Ns . (A62)

The matrix of direct effects of a mutant’s environment on itself is 2960

given by Eq. (34). In turn, the block matrix of semi-total effects of 2961
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a mutant’s environment on her states is2962

δxᵀ

δεεε

∣∣∣∣
y=ȳ
≡


δxᵀ1
δεεε1

· · ·
δxᵀNa

δεεε1
...

. . .
...

δxᵀ1
δεεεNa

· · ·
δxᵀNa

δεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
δxᵀ2
δεεε1

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
δxᵀNa

δεεεNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa Ne×Na Ns , (A63)

so Eq. (43) follows from Eqs. (A62), (34), and (33c).2963

Using Eq. (A62), Eq. (A61) becomes2964

dxᵀj
dεεεa

∣∣∣∣∣
y=ȳ

=



(
δxᵀa+1
δεεεa

dxᵀj
dxa+1

)∣∣∣∣∣
y=ȳ

for j− 1 > a

δxᵀa+1
δεεεa

∣∣∣∣∣
y=ȳ

for j− 1 = a

0 for j− 1 > a.

Note that the aj-th entry of (δxᵀ/δεεε)(dxᵀ/dx) is2965 (
δxᵀ

δεεε

)
aj
=

Na

∑
k=1

δxᵀk
δεεεa

dxᵀj
dxk

=
δxᵀa+1
δεεεa

dxᵀj
dxa+1

=
dxᵀj
dεεεa

, (A64)

where we use Eq. (A63) in the second equality. Hence, Eq. (46)2966

follows, where the block matrix of total effects of a mutant’s envi-2967

ronment on her states is2968

dxᵀ

dεεε

∣∣∣∣
y=ȳ

=


dxᵀ1
dεεε1

· · ·
dxᵀNa

dεεε1
...

. . .
...

dxᵀ1
dεεεNa

· · ·
dxᵀNa

dεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
dxᵀ2
dεεε1

· · ·
dxᵀNa−1

dεεε1

dxᵀNa

dεεε1

0 0 · · ·
dxᵀNa−1

dεεε2

dxᵀNa

dεεε2
...

...
. . .

...
...

0 0 · · · 0
dxᵀNa

dεεεNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(A65)

∈ RNa Ne×Na Ns .

Eqs. (46), (A63), and (44) write the matrix of total effects of a mu-2969

tant’s environment on her states in terms of partial derivatives.2970

This is a compact expression for the matrix of total effects of a2971

mutant’s environment on her states in terms of partial deriva-2972

tives only.2973

Conclusion 2974

Form 1 Eq. (A58) gives the total selection gradient of the envi- 2975

ronment as in the first line of Eq. (65). 2976

Form 2 Using Eqs. (A58) and (52) yields 2977

dw
dεεε

∣∣∣∣
y=ȳ

=

[
dxᵀ

dεεε

∂w
∂x

+

(
∂εεεᵀ

∂εεε
+

dxᵀ

dεεε

∂εεεᵀ

∂x

)
∂w
∂εεε

]∣∣∣∣
y=ȳ

.

Collecting for dxᵀ/dεεε and using Eq. (40) for ζ = x as well as 2978

Eq. (41), we have that the total selection gradient of the environ- 2979

ment is given by the second line of Eq. (65). 2980

Form 3 Using the first line of Eq. (65) and Eq. (58), we obtain the 2981

third line of Eq. (65). 2982

Form 4 Finally, we can rearrange total selection on the environ- 2983

ment in terms of total selection on states. Using Eq. (46) in the 2984

second line of Eq. (65), and then using the second line of Eq. (63), 2985

we have that the total selection gradient of the environment is 2986

given by the fourth line of Eq. (65). 2987

Appendix 7: total selection gradient of the phenotype 2988

We have that the mutant phenotype is z = (x; y). We first define 2989

the (direct), semi-total, and total selection gradients of the phe- 2990

notype and write the total selection gradient of the phenotype in 2991

terms of the semi-total selection gradient of the phenotype and 2992

of the partial selection gradient of the metaphenotype. 2993

We have the selection gradient of the phenotype 2994

∂w
∂z

∣∣∣∣
y=ȳ
≡
(

∂w
∂x

;
∂w
∂y

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×1,

the semi-total selection gradient of the phenotype 2995

δw
δz

∣∣∣∣
y=ȳ
≡
(

δw
δx

;
δw
δy

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×1,

and the total selection gradient of the phenotype 2996

dw
dz

∣∣∣∣
y=ȳ
≡
(

dw
dx

;
dw
dy

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×1.

Now, we write the semi-total selection gradient of the phe- 2997

notype as a linear combination of the selection gradients of the 2998

phenotype and environment. Using Eq. (40) for ζ ∈ {x, y}, we 2999

have that the semi-total selection gradient of the phenotype is 3000

δw
δz

∣∣∣∣
y=ȳ
≡


δw
δx
δw
δy


∣∣∣∣∣∣∣∣
y=ȳ

=


∂w
∂x

+
∂εεεᵀ

∂x
∂w
∂εεε

∂w
∂y

+
∂εεεᵀ

∂y
∂w
∂εεε


∣∣∣∣∣∣∣∣
y=ȳ

=




∂w
∂x
∂w
∂y

+


∂εεεᵀ

∂x
∂w
∂εεε

∂εεεᵀ

∂y
∂w
∂εεε



∣∣∣∣∣∣∣∣
y=ȳ

. (A66)

Using Eq. (37), we have that 3001

(
∂εεεᵀ

∂z
∂w
∂εεε

)∣∣∣∣
y=ȳ

=




∂εεεᵀ

∂x
∂εεεᵀ

∂y

 ∂w
∂εεε


∣∣∣∣∣∣∣∣
y=ȳ

=


∂εεεᵀ

∂x
∂w
∂εεε

∂εεεᵀ

∂y
∂w
∂εεε


∣∣∣∣∣∣∣∣
y=ȳ

.

Therefore, Eq. (A66) becomes Eq. (40) for ζ = z. 3002
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Form 2 Now we bring together the total selection gradients of3003

states and controls to write the total selection gradient of the3004

phenotype as a linear transformation of the semi-total selection3005

gradient of the phenotype.3006

Using the third lines of Eqs. (63) and (64), we have3007

dw
dz

∣∣∣∣
y=ȳ
≡


dw
dx
dw
dy


∣∣∣∣∣∣∣∣
y=ȳ

=


dzᵀ

dx
δw
δz

dzᵀ

dy
δw
δz


∣∣∣∣∣∣∣∣
y=ȳ

=




dzᵀ

dx
dzᵀ

dy

 δw
δz


∣∣∣∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dz
δw
δz

)∣∣∣∣
y=ȳ

,

which is the second line of Eq. (66).3008

Form 3 Now we use the expressions of the total selection gra-3009

dients of states and controls as linear transformations of the3010

metaphenotype to write the total selection gradient of the phe-3011

notype. Using the fourth lines of Eqs. (63) and (64), we have3012

dw
dz

∣∣∣∣
y=ȳ
≡


dw
dx
dw
dy


∣∣∣∣∣∣∣∣
y=ȳ

=


dmᵀ

dx
∂w
∂m

dmᵀ

dy
∂w
∂m


∣∣∣∣∣∣∣∣
y=ȳ

=




dmᵀ

dx
dmᵀ

dy

 ∂w
∂m


∣∣∣∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dz
∂w
∂m

)∣∣∣∣
y=ȳ

,

which is the third line of Eq. (66).3013

Form 1 Now, we obtain the total selection gradient of the pheno-3014

type as a linear combination of selection gradients of the pheno-3015

type and environment. Using Eq. (40) for ζ = z, the second line3016

of Eq. (66) becomes3017

dw
dz

∣∣∣∣
y=ȳ

=

[
dzᵀ

dz

(
∂w
∂z

+
∂εεεᵀ

∂z
∂w
∂εεε

)]∣∣∣∣
y=ȳ

. (A67)

We define the block matrix of total effects of a mutant’s pheno-3018

type on her environment as3019

dεεεᵀ

dz

∣∣∣∣
y=ȳ
≡


dεεεᵀ

dx
dεεεᵀ

dy


∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa(Ns+Nc)×Na Ne ,

which using Eqs. (49) and (50) yields3020

dεεεᵀ

dz

∣∣∣∣
y=ȳ

=


dzᵀ

dx
∂εεεᵀ

∂z
dzᵀ

dy
∂εεεᵀ

∂z


∣∣∣∣∣∣∣∣
y=ȳ

=




dzᵀ

dx
dzᵀ

dy

 ∂εεεᵀ

∂z


∣∣∣∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dz
∂εεεᵀ

∂z

)∣∣∣∣
y=ȳ

,

which is Eq. (51), where in the second equality we factorized and3021

in the third equality we used Eq. (55). Using this in Eq. (A67),3022

the first line of Eq. (66) follows.3023

Appendix 8: total selection gradient of the metapheno- 3024

type 3025

We have that the mutant metaphenotype is m = (x; y; εεε). We 3026

now define the (direct), semi-total, and total selection gradients 3027

of the metaphenotype and write the total selection gradient of 3028

the metaphenotype in terms of the partial selection gradient of 3029

the metaphenotype. 3030

We have the selection gradient of the metaphenotype 3031

∂w
∂m

∣∣∣∣
y=ȳ
≡
(

∂w
∂x

;
∂w
∂y

;
∂w
∂εεε

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc+Ne)×1,

the semi-total selection gradient of the metaphenotype 3032

δw
δm

∣∣∣∣
y=ȳ

=

(
δw
δx

;
δw
δy

;
δw
δεεε

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc+Ne)×1,

and the total selection gradient of the metaphenotype 3033

dw
dm

∣∣∣∣
y=ȳ

=

(
dw
dx

;
dw
dy

;
dw
dεεε

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc+Ne)×1.

Now we use the expressions of the total selection gradients 3034

of states, controls, and environment as linear transformations of 3035

the metaphenotype to write the total selection gradient of the 3036

metaphenotype. Using the fourth lines of Eqs. (63) and (64) and 3037

the third line of Eq. (65), we have 3038

dw
dm

∣∣∣∣
y=ȳ
≡



dw
dx
dw
dy
dw
dεεε



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



dmᵀ

dx
∂w
∂m

dmᵀ

dy
∂w
∂m

dmᵀ

dεεε

∂w
∂m



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=





dmᵀ

dx
dmᵀ

dy
dmᵀ

dεεε


∂w
∂m



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dm
∂w
∂m

)∣∣∣∣
y=ȳ

,

which is Eq. (67). 3039

To see that dmᵀ/dm|y=ȳ is non-singular, we factorize it as 3040

follows. We define the block matrix of direct effects of a mutant’s 3041

metaphenotype on her metaphenotype considering environmental con- 3042

straints without considering developmental constraints as 3043

γmᵀ

γm

∣∣∣∣
y=ȳ

=


I 0

∂εεεᵀ

∂x

0 I
∂εεεᵀ

∂y

0 0
∂εεεᵀ

∂εεε



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa(Ns+Nc+Ne)×Na(Ns+Nc+Ne),

which is non-singular since it is square, block upper triangular, 3044

and ∂εεεᵀ/∂εεε = I (Eq. 34). We also define the block matrix of total 3045

effects of a mutant’s metaphenotype on her metaphenotype considering 3046

developmental constraints but not selective environmental constraints 3047
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as3048

βmᵀ

βm

∣∣∣∣
y=ȳ

=



dxᵀ

dx
0 0

dxᵀ

dy
I 0

dxᵀ

dεεε
0 I



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa(Ns+Nc+Ne)×Na(Ns+Nc+Ne),

which is non-singular since it is square, block lower triangular,3049

and dxᵀ/dx is non-singular (Eq. A32). Note that3050

(
βmᵀ

βm
γmᵀ

γm

)∣∣∣∣
y=ȳ

=





dxᵀ

dx
0 0

dxᵀ

dy
I 0

dxᵀ

dεεε
0 I




I 0

∂εεεᵀ

∂x

0 I
∂εεεᵀ

∂y

0 0
∂εεεᵀ

∂εεε





∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



dxᵀ

dx
0

dxᵀ

dx
∂εεεᵀ

∂x
dxᵀ

dy
I

dxᵀ

dy
∂εεεᵀ

∂x
+

∂εεεᵀ

∂y
dxᵀ

dεεε
0

dxᵀ

dεεε

∂εεεᵀ

∂x
+

∂εεεᵀ

∂εεε



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



dxᵀ

dx
0

dεεεᵀ

dx
dxᵀ

dy
I

dεεεᵀ

dy
dxᵀ

dεεε
0

dεεεᵀ

dεεε



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

,

where the last equality follows from Eqs. (49), (50), and (52).3051

Using Eq. (60), we thus have that3052

dmᵀ

dm

∣∣∣∣
y=ȳ

=

(
βmᵀ

βm
γmᵀ

γm

)∣∣∣∣
y=ȳ

.

Hence, dmᵀ/dm|y=ȳ is non-singular since βmᵀ/βm|y=ȳ and3053

γmᵀ/γm|y=ȳ are square and non-singular.3054

Appendix 9: evolutionary dynamics of states3055

Here we derive an equation describing the evolutionary dynam-3056

ics of states.3057

From Eqs. (14) and (27), we have that the evolutionary dy-3058

namics of controls satisfy the canonical equation3059

∆ȳ
∆τ

= Gy
dw
dy

∣∣∣∣
y=ȳ

, (A68)

whereas the developmental dynamics of states satisfy the devel-3060

opmental constraint3061

x̄a+1 = g◦a ,

for a ∈ {1, . . . , Na − 1}.3062

Let z̄(τ) be the resident phenotype at evolutionary time3063

τ, specifically at the point where the socio-devo stable resi-3064

dent is at carrying capacity, marked in Fig. 3. The i-th mu-3065

tant state at age j + 1 at such evolutionary time τ is xi,j+1 =3066

gij(zj(τ), z̄(τ), hj(zj(τ), z̄(τ), τ)). Then, evolutionary change in 3067

the i-th resident state variable at age a ∈ {2, . . . , Na} is 3068

∆x̄ia
∆τ

=
1

∆τ

[
gi,a−1

(
za−1(τ + ∆τ), z̄(τ + ∆τ),

ha−1(za−1(τ + ∆τ), z̄(τ + ∆τ), τ + ∆τ)

)

− gi,a−1 (za−1(τ), z̄(τ), ha−1(za−1(τ), z̄(τ), τ))

]∣∣∣∣∣
y=ȳ

.

Taking the limit as ∆τ → 0, this becomes 3069

dx̄ia
dτ

=
dgi,a−1(za−1(τ), z̄(τ), ha−1(za−1(τ), z̄(τ), τ))

dτ

∣∣∣∣
y=ȳ

.

Applying the chain rule, we obtain 3070

dx̄ia
dτ

=(
Ns

∑
j=1

∂gi,a−1

∂xj,a−1

dxj,a−1

dτ
+

Nc

∑
j=1

∂gi,a−1

∂yj,a−1

dyj,a−1

dτ
+

Na

∑
k=1

Ns

∑
j=1

∂gi,a−1

∂x̄jk

dx̄jk

dτ

+
Na

∑
k=1

Nc

∑
j=1

∂gi,a−1

∂ȳjk

dȳjk

dτ
+

Ns

∑
j=1

Ne

∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂xj,a−1

dxj,a−1

dτ

+
Nc

∑
j=1

Ne

∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂yj,a−1

dyj,a−1

dτ
+

Na

∑
k=1

Ns

∑
j=1

Ne

∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂x̄jk

dx̄jk

dτ

+
Na

∑
k=1

Nc

∑
j=1

Ne

∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂ȳjk

dȳjk

dτ
+

Ne

∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂τ

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation (Appendix 14), this is 3071

dx̄ia
dτ

=(
∂gi,a−1

∂xᵀa−1

dxa−1
dτ

+
∂gi,a−1

∂yᵀa−1

dya−1
dτ

+
Na

∑
k=1

∂gi,a−1

∂x̄ᵀk

dx̄k
dτ

+
Na

∑
k=1

∂gi,a−1

∂ȳᵀk

dȳk
dτ

+
Ns

∑
j=1

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂xj,a−1

dxj,a−1

dτ

+
Nc

∑
j=1

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂yj,a−1

dyj,a−1

dτ
+

Na

∑
k=1

Ns

∑
j=1

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂x̄jk

dx̄jk

dτ

+
Na

∑
k=1

Nc

∑
j=1

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂ȳjk

dȳjk

dτ
+

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂τ

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields 3072

dx̄ia
dτ

=(
∂gi,a−1

∂xᵀa−1

dxa−1
dτ

+
∂gi,a−1

∂yᵀa−1

dya−1
dτ

+
∂gi,a−1

∂x̄ᵀ
dx̄
dτ

+
∂gi,a−1

∂ȳᵀ
dȳ
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂xᵀa−1

dxa−1
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂yᵀa−1

dya−1
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂x̄ᵀ

dx̄
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂ȳᵀ

dȳ
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂τ

)∣∣∣∣∣
y=ȳ

.
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Factorizing, we have3073

dx̄ia
dτ

=[(
∂gi,a−1

∂xᵀa−1
+

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂xᵀa−1

)
dxa−1

dτ

+

(
∂gi,a−1

∂yᵀa−1
+

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂yᵀa−1

)
dya−1

dτ

+

(
∂gi,a−1

∂x̄ᵀ
+

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂x̄ᵀ

)
dx̄
dτ

+

(
∂gi,a−1

∂ȳᵀ
+

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂ȳᵀ

)
dȳ
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1
∂τ

]∣∣∣∣∣
y=ȳ

.

Rewriting gi,a−1 as xia yields3074

dx̄ia
dτ

=[(
∂xia

∂xᵀa−1
+

∂xia
∂εεεᵀa−1

∂εεεa−1

∂xᵀa−1

)
dxa−1

dτ

+

(
∂xia

∂yᵀa−1
+

∂xia
∂εεεᵀa−1

∂εεεa−1

∂yᵀa−1

)
dya−1

dτ

+

(
∂xia
∂x̄ᵀ

+
∂xia

∂εεεᵀa−1

∂εεεa−1
∂x̄ᵀ

)
dx̄
dτ

+

(
∂xia
∂ȳᵀ

+
∂xia

∂εεεᵀa−1

∂εεεa−1
∂ȳᵀ

)
dȳ
dτ

+
∂xia

∂εεεᵀa−1

∂εεεa−1
∂τ

]∣∣∣∣∣
y=ȳ

.

Hence, for all resident states at age a ∈ {2, . . . , Na}, we have3075

dx̄a

dτ
=

[(
∂xa

∂xᵀa−1
+

∂xa

∂εεεᵀa−1

∂εεεa−1

∂xᵀa−1

)
dxa−1

dτ

+

(
∂xa

∂yᵀa−1
+

∂xa

∂εεεᵀa−1

∂εεεa−1

∂yᵀa−1

)
dya−1

dτ

+

(
∂xa

∂x̄ᵀ
+

∂xa

∂εεεᵀa−1

∂εεεa−1
∂x̄ᵀ

)
dx̄
dτ

+

(
∂xa

∂ȳᵀ
+

∂xa

∂εεεᵀa−1

∂εεεa−1
∂ȳᵀ

)
dȳ
dτ

+
∂xa

∂εεεᵀa−1

∂εεεa−1
∂τ

]∣∣∣∣∣
y=ȳ

.

(A69)

Here we used the following series of definitions. The matrix3076

of direct effects of social partner’s states at age a on the mutant’s states3077

at age j is3078

∂xᵀj
∂x̄a

∣∣∣∣∣
y=ȳ

≡



∂x1j

∂x̄1a
· · ·

∂xNs j

∂x̄1a
...

. . .
...

∂x1j

∂x̄Nsa
· · ·

∂xNs j

∂x̄Nsa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNs×Ns ,

and the block matrix of direct effects of social partners’ states3079

on a mutant’s states is given by Eq. (35) with ζ̄ = x̄. The matrix3080

∂xᵀa /∂x̄ is the a-th block column of ∂xᵀ/∂x̄.3081

Similarly, the matrix of direct effects of social partners’ controls 3082

at age a on a mutant’s states at age j is 3083

∂xᵀj
∂ȳa

∣∣∣∣∣
y=ȳ

≡



∂x1j

∂ȳ1a
· · ·

∂xNs j

∂ȳ1a
...

. . .
...

∂x1j

∂ȳNca
· · ·

∂xNs j

∂ȳNca



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNc×Ns ,

and the block matrix of direct effects of social partners’ controls 3084

on a mutant’s states is given by Eq. (35) with ζ̄ = ȳ. The matrix 3085

∂xᵀa /∂ȳ is the a-th block column of ∂xᵀ/∂ȳ. 3086

In turn, the matrix of direct effects of social partners’ states at age 3087

a on a mutant’s environment at age j is 3088

∂εεεᵀj

∂x̄a

∣∣∣∣∣
y=ȳ

≡



∂ε1j

∂x̄1a
· · ·

∂εNe j

∂x̄1a
...

. . .
...

∂ε1j

∂x̄Nsa
· · ·

∂εNe j

∂x̄Nsa



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNe×Ns ,

and the block matrix of direct effects of social partners’ states 3089

on a mutant’s environment is given by Eq. (36) with ζ̄ = x̄. The 3090

matrix ∂εεεᵀa /∂x̄ is the a-th block column of ∂εεεᵀ/∂x̄. 3091

Similarly, the matrix of direct effects of social partners’ controls 3092

at age a on a mutant’s environment at age j is 3093

∂εεεᵀj

∂ȳa

∣∣∣∣∣
y=ȳ

≡



∂ε1j

∂ȳ1a
· · ·

∂εNe j

∂ȳ1a
...

. . .
...

∂ε1j

∂ȳNca
· · ·

∂εNe j

∂ȳNca



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNe×Nc ,

and the block matrix of direct effects of social partners’ controls on a 3094

mutant’s environment is given by Eq. (36) with ζ̄ = ȳ. The matrix 3095

∂εεεᵀa /∂ȳ is the a-th block column of ∂εεεᵀ/∂ȳ. 3096

Having made these definitions explicit, we now write 3097

Eq. (A69) as 3098

dx̄a

dτ
=

(
δxa

δxᵀa−1

dxa−1
dτ

+
δxa

δyᵀa−1

dya−1
dτ

+
δxa

δx̄ᵀ
dx̄
dτ

+
δxa

δȳᵀ
dȳ
dτ

+
δxa

δεεεᵀa−1

∂εεεa−1
∂τ

)∣∣∣∣∣
y=ȳ

, (A70)

where we used the transpose of the semi-total effects of a mu- 3099

tant’s states and controls on her states (Eqs. A27 and A47), and 3100

the the matrix of semi-total effects of social partners’ states or controls 3101

at age a on a mutant’s states at age j 3102

δxᵀj
δζ̄a

∣∣∣∣∣
y=ȳ

=


(

∂xᵀj
∂ζ̄a

+
∂εεεᵀj−1

∂ζ̄a

∂xᵀj
∂εεεj−1

)∣∣∣∣∣
y=ȳ

for j > 1

0 for j = 1,

(A71)

for ζ̄ ∈ {x̄, ȳ} since the initial states x1 are constant by assump- 3103

tion. We also define the corresponding matrix of semi-total effects 3104

of social partners’ states on a mutant’s states as 3105

δxᵀ

δζ̄

∣∣∣∣∣
y=ȳ

≡



δxᵀ1
δζ̄1

· · ·
δxᵀNa

δζ̄1
...

. . .
...

δxᵀ1
δζ̄Na

· · ·
δxᵀNa

δζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ
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=



0
δxᵀ2
δζ̄1

· · ·
δxᵀNa

δζ̄1

0
δxᵀ2
δζ̄1

· · ·
δxᵀNa

δζ̄1
...

...
. . .

...

0
δxᵀ2

δζ̄Na

· · ·
δxᵀNa

δζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (A72)

for ζ̄ ∈ {x̄, ȳ}. The matrix δxᵀa /δζ̄ is the a-th block column of3106

δxᵀ/δζ̄. Using Eq. (33c) and since the initial states x1 are constant3107

by assumption, we have that3108

∂εεεᵀ

∂ζ̄

∂xᵀ

∂εεε
=

(
Na

∑
k=1

∂εεεᵀk
∂ζ̄a

∂xᵀj
∂εεεk

)
=




∂εεεᵀj−1

∂ζ̄a

∂xᵀj
∂εεεj−1

for j > 1

0 for j = 1

 ,

(A73)

for ζ̄ ∈ {x̄, ȳ}, which equals the rightmost terms in Eqs. (A71).3109

Thus, from Eqs. (A71), (A72), and (A73), it follows that the block3110

matrix of semi-total effects of social partners’ states or controls3111

on a mutant’s states satisfies Eq. (42).3112

Noting that δxa/δz̄ᵀ = (δxa/δx̄ᵀ, δxa/δȳᵀ) and that evalu-3113

ation of dza/dτ and ∂εεεa/∂τ at y = ȳ is dz̄a/dτ and ∂ε̄εεa/∂τ3114

respectively, Eq. (A70) can be written as3115

dx̄a

dτ
=

(
δxa

δxᵀa−1

dx̄a−1
dτ

+
δxa

δyᵀa−1

dȳa−1
dτ

+
δxa

δz̄ᵀ
dz̄
dτ

+
δxa

δεεεᵀa−1

∂ε̄εεa−1
∂τ

)∣∣∣∣∣
y=ȳ

,

which is a recursion for dx̄a/dτ over a. Expanding this recursion3116

two steps yields3117

dx̄a

dτ
=

{
δxa

δxᵀa−1

[
δxa−1

δxᵀa−2

(
δxa−2

δxᵀa−3

dx̄a−3
dτ

+
δxa−2

δyᵀa−3

dȳa−3
dτ

+
δxa−2
δz̄ᵀ

dz̄
dτ

+
δxa−2

δεεεᵀa−3

∂ε̄εεa−3
∂τ

)

+
δxa−1

δyᵀa−1

dȳa−2
dτ

+
δxa−1
δz̄ᵀ

dz̄
dτ

+
δxa−1

δεεεᵀa−2

∂ε̄εεa−2
∂τ

]

+
δxa

δyᵀa−1

dȳa−1
dτ

+
δxa

δz̄ᵀ
dz̄
dτ

+
δxa

δεεεᵀa−1

∂ε̄εεa−1
∂τ

}∣∣∣∣∣
y=ȳ

.

Collecting the derivatives with respect to τ yields3118

dx̄a

dτ
=[(
δxa

δxᵀa−1

δxa−1

δxᵀa−2

δxa−2

δxᵀa−3

)
dx̄a−3

dτ

+

(
δxa

δxᵀa−1

δxa−1

δxᵀa−2

δxa−2

δyᵀa−3

)
dȳa−3

dτ

+

(
δxa

δxᵀa−1

δxa−1

δyᵀa−1

)
dȳa−2

dτ
+

δxa

δyᵀa−1

dȳa−1
dτ

+

(
δxa

δxᵀa−1

δxa−1

δxᵀa−2

δxa−2

δεεεᵀa−3

)
∂ε̄εεa−3

∂τ

+

(
δxa

δxᵀa−1

δxa−1

δεεεᵀa−2

)
∂ε̄εεa−2

∂τ
+

δxa

δεεεᵀa−1

∂ε̄εεa−1
∂τ

+

(
δxa

δxᵀa−1

δxa−1

δxᵀa−2

δxa−2
δz̄ᵀ

+
δxa

δxᵀa−1

δxa−1
δz̄ᵀ

+
δxa

δz̄ᵀ

)
dz̄
dτ

]∣∣∣∣∣
y=ȳ

.

Inspection shows that by expanding the recursion completely 3119

and since we assume that initial states do not evolve (i.e., 3120

dx̄1/dτ = 0), the resulting expression can be succinctly written 3121

as 3122

dx̄a

dτ
=

(
a−1

∑
j=1

x
a−1

∏
k=j+1

δxk+1

δxᵀk

δxj+1

δyᵀj

dȳj

dτ

+
a−1

∑
j=1

x
a−1

∏
k=j+1

δxk+1

δxᵀk

δxj+1

δεεεᵀj

∂ε̄εεj

∂τ

+
a−1

∑
j=1

x
a−1

∏
k=j+1

δxk+1

δxᵀk

δxj+1

δz̄ᵀ
dz̄
dτ

)∣∣∣∣∣
y=ȳ

,

where the x denotes left multiplication. Note that the products 3123

over k are the transpose of the total effects of a mutant’s states at 3124

age j + 1 on her states at age a (Eq. A33). Hence, 3125

dx̄a

dτ
=

(
a−1

∑
j=1

dxa

dxᵀj+1

δxj+1

δyᵀj

dȳj

dτ
+

a−1

∑
j=1

dxa

dxᵀj+1

δxj+1

δεεεᵀj

∂ε̄εεj

∂τ

+
a−1

∑
j=1

dxa

dxᵀj+1

δxj+1

δz̄ᵀ
dz̄
dτ

)∣∣∣∣∣
y=ȳ

. (A74)

Before simplifying Eq. (A74), we introduce a series of ma- 3126

trices that are analogous to those already provided, based on 3127

Eq. (A55). The matrix of total effects of social partners’ states or 3128

controls at age a on a mutant’s states at age j is 3129

dxᵀj
dζ̄a

∣∣∣∣∣
y=ȳ

=


Na

∑
l=1

(
δxᵀl
δζ̄a

dxᵀj
dxl

)∣∣∣∣∣
y=ȳ

for j > 1

0 for j = 1,

(A75)

for ζ̄ ∈ {x̄, ȳ}. The block matrix of total effects of social partners’ 3130

states or controls on a mutant’s states is thus 3131

dxᵀ

dζ̄

∣∣∣∣∣
y=ȳ

≡



dxᵀ1
dζ̄1

· · ·
dxᵀNa

dζ̄1
...

. . .
...

dxᵀ1
dζ̄Na

· · ·
dxᵀNa

dζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
dxᵀ2
dζ̄1

· · ·
dxᵀNa

dζ̄1

0
dxᵀ2
dζ̄2

· · ·
dxᵀNa

dζ̄2
...

...
. . .

...

0
dxᵀ2

dζ̄Na

· · ·
dxᵀNa

dζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (A76)

for ζ̄ ∈ {x̄, ȳ}. Then, from Eq. (A75), the block matrix in 3132

Eq. (A76) satisfies Eq. (47). 3133
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Using Eqs. (A55) and (A64) and given the property of trans-3134

pose of a product (i.e., (AB)ᵀ = BᵀAᵀ), Eq. (A74) can be written3135

more succinctly as3136

dx̄a

dτ
=

(
a−1

∑
j=1

dxa

dyᵀj

dȳj

dτ
+

a−1

∑
j=1

dxa

dεεεᵀj

∂ε̄εεj

∂τ

+
a−1

∑
j=1

dxa

dxᵀj+1

δxj+1

δz̄ᵀ
dz̄
dτ

)∣∣∣∣∣
y=ȳ

.

Note that from Eq. (A54), we have that dxa/dyᵀj = 0 for j ≥ a,3137

from Eq. (A65), we have that dxa/dεεεᵀj = 0 for j ≥ a, and from3138

Eq. (A32), we have that dxa/dxᵀj+1 = 0 for j + 1 ≥ a. Hence, the3139

same expression holds extending the upper bounds of the sums3140

to the last possible age:3141

dx̄a

dτ
=

(
Na

∑
j=1

dxa

dyᵀj

dȳj

dτ
+

Na

∑
j=1

dxa

dεεεᵀj

∂ε̄εεj

∂τ

+
Na−1

∑
j=1

dxa

dxᵀj+1

δxj+1

δz̄ᵀ
dz̄
dτ

)∣∣∣∣∣
y=ȳ

.

Changing the sum index for the last terms yields3142

dx̄a

dτ
=

 Na

∑
j=1

dxa

dyᵀj

dȳj

dτ
+

Na

∑
j=1

dxa

dεεεᵀj

∂ε̄εεj

∂τ
+

Na

∑
j=2

dxa

dxᵀj

δxj

δz̄ᵀ
dz̄
dτ

∣∣∣∣∣∣
y=ȳ

.

Expanding the matrix calculus notation for the entries of z̄ in the3143

rightmost term yields3144

dx̄a

dτ
=

(
Na

∑
j=1

dxa

dyᵀj

dȳj

dτ
+

Na

∑
j=1

dxa

dεεεᵀj

∂ε̄εεj

∂τ

+
Na

∑
j=2

dxa

dxᵀj

δxj

δx̄ᵀ
dx̄
dτ

+
Na

∑
j=2

dxa

dxᵀj

δxj

δȳᵀ
dȳ
dτ

)∣∣∣∣∣
y=ȳ

.

Expanding again the matrix calculus notation for the entries of x̄3145

and ȳ in the two rightmost terms yields3146

dx̄a

dτ
=

(
Na

∑
j=1

dxa

dyᵀj

dȳj

dτ
+

Na

∑
j=1

dxa

dεεεᵀj

∂ε̄εεj

∂τ

+
Na

∑
l=1

Na

∑
j=2

dxa

dxᵀj

δxj

δx̄ᵀl

dx̄l
dτ

+
Na

∑
l=1

Na

∑
j=2

dxa

dxᵀj

δxj

δȳᵀl

dȳl
dτ

)∣∣∣∣∣
y=ȳ

.

Using the transpose of the matrix in Eq. (A75) in the two right-3147

most terms, noting that δxj/δx̄ᵀl = 0 and δxj/δȳᵀl = 0 for j = 13148

(from Eq. A72), yields3149

dx̄a

dτ
=

(
Na

∑
j=1

dxa

dyᵀj

dȳj

dτ
+

Na

∑
j=1

dxa

dεεεᵀj

∂ε̄εεj

∂τ

+
Na

∑
l=1

dxa

dx̄ᵀl

dx̄l
dτ

+
Na

∑
l=1

dxa

dȳᵀl

dȳl
dτ

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation to each term yields3150

dx̄a

dτ
=

(
dxa

dyᵀ
dȳ
dτ

+
dxa

dεεεᵀ
∂ε̄εε

∂τ
+

dxa

dx̄ᵀ
dx̄
dτ

+
dxa

dȳᵀ
dȳ
dτ

)∣∣∣∣
y=ȳ

,

for a ∈ {2, . . . , Na}. Since dx̄1/dτ = 0, it follows that 3151

dx̄
dτ

=

(
dx

dyᵀ
dȳ
dτ

+
dx

dεεεᵀ
∂ε̄εε

∂τ
+

dx
dx̄ᵀ

dx̄
dτ

+
dx

dȳᵀ
dȳ
dτ

)∣∣∣∣
y=ȳ

, (A77)

which contains our desired dx̄/dτ on both sides of the equation. 3152

The matrix premultiplying dx̄/dτ on the right-hand side of 3153

Eq. (A77) is dx/dx̄ᵀ|y=ȳ, which is square. We now make use of 3154

our assumption that the absolute value of all the eigenvalues of 3155

dx/dx̄ᵀ|y=ȳ is strictly less than one, which guarantees that the 3156

resident phenotype is socio-devo stable (Appendix 15). Given 3157

this property of dx/dx̄ᵀ|y=ȳ, then I− dx/dx̄ᵀ|y=ȳ is invertible. 3158

Hence, we can define the transpose of the matrix of stabilized 3159

effects of a focal individual’ states on a social partners’ states (second 3160

equality of Eq. 68). Thus, solving for dx̄/dτ in Eq. (A77), we 3161

finally obtain an equation describing the evolutionary dynamics 3162

of states 3163

dx̄
dτ

=

[
sx

sx̄ᵀ

(
dx

dyᵀ
+

dx
dȳᵀ

)
dȳ
dτ

+
sx

sx̄ᵀ
dx

dεεεᵀ
∂ε̄εε

∂τ

]∣∣∣∣
y=ȳ

.

Let us momentarily write x = g̃(y, ȳ) for some differentiable 3164

function g̃ to highlight the dependence of a mutant’s states x on 3165

her controls y and on the controls ȳ of resident social partners. 3166

Consider the resident states that develop in the context of mutant 3167

controls, denoted by x̌ = g̃(ȳ, y). Hence, 3168

dx̌
dyᵀ

∣∣∣∣
y=ȳ

=
dg̃(ȳ, y)

dyᵀ

∣∣∣∣
y=ȳ

=
dg̃(y, ȳ)

dȳᵀ

∣∣∣∣
y=ȳ

=
dx

dȳᵀ

∣∣∣∣
y=ȳ

,

(A78)

where the second equality follows by exchanging dummy vari- 3169

ables. Then, the transpose of the matrix of total social effects of a 3170

mutant’s controls on her and a partner’s states is 3171

d(x + x̌)
dyᵀ

∣∣∣∣
y=ȳ

=

(
dx

dyᵀ
+

dx̌
dyᵀ

)∣∣∣∣
y=ȳ

=

(
dx

dyᵀ
+

dx
dȳᵀ

)∣∣∣∣
y=ȳ
∈ RNa Ns×Na Nc . (A79)

Similarly, let us momentarily write x = ˜̃g(x, x̄) for some differen- 3172

tiable function ˜̃g to highlight the dependence of a mutant’s states 3173

x on her (developmentally earlier) states x and on the states x̄ 3174

of resident social partners. Consider the resident states that de- 3175

velop in the context of mutant states, denoted by x̌ = ˜̃g(x̄, x). 3176

Hence, 3177

dx̌
dxᵀ

∣∣∣∣
y=ȳ

=
d˜̃g(x̄, x)

dxᵀ

∣∣∣∣
y=ȳ

=
d˜̃g(x, x̄)

dx̄ᵀ

∣∣∣∣
y=ȳ

=
dx

dx̄ᵀ

∣∣∣∣
y=ȳ

, (A80)

where the second equality follows by exchanging dummy vari- 3178

ables. Then, the transpose of the matrix of total social effects of a 3179

mutant’s states on her and a partner’s states is 3180

d(x + x̌)
dxᵀ

∣∣∣∣
y=ȳ

=

(
dx

dxᵀ
+

dx̌
dxᵀ

)∣∣∣∣
y=ȳ

=

(
dx

dxᵀ
+

dx
dx̄ᵀ

)∣∣∣∣
y=ȳ
∈ RNa Ns×Na Ns . (A81)

Thus, from Eq. (A80) and the second equality of Eq. (68), the 3181

transpose of the matrix of stabilized effects of a focal individual’s 3182

states on social partners’ states may also be written as 3183

sx
sx̄ᵀ

∣∣∣
y=ȳ

=

(
I− dx̌

dxᵀ

∣∣∣∣
y=ȳ

)−1
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=
∞

∑
θ=1

(
dx̌

dxᵀ

)θ−1
∣∣∣∣∣
y=ȳ

∈ RNa Ns×Na Ns ,

where the last equality follows from the geometric series of3184

matrices. This equation is the first and third equalities of (68).3185

Therefore, using Eqs. (69) and (69b), the evolutionary dynam-3186

ics of states are given by3187

dx̄
dτ

=

(
sx

sx̄ᵀ
d(x + x̌)

dyᵀ
dȳ
dτ

+
sx

sx̄ᵀ
dx

dεεεᵀ
∂ε̄εε

∂τ

)∣∣∣∣
y=ȳ

=

(
sx

syᵀ
Gy

dw
dy

+
sx

sεεεᵀ
∂ε̄εε

∂τ

)∣∣∣∣
y=ȳ

=

(
Hxy

dw
dy

+
sx

sεεεᵀ
∂ε̄εε

∂τ

)∣∣∣∣
y=ȳ

, (A82)

where the second equality follows by using Eq. (A68) in the limit3188

∆τ → 0, and the third equality follows from Eq. (87). The first3189

line of Eq. A82 describing evolutionary change of states in terms3190

of evolutionary change of controls is a generalization of previous3191

equations describing the evolution of a multivariate phenotype3192

in terms of allele frequency change (e.g., the first equation on3193

p. 49 of Engen and Sæther 2021). Eq. (A82) is Eq. (92) for ζ = x.3194

Using the third line of Eq. (64) and Eq. (85) yields Eq. (91) for3195

ζ = x, whereas using the fourth line of Eq. (64) and Eq. (86)3196

yields Eq. (88a) for ζ = x.3197

Appendix 10: evolutionary dynamics of the phenotype3198

In terms of total genetic selection3199

Here we obtain an equation describing the evolutionary dynam-3200

ics of the resident phenotype, that is, dz̄/dτ. In this section, we3201

write such an equation in terms of the total genetic selection.3202

Since dz̄/dτ = (dx̄/dτ; dȳ/dτ), from Eqs. (A82) and (14a), we3203

can write the evolutionary dynamics of the resident phenotype3204

z̄ as3205

dz̄
dτ

=

Hxy

Gy

 dw
dy

+

 sx
sεεεᵀ

0

 ∂ε̄εε

∂τ

∣∣∣∣∣∣
y=ȳ

. (A83)

Using Eqs. (87) and (70), this is3206

dz̄
dτ

=




sx
syᵀ

sy
syᵀ

Gy
dw
dy

+


sx

sεεεᵀ

sy
sεεεᵀ

 ∂ε̄εε

∂τ


∣∣∣∣∣∣∣∣
y=ȳ

.

Using Eq. (72), this reduces to3207

dz̄
dτ

=

(
sz

syᵀ
Gy

dw
dy

+
sz

sεεεᵀ
∂ε̄εε

∂τ

)∣∣∣∣
y=ȳ

.

Using Eq. (87) yields Eq. (92) for ζ = z. Using the third line of3208

Eq. (64) and Eq. (85) yields Eq. (91) for ζ = z, whereas using the3209

fourth line of Eq. (64) and (86) yields Eq. (88a) for ζ = z.3210

In contrast to other arrangements, the premultiplying matrix3211

Hzy is non-singular if Gy is non-singular. Indeed, if3212

sz
syᵀ

∣∣∣∣
y=ȳ

r = 0

for some vector r, then from Eqs. (72a) and (70b) we have 3213 sx
syᵀ

I


∣∣∣∣∣∣∣
y=ȳ

r = 0.

Doing the multiplication yields 3214 sx
syᵀ

∣∣∣∣
y=ȳ

r

r

 = 0,

which implies that r = 0, so sz/syᵀ|y=ȳ is non-singular. Thus, 3215

Hzy is non-singular if Gy is non-singular. 3216

In terms of total selection on the phenotype 3217

Here we write the evolutionary dynamics of the phenotype in 3218

terms of the total selection gradient of the phenotype. 3219

First, using Eq. (77), we define the additive genetic covariance 3220

matrix of the undeveloped phenotype ẑ = (x̄; y) as 3221

Gẑ ≡ cov[aẑ, aẑ] =

(
dẑ

dyᵀ
Gy

dẑᵀ

dy

)∣∣∣∣
y=ȳ

∈ RNa(Ns+Nc)×Na(Ns+Nc).

By definition of ẑ, we have 3222

Gẑ =




dx̄
dyᵀ

dy
dyᵀ

Gy

(
dx̄ᵀ

dy
dyᵀ

dy

)
∣∣∣∣∣∣∣∣
y=ȳ

.

From Eq. (2), resident states are independent of mutant controls, 3223

so 3224

Gẑ =

0

I

Gy

(
0 I

)∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields 3225

Gẑ =

0

I

(0 Gy

)∣∣∣∣∣∣
y=ȳ

=

0 0

0 Gy

 . (A84)

The matrix Gẑ is singular because the undeveloped pheno- 3226

type includes controls (i.e., dẑᵀ/dy|y=ȳ has fewer rows than 3227

columns). For this reason, the matrix Gẑ would still be singular 3228

even if the zero block entries in Eq. (A84) were non-zero (i.e., if 3229

dx̄ᵀ/dy|y=ȳ 6= 0). 3230

Now, we write an alternative factorization of Hz in terms of 3231

Gẑ. Using Eqs. (55) and (73), consider the matrix 3232(
sz

szᵀ
Gẑ

dzᵀ

dz

)∣∣∣∣
y=ȳ

=




sx
sxᵀ

sx
syᵀ

0 I


0 0

0 Gy




dxᵀ

dx
0

dxᵀ

dy
I



∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields 3233

(
sz

szᵀ
Gẑ

dzᵀ

dz

)∣∣∣∣
y=ȳ

=




sx
sxᵀ

sx
syᵀ

0 I


 0 0

Gy
dxᵀ

dy
Gy



∣∣∣∣∣∣∣
y=ȳ
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=


sx

syᵀ
Gy

dxᵀ

dy
sx

syᵀ
Gy

Gy
dxᵀ

dy
Gy


∣∣∣∣∣∣∣∣
y=ȳ

.

Using Eq. (70b), we have3234

(
sz

szᵀ
Gẑ

dzᵀ

dz

)∣∣∣∣
y=ȳ

=


sx

syᵀ
Gy

dxᵀ

dy
sx

syᵀ
Gy

dyᵀ

dy
sy

syᵀ
Gy

dxᵀ

dy
sy

syᵀ
Gy

dyᵀ

dy


∣∣∣∣∣∣∣∣
y=ȳ

.

Notice that the matrix on the right-hand side is3235 (
sz

syᵀ
Gy

dzᵀ

dy

)∣∣∣∣
y=ȳ

= Hz.

Hence, we obtain an alternative factorization for Hz as3236

Hz =

(
sz

szᵀ
Gẑ

dzᵀ

dz

)∣∣∣∣
y=ȳ

.

Thus, we can write the selection response of the phenotype3237

(in the form of Eq. 91) as3238

Hz
δw
δz

∣∣∣∣
y=ȳ

=

(
sz

szᵀ
Gẑ

dzᵀ

dz
δw
δz

)∣∣∣∣
y=ȳ

.

Using the relationship between the total and semi-total selection3239

gradients of the phenotype (second line of Eq. 66), this becomes3240

Hz
δw
δz

∣∣∣∣
y=ȳ

=

(
sz

szᵀ
Gẑ

dw
dz

)∣∣∣∣
y=ȳ

.

We can further simplify this equation by noticing the following.3241

Using Eq. (84) and ẑ = (x̄; y), we have that the additive socio-3242

genetic cross-covariance matrix of the phenotype and the undeveloped3243

phenotype is3244

Hzẑ =

(
sz

syᵀ
Gy

dẑᵀ

dy

)∣∣∣∣
y=ȳ
∈ RNa(Ns+Nc)×Na(Ns+Nc). (A85)

Expanding, we have3245

Hzẑ =




sx
syᵀ

sy
syᵀ

Gy

(
dx̄ᵀ

dy
dyᵀ

dy

)
∣∣∣∣∣∣∣∣
y=ȳ

.

Using Eq. (70b) and since resident states do not depend on mu-3246

tant controls, then3247

Hzẑ =




sx
syᵀ

I

Gy

(
0 I

)
∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields3248

Hzẑ =




sx
syᵀ

I

(0 Gy

)
∣∣∣∣∣∣∣
y=ȳ

=

0
sx

syᵀ
Gy

0 Gy


∣∣∣∣∣∣∣
y=ȳ

.

Notice that the last matrix equals3249 ( sz
szᵀ

Gẑ

)∣∣∣
y=ȳ

.

We can then write the evolutionary dynamics of the resident 3250

phenotype z̄ in terms of the total selection gradient of the phe- 3251

notype as 3252

dz̄
dτ

=

(
Hzẑ

dw
dz

+
sz

sεεεᵀ
∂ε̄εε

∂τ

)∣∣∣∣
y=ȳ

. (A86)

The cross-covariance matrix Hzẑ is singular because dẑᵀ/dy|y=ȳ 3253

has fewer rows than columns since the undeveloped phenotype 3254

includes controls. For this reason, Hzẑ would still be singular 3255

even if the zero block entries in Eq. (A85) were non-zero (i.e., if 3256

dx̄ᵀ/dy|y=ȳ 6= 0). Then, evolutionary equilibria of the pheno- 3257

type do not imply absence of total selection on the phenotype, 3258

even if exogenous plastic response is absent. 3259

Appendix 11: evolutionary dynamics of the environment 3260

In terms of endogenous and exogenous environmental 3261

change 3262

Here we derive an equation describing the evolutionary dynam- 3263

ics of the environment. Let z̄(τ) be the resident phenotype at 3264

evolutionary time τ, specifically at the point where the socio- 3265

devo stable resident is at carrying capacity, marked in Fig. 3. The 3266

i-th environmental variable experienced by a mutant of age a at 3267

such evolutionary time τ is εia = hia(za(τ), z̄(τ), τ)). Then, evo- 3268

lutionary change in the i-th environmental variable experienced 3269

by residents at age a is 3270

∆ε̄ia
∆τ

=
1

∆τ

[
hia (za(τ + ∆τ), z̄(τ + ∆τ), τ + ∆τ)

− hai (za(τ), z̄(τ), τ)

]∣∣∣∣∣
y=ȳ

.

Taking the limit as ∆τ → 0, this becomes 3271

dε̄ia
dτ

=
dhia(za(τ), z̄(τ), τ)

dτ

∣∣∣∣
y=ȳ

.

Applying the chain rule, we obtain 3272

dε̄ia
dτ

=

(
Ns

∑
j=1

∂hia
∂xja

dxja

dτ
+

Nc

∑
j=1

∂hia
∂yja

dyja

dτ
+

Na

∑
k=0

Ns

∑
j=1

∂hia
∂x̄jk

dx̄jk

dτ

+
Na

∑
k=0

Nc

∑
j=1

∂hia
∂ȳjk

dȳjk

dτ
+

∂hia
∂τ

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation, this is 3273

dε̄ia
dτ

=

(
∂hia
∂xᵀa

dxa

dτ
+

∂hia
∂yᵀa

dya

dτ
+

Na

∑
k=0

∂hia
∂x̄ᵀk

dx̄k
dτ

+
Na

∑
k=0

∂hia
∂ȳᵀk

dȳk
dτ

+
∂hia
∂τ

)∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields 3274

dε̄ia
dτ

=

(
∂hia
∂xᵀa

dxa

dτ
+

∂hia
∂yᵀa

dya

dτ
+

∂hia
∂x̄ᵀ

dx̄
dτ

+
∂hia
∂ȳᵀ

dȳ
dτ

+
∂hia
∂τ

)∣∣∣∣
y=ȳ

.
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Rewriting hia as εia, we obtain3275

dε̄ia
dτ

=

(
∂εia
∂xᵀa

dxa

dτ
+

∂εia
∂yᵀa

dya

dτ
+

∂εia
∂x̄ᵀ

dx̄
dτ

+
∂εia
∂ȳᵀ

dȳ
dτ

+
∂εia
∂τ

)∣∣∣∣
y=ȳ

.

Hence, for all environmental variables at age a, we have3276

dε̄εεa

dτ
=

(
∂εεεa

∂xᵀa

dxa

dτ
+

∂εεεa

∂yᵀa

dya

dτ
+

∂εεεa

∂x̄ᵀ
dx̄
dτ

+
∂εεεa

∂ȳᵀ
dȳ
dτ

+
∂εεεa

∂τ

)∣∣∣∣
y=ȳ

.

Note that evaluation of dza/dτ and ∂εεεa/∂τ at y = ȳ is dz̄a/dτ3277

and ∂ε̄εεa/∂τ, respectively. Using Eqs. (33d) and (33d) yields3278

∂εεεa

∂xᵀ
dx̄
dτ

=
Na

∑
j=1

∂εεεa

∂xᵀj

dx̄j

dτ
=

∂εεεa

∂xᵀa

dx̄a

dτ

∂εεεa

∂yᵀ
dȳ
dτ

=
Na

∑
j=1

∂εεεa

∂yᵀj

dȳj

dτ
=

∂εεεa

∂yᵀa

dȳa

dτ
.

Then, we have3279

dε̄εεa

dτ
=

(
∂εεεa

∂xᵀ
dx̄
dτ

+
∂εεεa

∂yᵀ
dȳ
dτ

+
∂εεεa

∂x̄ᵀ
dx̄
dτ

+
∂εεεa

∂ȳᵀ
dȳ
dτ

+
∂ε̄εεa

∂τ

)∣∣∣∣
y=ȳ

.

Now note that ∂εεεa/∂zᵀ = (∂εεεa/∂xᵀ, ∂εεεa/∂yᵀ), so3280

dε̄εεa

dτ
=

(
∂εεεa

∂zᵀ
dz̄
dτ

+
∂εεεa

∂z̄ᵀ
dz̄
dτ

+
∂ε̄εεa

∂τ

)∣∣∣∣
y=ȳ

.

Hence, for all environmental variables over all ages, we have3281

dε̄εε

dτ
=

(
∂εεε

∂zᵀ
dz̄
dτ

+
∂εεε

∂z̄ᵀ
dz̄
dτ

+
∂ε̄εε

∂τ

)∣∣∣∣
y=ȳ

=

[(
∂εεε

∂zᵀ
+

∂εεε

∂z̄ᵀ

)
dz̄
dτ

+
∂ε̄εε

∂τ

]∣∣∣∣
y=ȳ

,

where we use Eq. (37) and the block matrix of direct effects of3282

social partners’ phenotype on a mutant’s environment (Eq. 38;3283

see also Eq. 36).3284

Let us momentarily write εεε = h̃(z, z̄) for some differentiable3285

function h̃ to highlight the dependence of a mutant’s environ-3286

ment εεε on her phenotype z and on the phenotype x̄ of resident3287

social partners. Consider the environment a resident experiences3288

when she is in the context of mutants, denoted by ε̌εε = h̃(z̄, z).3289

Hence,3290

∂ε̌εε

∂zᵀ

∣∣∣∣
y=ȳ

=
∂h̃(z̄, z)

∂zᵀ

∣∣∣∣
y=ȳ

=
∂h̃(z, z̄)

∂z̄ᵀ

∣∣∣∣
y=ȳ

=
∂εεε

∂z̄ᵀ

∣∣∣∣
y=ȳ

, (A87)

where the second equality follows by exchanging dummy vari-3291

ables. Then, the transpose of the matrix of direct social effects of a3292

mutant’s phenotype on her and a partner’s environment is3293

∂(εεε + ε̌εε)

∂zᵀ

∣∣∣∣
y=ȳ

=

(
∂εεε

∂zᵀ
+

∂ε̌εε

∂zᵀ

)∣∣∣∣
y=ȳ

=

(
∂εεε

∂zᵀ
+

∂εεε

∂z̄ᵀ

)∣∣∣∣
y=ȳ

∈ RNa Ne×Na(Ns+Nc). (A88)

Similarly, the transpose of the matrix of direct social effects of a3294

mutant’s states on her and a partner’s environment is3295

∂(εεε + ε̌εε)

∂xᵀ

∣∣∣∣
y=ȳ

=

(
∂εεε

∂xᵀ
+

∂ε̌εε

∂xᵀ

)∣∣∣∣
y=ȳ

=

(
∂εεε

∂xᵀ
+

∂εεε

∂x̄ᵀ

)∣∣∣∣
y=ȳ

∈ RNa Ne×Na Ns , (A89)

and the transpose of the matrix of direct social effects of a mutant’s 3296

controls on her and a partner’s environment is 3297

∂(εεε + ε̌εε)

∂yᵀ

∣∣∣∣
y=ȳ

=

(
∂εεε

∂yᵀ
+

∂ε̌εε

∂yᵀ

)∣∣∣∣
y=ȳ

=

(
∂εεε

∂yᵀ
+

∂εεε

∂ȳᵀ

)∣∣∣∣
y=ȳ

∈ RNa Ne×Na Nc . (A90)

Consequently, the evolutionary dynamics of the environment 3298

are given by Eq. (97). 3299

In terms of total genetic selection 3300

Using the expression for the evolutionary dynamics of the phe- 3301

notype (Eq. 92 for ζ = z) in that for the environment (Eq. 97) 3302

yields 3303

dε̄εε

dτ
=

[
∂(εεε + ε̌εε)

∂zᵀ

(
Hzy

dw
dy

+
sz

sεεεᵀ
∂εεε

∂τ

)
+

∂εεε

∂τ

]∣∣∣∣
y=ȳ

.

Using Eq. (87) for ζ = z yields 3304

dε̄εε

dτ
=

[
∂(εεε + ε̌εε)

∂zᵀ

(
sz

syᵀ
Gy

dw
dy

+
sz

sεεεᵀ
∂εεε

∂τ

)
+

∂εεε

∂τ

]∣∣∣∣
y=ȳ

.

Collecting for ∂εεε/∂τ and using Eq. (71) yields 3305

dε̄εε

dτ
=

(
sεεε

syᵀ
Gy

dw
dy

+
sεεε

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣
y=ȳ

.

Using Eq. (87) yields Eq. (92) for ζ = εεε. Using the third line of 3306

Eq. (64) and Eq. (85) yields Eq. (91) for ζ = εεε, whereas using the 3307

fourth line of Eq. (64) and Eq. (86) yields Eq. (88a) for ζ = εεε. 3308

Appendix 12: evolutionary dynamics of the metapheno- 3309

type 3310

In terms of total genetic selection 3311

Here we obtain an equation describing the evolutionary dynam- 3312

ics of the resident metaphenotype, that is, dm̄/dτ. In this sec- 3313

tion, we write such an equation in terms of total genetic selection. 3314

Since dm̄/dτ = (dx̄/dτ; dȳ/dτ; dε̄εε/dτ), from Eqs. (A82), (14a), 3315

and (92) for ζ = εεε, we can write the evolutionary dynamics of 3316

the resident metaphenotype m̄ as 3317

dm̄
dτ

=




Hxy

Gy

Hεεεy

 dw
dy

+


sx

sεεεᵀ

0
sεεε

sεεεᵀ

 ∂ε̄εε

∂τ


∣∣∣∣∣∣∣∣∣
y=ȳ

. (A91)

Using Eqs. (84) and (70), this is 3318

dm̄
dτ

=





sx
syᵀ

sy
syᵀ

sεεε

syᵀ

Gy
dw
dy

+



sx
sεεεᵀ

sy
sεεεᵀ

sεεε

sεεεᵀ


∂ε̄εε

∂τ



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Using Eq. (74), this reduces to 3319

dm̄
dτ

=

(
sm
syᵀ

Gy
dw
dy

+
sm
sεεεᵀ

∂ε̄εε

∂τ

)∣∣∣∣
y=ȳ

.
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Using Eq. (87) yields Eq. (92) for ζ = m.. Using the third line of3320

Eq. (64) and Eq. (85) yields Eq. (91) for ζ = m, whereas using3321

the fourth line of Eq. (64) and Eq. (86) yields Eq. (88a) for ζ = m.3322

In contrast to other arrangements, the premultiplying matrix3323

Hmy is non-singular if Gy is non-singular. Indeed, if3324

sm
syᵀ

∣∣∣∣
y=ȳ

r = 0

for some vector r, then from Eqs. (74a) and (70b) we have3325 
sx

syᵀ

I
sεεε

syᵀ


∣∣∣∣∣∣∣∣∣∣
y=ȳ

r = 0.

Doing the multiplication yields3326 
sx

syᵀ

∣∣∣∣
y=ȳ

r

r
sεεε

syᵀ

∣∣∣∣
y=ȳ

r

 = 0,

which implies that r = 0, so sm/syᵀ|y=ȳ is non-singular. Thus,3327

Hmy is non-singular if Gy is non-singular.3328

In terms of total selection on the metaphenotype3329

Here we write the evolutionary dynamics of the metaphenotype3330

in terms of the total selection gradient of the metaphenotype.3331

First, using Eq. (77), we define the additive genetic covariance3332

matrix of the undeveloped metaphenotype m̂ = (x̄; y; ε̄εε) as3333

Gm̂ ≡ cov[am̂, am̂] =

(
dm̂
dyᵀ

Gy
dm̂ᵀ

dy

)∣∣∣∣
y=ȳ

∈ RNa(Ns+Nc+Ne)×Na(Ns+Nc+Ne).

By definition of m̂, we have3334

Gm̂ =





dx̄
dyᵀ

dy
dyᵀ

dε̄εε

dyᵀ


Gy

(
dx̄ᵀ

dy
dyᵀ

dy
dε̄εεᵀ

dy

)


∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

From Eqs. (2) and (1), resident states and environment are inde-3335

pendent of mutant controls, so3336

Gm̂ =




0

I

0

Gy

(
0 I 0

)
∣∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields3337

Gm̂ =




0

I

0

(0 Gy 0
)
∣∣∣∣∣∣∣∣∣
y=ȳ

=


0 0 0

0 Gy 0

0 0 0

 . (A92)

The matrix Gm̂ is singular because the undeveloped metaphe- 3338

notype includes controls (i.e., dm̂ᵀ/dy|y=ȳ has fewer rows than 3339

columns). For this reason, the matrix Gm̂ would still be singular 3340

even if the zero block entries in Eq. (A92) were non-zero (i.e., if 3341

dx̄ᵀ/dy|y=ȳ 6= 0 and dε̄εεᵀ/dy|y=ȳ 6= 0). 3342

Now, we write an alternative factorization of Hm in terms of 3343

Gm̂. Using Eqs. (60) and (75), we have 3344

(
sm

smᵀ Gm̂
dmᵀ

dm

)∣∣∣∣
y=ȳ

=





sx
sxᵀ

sx
syᵀ

sx
sεεεᵀ

0 I 0

sεεε

sxᵀ
sεεε

syᵀ
sεεε

sεεεᵀ




0 0 0

0 Gy 0

0 0 0




dxᵀ

dx
0

dεεεᵀ

dx
dxᵀ

dy
I

dεεεᵀ

dy
dxᵀ

dεεε
0

dεεεᵀ

dεεε





∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields 3345(
sm

smᵀ Gm̂
dmᵀ

dm

)∣∣∣∣
y=ȳ

=





sx
sxᵀ

sx
syᵀ

sx
sεεεᵀ

0 I 0

sεεε

sxᵀ
sεεε

syᵀ
sεεε

sεεεᵀ




0 0 0

Gy
dxᵀ

dy
Gy Gy

dεεεᵀ

dy

0 0 0





∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



sx
syᵀ

Gy
dxᵀ

dy
sx

syᵀ
Gy

sx
syᵀ

Gy
dεεεᵀ

dy

Gy
dxᵀ

dy
Gy Gy

dεεεᵀ

dy
sεεε

syᵀ
Gy

dxᵀ

dy
sεεε

syᵀ
Gy

sεεε

syᵀ
Gy

dεεεᵀ

dy



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

Using Eq. (70b), we have 3346(
sm

smᵀ Gm̂
dmᵀ

dm

)∣∣∣∣
y=ȳ

=



sx
syᵀ

Gy
dxᵀ

dy
sx

syᵀ
Gy

dyᵀ

dy
sx

syᵀ
Gy

dεεεᵀ

dy
sy

syᵀ
Gy

dxᵀ

dy
sy

syᵀ
Gy

dyᵀ

dy
sy

syᵀ
Gy

dεεεᵀ

dy
sεεε

syᵀ
Gy

dxᵀ

dy
sεεε

syᵀ
Gy

dyᵀ

dy
sεεε

syᵀ
Gy

dεεεᵀ

dy



∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

Notice that the matrix on the right-hand side is 3347(
sm
syᵀ

Gy
dmᵀ

dy

)∣∣∣∣
y=ȳ

= Hm.

Hence, we obtain an alternative factorization for Hm as 3348

Hm =

(
sm

smᵀ Gm̂
dmᵀ

dm

)∣∣∣∣
y=ȳ

.
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We can now write the selection response of the metapheno-3349

type (in the form of Eq. 88a) as3350

Hm
∂w
∂m

∣∣∣∣
y=ȳ

=

(
sm

smᵀ Gm̂
dmᵀ

dm
∂w
∂m

)∣∣∣∣
y=ȳ

.

Using the relationship between the total and partial selection3351

gradients of the metaphenotype (Eq. 67), this becomes3352

Hm
∂w
∂m

∣∣∣∣
y=ȳ

=

(
sm

smᵀ Gm̂
dw
dm

)∣∣∣∣
y=ȳ

.

We can further simplify this equation by noticing the follow-3353

ing. Using Eq. (84) and m̂ = (x̄; y; ε̄εε), we have that the additive3354

socio-genetic cross-covariance matrix of the metaphenotype and the3355

undeveloped metaphenotype is3356

Hmm̂ =

(
sm
syᵀ

Gy
dm̂ᵀ

dy

)∣∣∣∣
y=ȳ

(A93)

∈ RNa(Ns+Nc+Ne)×Na(Ns+Nc+Ne).

Expanding, we have3357

Hmm̂ =





sx
syᵀ

sy
syᵀ

sεεε

syᵀ

Gy

(
dx̄ᵀ

dy
dyᵀ

dy
dε̄εεᵀ

dy

)


∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Using Eq. (70b) and since resident states and environment do3358

not depend on mutant controls, then3359

Hmm̂ =





sx
syᵀ

I

sεεε

syᵀ

Gy

(
0 I 0

)


∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields3360

Hmm̂ =





sx
syᵀ

I

sεεε

syᵀ


(

0 Gy 0
)


∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


0

sx
syᵀ

Gy 0

0 Gy 0

0
sεεε

syᵀ
Gy 0



∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Notice that the last matrix equals3361 ( sm
smᵀ Gm̂

)∣∣∣
y=ȳ

.

Thus,3362

Hmm̂ =
( sm

smᵀ Gm̂

)∣∣∣
y=ȳ

.

We can then write the evolutionary dynamics of the resident 3363

metaphenotype m̄ in terms of the total selection gradient of the 3364

metaphenotype as 3365

dm̄
dτ

=

(
Hmm̂

dw
dm

+
sm
sεεεᵀ

∂ε̄εε

∂τ

)∣∣∣∣
y=ȳ

. (A94)

The cross-covariance matrix Hmm̂ is singular because 3366

dm̂ᵀ/dy|y=ȳ has fewer rows than columns since the undevel- 3367

oped metaphenotype includes controls. For this reason, Hmm̂ 3368

would still be singular even if the zero block entries in Eq. (A93) 3369

were non-zero (i.e., if dx̄ᵀ/dy|y=ȳ 6= 0 and dε̄εεᵀ/dy|y=ȳ 6= 0). 3370

Then, evolutionary equilibria of the metaphenotype do not 3371

imply absence of total selection on the metaphenotype, even if 3372

exogenous plastic response is absent. 3373

Appendix 13: connection to dynamic optimization 3374

Life-history models often consider traits that depend on an un- 3375

derlying variable (e.g., age) together with developmental (or 3376

dynamic) constraints. When such a model is simple enough, 3377

analytical solution (i.e., identification of evolutionarily stable 3378

strategies) is possible using optimal control or dynamic program- 3379

ming methods (Sydsæter et al. 2008). A key tool from optimal 3380

control theory that enables finding such analytical solutions 3381

(i.e., optimal controls) is Pontryagin’s maximum principle. The 3382

maximum principle is a theorem that essentially transforms the 3383

dynamic optimization problem into a simpler problem of max- 3384

imizing a function called the Hamiltonian, which depends on 3385

control, state, and costate (or adjoint) variables. The problem is 3386

then to maximize the Hamiltonian with respect to the controls, 3387

while state and costate variables can be found from associated 3388

dynamic equations. We now show that our results recover the 3389

maximization of the Hamiltonian. 3390

First, we identify what the costate variables are and show 3391

that they are proportional to the total selection gradient of states, 3392

for which we have obtained general formulas, provided that the 3393

problem is a standard life-history model of R0 maximization. Let 3394

us write R0(z, z̄) for the expected lifetime number of offspring of 3395

a mutant with phenotype z = (x; y) in the context of a resident 3396

with phenotype z̄ = (x̄; ȳ). Let z∗ = (x∗; y∗) be such that 3397

y∗ ∈ arg max
y

R0(z, z∗),

subject to the dynamic constraint (8) 3398

xa+1 = ga(za, z̄, ha(za, z̄, τ)).

Such z∗ is a best response to itself under the best response func- 3399

tion R0, where y∗ is an optimal control and x∗ is its associated 3400

optimal state. From Eq. (92) for ζ = z and Eq. (29b), it follows 3401

that if there is no exogenous environmental change, then such z∗ 3402

is an admissible locally stable evolutionary equilibrium. More- 3403

over, the costate for the i-th state variable at age a is defined 3404

as 3405

kxia ≡
dR0
dxia

∣∣∣∣
z=z̄=z∗

(A95)

(section 9.6 of Sydsæter et al. 2008). Hence, from Eq. (29b), we 3406

have that the costate for the i-th state variable at age a is 3407

kxia = T
dw
dxia

∣∣∣∣
z=z̄=z∗

. (A96)
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That is, costate variables are proportional to the total selection3408

gradient of state variables at an admissible evolutionary equilib-3409

rium z∗. The total selection gradient of states thus generalizes3410

the costate notion to outside of evolutionary equilibrium for3411

the life-history problem of R0 maximization. The fifth line of3412

Eq. (64) shows how such generalized costates affect the evolu-3413

tionary process, namely, indirectly by being transformed by the3414

semi-total effects of controls on states, δxᵀ/δy. Additionally,3415

we have obtained various equations (63) that enable calculation3416

of such generalized costates in age structured models with R03417

maximization.3418

Second, we show that the total selection gradient of controls is3419

proportional to the semi-total effects of controls on the Hamilto-3420

nian when both are evaluated at optimal controls. We have that3421

the total selection gradient of controls can be written in terms of3422

the total selection gradients of states (fifth line of Eq. 64), so for3423

the controls at age a we have3424

dw
dya

∣∣∣∣
y=ȳ

=

(
δxᵀ

δya

dw
dx

+
δw
δya

)∣∣∣∣
y=ȳ

.

Using Eq. (29) yields3425

dw
dya

∣∣∣∣
y=ȳ

=
1
T

(
δxᵀ

δya

dR0
dx

+
δR0
δya

)∣∣∣∣
y=ȳ

.

From Eqs. (A48) and (28) given that the semi-total derivative3426

only considers the environmental constraint (9) but ignores the3427

developmental constraint (8), it follows that3428

dw
dya

∣∣∣∣
y=ȳ

=
1
T

(
δxᵀa+1
δya

dR0
dxa+1

+
δ(`a fa)

δya

)∣∣∣∣∣
y=ȳ

.

Using Eqs. (A95) and (8) yields3429

dw
dya

∣∣∣∣
y=ȳ=y∗

=
1
T

(
δgᵀa
δya

kxa+1 +
δ(`a fa)

δya

)∣∣∣∣
y=ȳ=y∗

= 0.

This suggests to define3430

Ha ≡ gᵀa kxa+1 + `a fa,

which recovers the Hamiltonian of Pontryagin’s maximum prin-3431

ciple in discrete time (section 12.5 of Sydsæter et al. 2008). Then,3432

the total selection gradient of controls at a given age is propor-3433

tional to the semi-total effects of such controls on the Hamilto-3434

nian when both gradients are evaluated at optimal controls:3435

dw
dya

∣∣∣∣
y=ȳ=y∗

=
1
T

δHa

δya

∣∣∣∣
y=ȳ=y∗

= 0.

Appendix 14: matrix calculus notation3436

For vectors a ∈ Rn×1 and b ∈ Rm×1, we denote3437

∂a
∂bᵀ =


∂a1
∂b1

· · · ∂a1
∂bm

...
. . .

...
∂an

∂b1
· · · ∂an

∂bm

 ∈ Rn×m,

so (∂a/∂bᵀ)ᵀ = ∂aᵀ/∂b.3438

Appendix 15: matrix of socio-devo stability 3439

To see why the matrix 3440

dx
dx̄ᵀ

∣∣∣∣
y=ȳ

is sufficient to determine socio-devo stability, consider the fol- 3441

lowing. Let x̄(θ + 1) = g̃(x̄(θ)) denote the solution of iterating 3442

Eq. (4) over a, where we highlight only the argument corre- 3443

sponding to the states of social partners. An equilibrium x̄∗∗ 3444

of the socio-devo stabilization dynamics satisfies x̄∗∗ = g̃(x̄∗∗). 3445

Taylor-expanding x̄(θ + 1) to first-order around x̄∗∗, we have 3446

x̄(θ + 1) = g̃(x̄∗∗) +
dg̃
dx̄ᵀ

∣∣∣∣
x̄=x̄∗∗

(x̄(θ)− x̄∗∗) + O(||x̄(θ)− x̄∗∗||2),

where the operator d/dx̄ᵀ takes the total derivative to take into 3447

account developmental and environmental constraints. Noting 3448

that dg̃/dx̄ᵀ|x̄=x̄∗∗ = dx/dx̄ᵀ|y=ȳ since the resident is a socio- 3449

devo equilibrium, we have that a perturbation from a socio-devo 3450

equilibrium is approximately 3451

x̄(θ + 1)− g̃(x̄∗∗) ≈ dx
dx̄ᵀ

∣∣∣∣
y=ȳ

(x̄(θ)− x̄∗∗) ,

which asymptotically converges to 0 (i.e., x̄∗∗ is locally stable) if 3452

all the eigenvalues of the matrix 3453

dx
dx̄ᵀ

∣∣∣∣
y=ȳ

have absolute value strictly less than one. 3454

Appendix 16: Total and semi-total derivatives 3455

Consider a function f (a, b, c) ∈ R where the vectors b ∈ Rn×1
3456

and c ∈ Rm×1 satisfy the (equality) constraints 3457

b = d(a)
c = e(a),

for some differentiable functions d(a) ∈ Rn×1 and e(a) ∈ Rm×1. 3458

From the chain rule, the total derivative of f (a, b, c) with respect 3459

to a is 3460

d f
da

=
d f (a, d(a), e(a))

da
=

∂ f
∂a

+
n

∑
i=1

∂ f
∂bi

dbi
da

+
m

∑
i=1

∂ f
∂ci

dci
da

=
∂ f
∂a

+
∂ f

∂bᵀ
db
da

+
∂ f
∂cᵀ

dc
da

.

We call the semi-total derivative of f (a, b, c) with respect to a, 3461

considering the constraints on b without considering the con- 3462

straints on c, the quantity 3463

δ f
δa

=
d f (a, d(a), c)

da
=

∂ f
∂a

+
∂ f

∂bᵀ
db
da

.

We use “derivative-like” notation like this one for various differ- 3464

ential operators, motivated by some analogous use by Caswell 3465

(2019) (his Eqs. 1.2 and 2.21, which he based on a suggestion by 3466

Samuelson 1947). 3467
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Appendix 17: Selection response and genetic lines of3468

least resistance3469

Lande’s equation (∆z̄ = Gβ) describes evolutionary change3470

in terms of the direction of selection (β) modified by genetic3471

covariation (G). Evolutionary change is thus thought to occur3472

along “genetic lines of least resistance” (Schluter 1996), that is,3473

on trajectories that are parallel to a leading eigenvector of G. We3474

now show that selection response occurs along genetic lines of3475

least resistance if only one control at one age evolves (it might3476

also be the case when an arbitrary number of controls evolve at3477

an arbitrary number of ages, but we do not prove it).3478

Recall that selection response of the phenotype is3479

Hzδw/δz|y=ȳ, which reduces to Lande’s equation Gz∂w/∂z|y=ȳ3480

if there are no exogenous environmental effects on states, no3481

social development, and no niche construction. We now charac-3482

terize the eigensystem of Hz, and thus the eigensystem of Gz as3483

a particular case. The eigenvalues ρ and eigenvectors q of Hz3484

are given by the equation3485

Hzq = ρq. (A97)

Using Eq. (83), this is3486 
sx

syᵀ
Gy

dxᵀ

dy
sx

syᵀ
Gy

Gy
dxᵀ

dy
Gy


∣∣∣∣∣∣∣∣
y=ȳ

qx

qy

 = ρ

qx

qy

 ,

for some vectors qx ∈ RNa Ns and qy ∈ RNa Nc . Doing the matrix3487

multiplication yields the two equations3488 (
sx

syᵀ
Gy

dxᵀ

dy
qx +

sx
syᵀ

Gyqy

)∣∣∣∣
y=ȳ

= ρqx (A98a)(
Gy

dxᵀ

dy
qx + Gyqy

)∣∣∣∣
y=ȳ

= ρqy. (A98b)

Collecting for qy in Eq. (A98b) yields3489

Gy
dxᵀ

dy

∣∣∣∣
y=ȳ

qx = (ρI−Gy)qy,

which substituted in Eq. (A98a) yields3490 (
sx

syᵀ
(ρI−Gy)qy +

sx
syᵀ

Gyqy

)∣∣∣∣
y=ȳ

= ρqx.

Factorizing the left-hand side and simplifying yields3491

ρ
sx

syᵀ

∣∣∣∣
y=ȳ

qy = ρqx.

Then, for any non-trivial eigenvector q = (qx; qy) of Hz, that is,3492

one whose eigenvalue is ρ 6= 0, we have3493

sx
syᵀ

∣∣∣∣
y=ȳ

qy = qx, (A99)

which substituted in Eq. (A98b) yields3494 (
Gy

dxᵀ

dy
sx

syᵀ
qy + Gyqy

)∣∣∣∣
y=ȳ

= ρqy,

and factorizing the left-hand side we obtain3495

Gy

(
dxᵀ

dy
sx

syᵀ
+ I
)∣∣∣∣

y=ȳ
qy = ρqy.

Therefore, from Eq. (A99), we have that any non-trivial eigen- 3496

vector of Hz is given by 3497

q =

 sx
syᵀ

∣∣∣∣
y=ȳ

I

qy =
sz

syᵀ

∣∣∣∣
y=ȳ

qy, (A100)

where qy is a non-trivial eigenvector of Gy

(
dxᵀ

dy
sx

syᵀ
+ I
)∣∣∣∣

y=ȳ
. 3498

Eq. (A100) shows that the matrix sz/syᵀ|y=ȳ transforms any 3499

such non-trivial eigenvector in control space into a non-trivial 3500

eigenvector of Hz. 3501

Now, recall that we have that selection response of the phe- 3502

notype is 3503

Hz
δw
δz

∣∣∣∣
y=ȳ

= Hzy
dw
dy

∣∣∣∣
y=ȳ

=

(
sz

syᵀ
Gy

dw
dy

)∣∣∣∣
y=ȳ

.

Hence, from Eq. (A100) we have that selection response 3504

of the phenotype is a non-trivial eigenvector of Hz if 3505

and only if Gy
dw
dy

∣∣∣∣
y=ȳ

is a non-trivial eigenvector of 3506

Gy

(
dxᵀ

dy
sx

syᵀ
+ I
)∣∣∣∣

y=ȳ
. In particular, if there is a single con- 3507

trol (Nc = 1) and it evolves at a single age, the matrix 3508

Gy

(
dxᵀ

dy
sx

syᵀ
+ I
)∣∣∣∣

y=ȳ
is effectively a scalar and selection-led- 3509

evolution is necessarily a non-trivial and leading eigenvector 3510

of Hz; that is, with a single control evolving at a single age, se- 3511

lection response of the phenotype occurs along genetic lines of 3512

least resistance. 3513
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