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The dynamics of social networks can determine the transmission
of information, the spread of diseases, and the evolution of
behavior. Despite this broad importance, a general framework
for predicting social network stability has not been proposed.
Here we present longitudinal data on the social dynamics of a
cooperative bird species, the wire-tailed manakin, to evaluate
the potential causes of temporal network stability. We find that
when partners interact less frequently and when social connect-
edness increases, the network is subsequently less stable. Social
connectivity was also negatively associated with the temporal
persistence of coalition partnerships on an annual timescale. This
negative association between connectivity and stability was
surprising, especially given that individual manakins who were
more connected also had more stable partnerships. This appar-
ent paradox arises from a within-individual behavioral trade-off
between partnership quantity and quality. Crucially, this trade-
off is easily masked by behavioral variation among individuals.
Using a simulation, we show that these results are explained by
a simple model that combines among-individual behavioral
heterogeneity and reciprocity within the network. As social
networks become more connected, individuals face a trade-off
between partnership quantity and maintenance. This model also
demonstrates how among-individual behavioral heterogeneity, a
ubiquitous feature of natural societies, can improve social stability.
Together, these findings provide unifying principles that are
expected to govern diverse social systems.

social networks | dynamic networks | behavioral ecology | cooperation |
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Social network structure—or the way individuals are linked by
repeated social interactions—can influence the transmission

of information, culture, resources, and diseases (1–6). Recent
work has begun to demonstrate how changes to social network
topology can have diverse costs (2, 7–10) and benefits (11–13)
and may even influence the evolution of behavior (14). Previous
research has also explored how social relationships form and why
some relationships are maintained for longer time periods than
others (15–19). An important next step is to link individual
behaviors with temporal dynamics of the social network at a
collective level (20, 21). A mechanistic understanding of these
processes is essential to explain the diversity of social systems,
predict the downstream fate of social interactions, and engineer
societies.
Here we combine repeated measures of social structure and

mechanistic models to elucidate the drivers of temporal dynamics
in a cooperative system. Our empirical approach was based on
automated biologging of a neotropical bird species, the wire-tailed
manakin Pipra filicauda. Cooperative partnerships are a key part of
the manakin social system (5, 22, 23), similar to humans (24). Male
wire-tailed manakins cooperate by forming display coalitions
which are the basis of dynamic social networks (25, 26). Co-
operation occurs on display territories that are clustered into
spatial aggregations called leks. A lek typically has between 4
and 14 display territories and about twice as many males that
visit the lek (each of whom limits his interactions to particular

coalition partners (27)). The male–male coalitions that form at
the manakin lek territories are a prerequisite for an individual
to attain territory ownership and, ultimately, sire offspring (22, 23).
To quantify cooperative partnerships and social network dynamics,
we used an automated tracking system that identified times when
two males cooccurred on a lek display territory as an indication of
social interaction events (25, 26).
By tracking a population of 180 male manakins and 36,885

social interactions over 3 y, we took repeated measures of 11 leks
to characterize the temporal dynamics of the social network at
each site (on average, repeated measures of the same lek were
21 d apart; interquartile range 17 to 24). To analyze the dynamics
of network topology from time t1 to t2, we define the stability of a
binary network as the number of male–male partnerships (net-
work edges) shared by both time points divided by the number of
partnerships at either time point (i.e., the intersection divided by
the union; Fig. 1A). To avoid bias as a result of rare events, we
filtered the manakin data to include only significant partnerships
in the computation of stability (see Materials and Methods for
details). Using this metric of stability, we found that the manakin
social networks were more stable than expected by chance (Fig.
1A), similar to other social animals (7, 28–30). However, stability
was not constant, because each network fluctuated across a range
of values (mean stability 0.43 ± SD 0.23; repeatability of stability
0, 95% CI 0 to 0.22).
To test how the social structure at t1 might predict subsequent

network stability, we used a mixed-effects modeling framework.
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We found that three properties of the social network could ex-
plain 28% of the variation in stability in the best-fit model: net-
work size (the number of individuals or nodes in the network),
network weight (the average frequency of social interactions), and
network density (the proportion of possible partnerships that ac-
tually occurred, which is a measure of connectivity; Fig. 1 B–D).
Note that network size, weight, and density were all determined
using unfiltered weighted networks (see Materials and Methods for
details). The analysis also accounted for the timing (year and mean
Julian date) when each sample of a network was taken. All else
being equal, when partners within the network interacted more

often (higher weight) and when there were relatively fewer part-
nerships in the network (lower density), the social structure was
more stable over the subsequent weeks (Fig. 2).
The negative association between network density and stability

was unexpected, given that connectedness in a cooperative system
without defection is thought to foster social cohesion (31). To
provide a mechanistic explanation for this result, we built a sim-
ulation model based on the hypothesis that individual behaviors
would drive emergent properties of the system (32, 33). In this
model, the individuals iteratively sought partnerships with each
other at each time step. The model assumed three simple rules
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Fig. 1. The temporal stability of social networks. (A) Examples illustrating the definition of network stability. Two initial manakin social networks are shown
(blue and green), with individuals depicted as nodes and edge thickness weighted by the interaction frequency on a log scale. When the same two networks
were sampled a second time, the edge structure of the blue network remained mostly stable, whereas the structure of the green network had largely
changed. Manakin social networks were more stable than expected by chance, as shown by the fact that nearly all of the observed stabilities in the gray
distribution exceed the 95% confidence interval of the null expectation (vertical black bar). The observed networks also varied in properties such as (B) the
number of individuals in the social network (size), (C) the proportion of possible relationships that occurred (density, a measure of connectivity), and (D) the
average frequency of interactions (weight). In the illustration for network weight, edge thicknesses are also scaled to the average interaction frequency.
(E and F) Scaling of density and weight with network size. (G) Repeatability of network properties ±95% confidence intervals (n = 86 repeated measures, 60
for stability, of 11 lek networks).
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Fig. 2. A model of reciprocity and behavioral heterogeneity predicts network stability. (A and B), As shown in the top row, the stability of the observed social
networks is positively associated with the average frequency of interactions (weight), whereas stability is negatively associated with the relative density of network
connections. These effects were confirmed in an individual-based simulation of reciprocity that combined three behavioral rules: 1) a requirement for reciprocal
partner choice, 2) a preference for previous partners, and 3) repeatable variation among individuals in social behavior. In A and B, Left shows partial residual
scatterplots from the statistical analyses, after accounting for additional covariates (SI Appendix, Tables S1–S3; n = 60 for the observed networks and n = 3,000 for
the simulations). Because the simulation sample sizes are so large, shading is used on the simulation scatterplots to show the 95% central range of data binned
along the x axis instead of plotting individual points. In A and B, Right shows the standardized effect sizes (±95% confidence intervals for the observed networks;
these intervals are also extended with shading for direct comparison with the simulations). The coefficients derived from the individual-based model fall within the
95% confidence intervals of the observed data, unlike the null model (which was a simulation with rules 1 to 3 removed). Note that the 95% confidence intervals for
all simulation effect sizes are not shown because they are narrower than the data points.
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that describe a scenario of reciprocity (24) with among-individual
heterogeneity (32, 34): 1) social partnerships are formed through
reciprocal partner choice, wherein both individuals must choose
each other; 2) individuals prefer social partners with whom they
have previously interacted (35); and 3) there are consistent among-
individual differences in the expression of social behavior. This
third assumption of among-individual behavioral heterogeneity (or
individual-level repeatability) is ubiquitous in human and animal
behavior (34) and has been shown to influence collective perfor-
mance (36) and the evolution of cooperation (37, 38). It is im-
portant to note that our simulation model made no assumptions as
to the source of this repeatable among-individual heterogeneity
(which could be caused by genetic, environmental, age-related,
or other factors). We ran this simulation on 3,000 initial networks
that were generated de novo to represent a broad range of network
sizes, weights, and densities, and we used these initial networks to
parameterize rules 2 and 3. We then allowed the individual nodes
to repeatedly interact with each other. Finally, we computed the
stability of each simulation run, by comparing the initial structure
to the one that resulted from the newly simulated interactions.
Similar to the manakin data, we found that networks with a

relatively high frequency of cooperation (high weight) but sparse
connectivity (low density) were more stable (Fig. 2). Hence, the
simple model of reciprocity plus heterogeneity was sufficient to
recreate the dynamics observed in the empirical networks. More-
over, we found that the null model simulations that lacked all three
assumptions (1 to 3) or that included only assumption 1, 2, or 3
alone were insufficient to generate the empirical patterns of sta-
bility. In null models that lacked reciprocity, denser networks were
also consistently more stable, making the negative effect observed
in the empirical data particularly striking (Fig. 2B). Overall, our
findings indicate that both behavioral processes, reciprocity and
heterogeneity, are necessary to recreate the weight and density

effects on network stability. Finally, we found that the larger
simulated networks with more individuals were also significantly
less stable, independent of network weight and density. This effect
of network size was also consistent with the manakin data (al-
though in the empirical analysis, it was not quite statistically sig-
nificant; SI Appendix, Table S3).
Why are some social partnerships able to persist through time

(7, 18, 29, 30)? To understand how social structure might influence
the fidelity of particular bonds over longer timescales, we analyzed
the annual persistence of 669 manakin partnerships from one
season to the next (Fig. 3 A and B). In this analysis, a partnership
was defined as two males who interacted on a display territory at
least once in a given season. Annual persistence was defined as
that partnership recurring at a significant rate the following year
(see Materials and Methods for details). The analysis accounted for
the identities of the partners, the year, the lek where the part-
nership occurred, and other factors including the spatial overlap of
the individuals. Two features predominantly explained the varia-
tion in partnership persistence: the interaction frequency (edge
weight) and the local social density (edge connectivity, which
quantifies the number of alternative paths that can connect two
partners in a social network). Specifically, a partnership was more
likely to persist if the two individuals interacted more frequently
but had lower connectivity in their social neighborhood. These
results are consistent with the phenomena observed at the network
level over shorter weekly timescales (Fig. 2). Moreover, we found
that the simulation of reciprocity and heterogeneity could also
recreate the empirical results found for partnership persistence
(Fig. 3 C and D).
These negative effects of overall network connectivity suggest

that social stability is governed by a fundamental trade-off between
the quantity and quality of social partnerships. Contrary to the
trade-off hypothesis, however, the manakins with more partners
(i.e., those with higher average degree centrality) formed coalitions
that were more likely to persist through time (Fig. 4A). This ap-
parent paradox is resolved by partitioning the variation among and
within individuals (Fig. 4 B and C). Among individuals, the males
who were more connected were better able to maintain their
partnerships (Fig. 4B). However, when a given male had more
partners than his average, he was less able to maintain them (Fig.
4C). Thus, each individual may have a different threshold for the
number of stable coalition partnerships he is able to maintain. This
explains why densely connected social networks are less stable
(Fig. 2), even though well-connected individuals are better at
maintaining partnerships (Fig. 4 A and B). In wire-tailed manakins,
the proximate causes of this among-individual heterogeneity are
not yet well understood (39) but could include a male’s quality,
age, and social experience and/or his compatibility with the other
males on his lek.
How might the magnitude of behavioral heterogeneity influ-

ence the stability of cooperative networks (36)? Our simulation
model provided an opportunity to begin exploring this question.
To measure heterogeneity, we computed the coefficient of var-
iation in degree centrality (CVdegree) in each of the initial net-
works; higher values indicate greater behavioral heterogeneity in
the system (40). We found that CVdegree had a significant posi-
tive effect on subsequent network stability (Fig. 4D), demon-
strating that individual variation in sociality can foster stable
social networks. This is similar to the way some ecological sys-
tems are affected by heterogeneity (e.g., CV of connectedness
[degree] and edge weights) (40, 41). In social systems, behavioral
heterogeneity can also include suites of correlated traits such as
dispersal, risk-taking, and cognitive ability, in addition to varia-
tion in sociality (20, 34, 42). Further study is needed to un-
derstand how this covariation influences social network stability
and the evolution of complex social behavior (33).
In summary, we find that social interactions can have opposing

effects on the stability of cooperative systems. On the one hand,

P
ro

ba
bi

lit
y 

of
 a

nn
ua

l p
ar

tn
er

sh
ip

 p
er

si
st

en
ce

A B

C D

Edge weight (log) Edge connectivity (log)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0
0.0

0.2

0.4

0.6

0.8

1.0 Individual-based
model

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.0 2.0 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Social structure predicts the long-term persistence of social partner-
ships. (A and B) The probability that a partnership persisted across years was
greater when the two partners interacted at a higher frequency (edge weight)
but had fewer alternate paths connecting them in the social network (edge
connectivity). Data points show how edge weight and connectivity (x axes)
determine the predicted probability of partnership persistence (y axis) in a
multiple-membership analysis (n = 669 partnerships among 91 individuals).
(C and D) The influence of edge weight and connectivity is also found in the
individual-based model of reciprocity described in Fig. 2. Shaded areas in C and
D show the 95% central range for partial residuals binned along the x axis.
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the stability of the social network is enhanced by increasing the
interaction frequency among a small number of partnerships.
However, when individuals become too broadly connected, the
social network can be destabilized. This is because individuals
are constrained in their ability to reciprocate a large number of
social partnerships. Our results also highlight the fact that
among-individual heterogeneity can easily mask this behavioral
trade-off (34). Hence, these results emphasize the importance of
longitudinal data that captures multilevel variation, within and
among individuals.
Can these principles be applied to other systems? Although

social network stability has not yet been analyzed in humans at a
broad scale, this is an important next step, given that globaliza-
tion and social media use have rapidly increased the breadth of
human social connectivity (6, 43). Our model provides one po-
tential explanation for how these novel behavioral interaction
patterns could have a destabilizing effect on human social struc-
ture. Another important question is how much topological changes
in these networks affect other dynamics, such as the spread of
emotions, cultural evolution, and disease transmission. Although
our study focused on one type of cooperative system, many other
social networks are formed as a result of competitive, aggressive,
mating, and information-sharing interactions (20). As a unifying
framework, we propose that social stability in these other contexts
will also be determined by the simple behavioral processes that
generate heterogeneity, partner preferences, and the symmetry of
partner choice.

Materials and Methods
Field Methods.Observed social networks were based on a study of wire-tailed
manakins, P. filicauda, at the Tiputini Biodiversity Station in Ecuador (0° 38′ S,
76° 08′ W, 200 m elevation). Male wire-tailed manakins perform cooperative
courtship displays at exploded leks, where males are in acoustic but not visual
contact (44). The population at Tiputini has been monitored since 2002 to
study the fitness benefits of cooperative behavior (22, 23). The present study
spanned three field seasons (December to March) in 2015 to 2016, 2016 to
2017, and 2017 to 2018 and used an automated proximity data-logging sys-
tem to record cooperative interactions among males (25, 26). Manakins were
captured using mist nets, and each male was outfitted with unique color
bands and a coded nanotag transmitter (NTQB-2, Lotek Wireless; 0.35 g). To
record the social network at a given lek, proximity data-loggers (SRX-DL800,
Lotek Wireless) were deployed in each territory to record all tag detections
within the territory from 06:00 to 16:00 for ∼6 consecutive days (±SD 1 d),
which composed a single recording session (26, 39). Territory ownership was
assigned using direct observation of color-banded males at the display sites

(22) and was subsequently verified in the proximity data. Sample sizes were
not predetermined because our aim was to track all individuals within the
studied leks (39). In the absence of a formal mark–recapture protocol, we
examined the percentage of territory holders tagged as an indication of how
well our sample covered the known population (95, 95, and 92% for the three
respective field seasons). All animal research was approved by the Smithsonian
Animal Care and Use Committee (protocols 12-23, 14-25, and 17-11) and the
Ecuadorean Ministry of the Environment (MAE-DNB-CM-2015-0008).

Data Processing. All data processing and statistical analyses were performed
in R 3.5.1 (45) and are available at Figshare, https://doi.org/10.6084/m9.
figshare.8345675.v1 (46). Male–male cooperative interactions on the display
territories were determined using spatiotemporal overlap of tag detections
in the proximity data (26). Specifically, a social interaction was defined as a
joint detection of two males within ∼5 m on a territory during the breeding
season (26). This spatial range corresponds to the visual and acoustic contact
required for a typical display interaction in this species (22, 47). Because the
social interactions were measured using an automated system, the networks
were constructed blind to the sociality of particular individuals and/or leks. A
previous validation study conducted in 2012 (25) confirmed that the social
interactions defined by this automated system corresponded to direct ob-
servations of male–male display partnerships. We used the social interaction
data to build undirected weighted social networks for each lek recording
session, with each node representing a male and the edges weighted by the
frequency of social interactions summed over a recording session (approxi-
mately 6 d, defined above). In total, we characterized 86 repeated measures
of the social networks at 11 leks (mean 7.8 sessions per lek, ±SD 3.7) from
29,760 sampling session hours and 36,885 unique social interactions among
180 individuals. We used a clustering analyses in the igraph package (48, 49)
to verify that our sampling design was well matched to the inherent social
structure of the population (SI Appendix, Fig. S1).

Network Stability. The stability of social network topology is determined by
both the gain and loss of associations over time. We therefore defined a
bidirectional metric of social network stability for binary (unweighted)
networks that compares two repeated measurements of the network, N, at
times t1 and t2. The stability of N over the period t1 ↔ t2 is defined as the
number of social partnerships (i.e., edges) shared by N1 and N2 (i.e., inter-
section ∩), divided by the total number of unique edge connections in either
N1 or N2 (i.e., union ∪). Using E to represent network edges, stability is thus
defined by the following formula:

Stability =
ðE1∩E2Þ
ðE1 ∪ E2Þ.

This metric can range from 0 (unstable) to 1 (highly stable). Note that this
definition would not apply to complete (fully connected) networks. In most
social networks, individuals (or nodes) can also be gained or lost over time,
which alters the set of possible interactions that could occur. To ensure that

A B C D

Fig. 4. Behavioral heterogeneity and social stability. (A) The males who consistently interacted with more partners per day (high average daily degree, x axis)
promoted long-term coalition persistence (y axis; n = 90 individuals; ±95% confidence interval of the prediction line). (B and C) However, a trade-off is
revealed when examining repeated measures within individuals. The plots in B and C show an analysis of within-season partnership maintenance (n = 565
repeated measures of 152 individuals). Despite the positive among-individual effect shown in B, at times when a given male had more partners than his
average in C, he was less able to maintain stable partnerships. To visualize among- and within-individual variation, a single average is plotted for each male in
B (±SE if a male had more than three measurements), whereas a separate linear fit is shown for individuals with more than three measurements in C. (D) In a
simulation model, social networks with greater among-individual behavioral heterogeneity (CVdegree) were also more temporally stable. The y axis shows
partial residuals from an analysis that also accounts for the effects of network size, weight, and density (n = 3,000). Shading indicates the 95% central range
for partial residuals binned along the x axis.
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our measure of social network stability was based on edges that could have
occurred at both time points, only individuals who were present at both
t1 and t2 were included in the calculation (50). Therefore, this definition cap-
tures the stability of relationships among individuals who remained in the
network over two consecutive time steps (50). Furthermore, to ensure that
the stability metric was not biased by rare interactions (51), we also fil-
tered the stability calculation to be based on binary networks that in-
cluded only edges that met two criteria in the empirical data: 1) a
significant edge had to occur more often than its own average occurrence
in 1,000 random permutations of the interaction data and 2) it had to
occur at least six times during the recording session (i.e., on average, about
once per day). The second criterion ensured that rare interactions were not
easily deemed significant. The value of six was chosen to correspond to the
average number of days in each recording sessions, but we also verified
that other thresholds greater than two did not influence our results. Fi-
nally, we verified that all of the results were also unchanged when using
only the second (absolute) criterion.

The average stability score for the manakin networks was 0.43 (±SD 0.23,
n = 60 networks at 11 leks). Note that the sample size of 60 is smaller than
the total number of recording sessions because the stability dataset is lim-
ited to networks that were also sampled at t2 within the same season. The
observed networks were also more stable than expected by chance (paired
t test, t = 12.08, P < 0.0001), as determined by random network rewiring
(100 edge permutations for each of the 60 measurements; grand mean null
expected stability 0.07 ± SD 0.05).

Network-Level Analyses. Network size, connectivity, and structure can all
influence the dynamics and stability of diverse network types (40, 41).
Therefore, to determine how network-level properties at t1 predict sub-
sequent social network stability, we fit mixed-effects regression models us-
ing the package lme4 (52) (n = 60 networks at 11 leks). The analysis included
lek identity as a random effect, and to account for potential temporal
trends, we also included field season (categorial) and mean Julian date of
the network (continuous) as two fixed effects. Mean Julian date for a net-
work was calculated as the average date of all of the social interactions that
occurred within that network. We considered five network properties that
have been shown to influence network dynamics in other contexts (40, 41) as
additional fixed effects: 1) network weight is a measure of the average re-
lationship frequency, calculated as the mean of the log-transformed edge
weights; 2) network density is a measure of the breadth of connectivity,
calculated as the proportion of relationships that actually occurred relative
to a completely connected network; 3) clustering coefficient, or network
transitivity, is an alternative measure of connectivity that is often important
in social networks (53) and that describes the probability that a given indi-
vidual/node’s social partners are also connected; and 4) network modularity
is yet another measure of connectivity that describes how well the network
can be subdivided into separate communities using the random-walk algo-
rithm (48, 49). To account for the fact that these network-level properties
often scale with network size (32, 54) (Fig. 1 E–G), we also included 5) the
log-transformed number of individuals/nodes in the social network as an
additional predictor. Note that unlike the calculation of network stability in
the previous section, all five of these network properties were computed
from unfiltered network data.

Because density, transitivity, and modularity were all similar measures of
network connectivity and because the sample size of 60 is not enough to
reasonably estimate more than five or six fixed effects at a time, we used a
model selection procedure to compare candidate models that included field
season, date, network size, and at most two of the other network properties.
Given that network weight, density, and clustering coefficient were all
correlated measures of connectivity, each model could include at most one of
those parameters. We also considered a null model that included none of
properties 1 to 4. Complete details are provided in SI Appendix, Tables S1 and
S2. Finally, we evaluated whether network stability was influenced by two
logistical factors: first, sampling effort, and second, a testosterone manipu-
lation experiment that was conducted for a separate study in 2016 to 2017
and 2017 to 2018 (n = 9 individuals out of 180 that were implanted with
testosterone (39)). To verify that these two logistical factors did not in-
fluence our results, we added additional fixed effects for the number of
recording hours (median 75, mean 73 ± SD 10) and/or the number of
hormone-manipulated individuals in a given network (median 0, mean
0.10 ± SD 0.41), neither of which had a significant effect on network stability
(all P > 0.43). We also verified that all of the conclusions of the network-level
analysis were unchanged when accounting for either or both of these covariates.
To determine the repeatability of network properties of the leks, we calculated
the proportion of total variation that was due to differences among the leks

using mixed-effects models with lek as the random effect and field season and
Julian date as fixed effects (52, 55).

Edge-Level Analysis. The edge-level analysis examined the persistence of
manakin social partnerships on an annual timescale. This analysis considered
669 dyadic partnerships among 91 individuals wherein both individuals in the
partnershipwere also present and tagged in the subsequent breeding season.
A partnership was defined as two males who had interacted on a display
territory at least once. The binary response variable, partnership persistence,
was defined as whether a partnership was sustained and significant in the
subsequent breeding season (using the criteria for significance defined above
in Network Stability). Because both individuals in a social partnership can
contribute to its fate and because they both had other partnerships in the
dataset, we modeled persistence using a multiple-membership structure in a
binomial mixed-effects regression model, fit with the brms package (56).
This method can be used to account for multiple partner identities within a
single random effect (26, 56–58). In our analysis, the two identities were
weighted equally because we assumed they could both determine part-
nership persistence. An additional random effect was included to account
for the lek where each partnership occurred. The analysis also included fixed
effects to account for the initial field season (categorical), the territorial
status of the pair (categorical; either two territory holders, a territory holder
plus a floater, or two floaters (22)), the sampling effort at that lek in both
the initial and the subsequent field season, and the initial spatial overlap of
the pair, which can influence the probability of interaction (29). Because
manakins use discrete display territories, we defined the spatial overlap of
two males as the log-inverse of the χ2 statistic comparing their distributions
of territory detections (pings) in the proximity data; larger values of this
metric indicate greater spatial overlap.

Based on the results of the network-level analysis, we sought to test
whether edge-level network properties would predict partnership persistence.
Thus, we also included the following fixed effects: 1) edge weight, or the log-
transformed social interaction frequency; 2) edge betweenness, a measure of
social centrality, defined as the log-transformed number of shortest paths
passing through that edge; and 3) edge connectivity, a measure of social
density, defined as the minimum number of edges that must be removed to
eliminate all paths between the two individuals/nodes in a partnership (49).
Given that this edge-level analysis was performed after the network-level
results were known, edge weight and edge connectivity were both in-
cluded because they are edge-level equivalents of the two important pre-
dictors that were already discovered at the network level (i.e., network
weight and network density, respectively). In contrast, edge betweenness
captures a different property: a relationship with a high edge betweenness is
one that links individuals from two disparate communities. If partnership
maintenance is enhanced when both individuals have strong links to the same
local community, we expect a negative relationship between edge be-
tweenness and persistence. Alternatively, if individuals place particular value
on long-range ties, partnership persistence might be positively related to
betweenness. We ran four independently seeded chains with default priors,
storing 2,000 samples from each chain and verifying that the convergence
statistics were all equal to 1 (56) (SI Appendix, Table S4).

Among-Individual Analysis. To test whether partnership persistence could be
attributed to behavioral differences among individual manakins, we refit the
analysis described above but without accounting for effects 1 to 3 listed
above. The random intercepts from thismodel provide an estimate of among-
individual variation in social stability (26, 55). We hypothesized that the
following behavioral phenotypes (26) could affect this trait: 1) a male’s av-
erage daily effort, measured using his log-transformed count of detections
(pings) on the leks; 2) his average daily strength, using his log-transformed
sum of interaction frequencies; 3) his average daily degree, using his log-
transformed number of social partnerships; and 4) his average daily social
importance, defined as the exclusivity of his partnerships (see the previous
protocol (26) for additional details). Because these four phenotypes were
also correlated (26, 39), we compared six candidate regression models, four
of which included only one behavioral phenotype, one of which included all
four phenotypes, and one of which included no behavioral phenotypes (n =
91 individuals; SI Appendix, Table S5). All candidate models included a
male’s status as either a territory holder or floater.

Quantity–Quality Trade-Off Analysis. We next sought to test the hypothesis
that individuals in a network face a trade-off between the quantity (number
of partners) and stability of their social partnerships. Because among-
individual variance can mask trade-offs that occur within individuals (59),
testing this hypothesis requires a variance-partitioning approach. To achieve
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this, we defined repeated measures of individual partnership maintenance
as the proportion of a male’s coalition partners that were maintained from a
given recording session to the next recording session (n = 565 repeated
measures of 152 individuals). Similar to our other analyses, a partnership was
defined as two males having at least one interaction during a recording
session. Note that a male had to be present, tagged, detected, and not part
of the hormone manipulation experiment in both the initial and subsequent
recording sessions to be included in this sample. We used within-group
centering to partition the variation in the predictor variable, degree cen-
trality, within and among individuals (60). The first step was to determine
log-transformed degree for each male in each recording session; next, we
took a single average degree value per male; and finally, we calculated
relative degree in each recording session as a male’s log-transformed degree
minus his overall average. Thus, average and relative degree represent two
orthogonal predictors that can be analyzed within the same regression
model. The analysis was fit as a binomial mixed-effects model in lme4 (52)
with a random effect of individual identity, and it also included two cate-
gorical fixed effects to account for field season and territorial status, as well
as a continuous fixed effect to account for sampling effort (SI Appendix,
Table S6).

To evaluate what would be expected in this analysis by chance alone in
artificial random networks, we repeated the analysis using randomly per-
muted manakin network data. To do this, we used permutations of the
manakin data wherein each lek social network was randomly rewired using
the igraph function rewire, with the each_edge function set to a probabil-
ity of 1 (49). This procedure randomly rewires all edges of the network si-
multaneously. It does not preserve the original degree distribution, but
rather it creates an artificial network that has the same number of edges
randomly redistributed throughout the network. We generated 1,000 of
these randomized datasets and then performed the same repeated-
measures analysis that was applied to the observed data. We averaged
the results across all 1,000 randomized analyses to derive the null expecta-
tion shown in SI Appendix, Fig. S2.

Individual-Based Simulation Models. To provide a mechanistic explanation for
how individual behavior scales up to influence social network stability, we
developed a simple individual-based simulation model. The model was based
on the general principles of social reciprocity (24) and among-individual
behavioral heterogeneity. There were three core assumptions: 1) individ-
uals had to actively choose each other in order to form a partnership; 2) each
individual had a ranked set of preferences for social partners, predicted only
by its previous social interaction frequencies in the initial network; and 3)
individuals expressed consistent differences in their social behavior (i.e., a
behavioral phenotype that is repeatable within an individual). The second
rule (rule 2) is supported by strong evidence that social relationships are
nonrandom and persist over long timescales in human and nonhuman ani-
mals (7, 29). Together, rules 1 and 2 also represent a form of reciprocal al-
truism (24) because prior interactions increase the probability that a partner
will be rechosen. Rule 3 represents a phenomenon that is often referred to
as among-individual variation, heterogeneity, or personality; it has empirical
support across vertebrates (34), including in manakins (26).

To experimentally test the effects of network size, weight, and density on
network stability, we generated 3,000 initial networkswith diverse properties
that were within the range of the observed data. Network size was first
chosen from the range of 11 to 20 individuals or nodes (10 size bins). To

manipulate network density along the same range observed in the manakin
data, we first generated completely connected networks and then randomly
removed edges until a target initial density was achieved (targets ranging
from 0.2 to 0.8, for a total of 20 target density bins). To generate a broad
range of initial network weights, each edge weight was first sampled from
the manakin data and then multiplied by a weight constant ranging from 0.2
to 2.0 (15 weight factor bins). The resulting edge weights were then rounded
up, to a maximum of 500. We generated 3,000 networks with all possible
combinations of these network properties (10 × 15 × 20 = 3,000).

The simulation proceeded as follows. First, to satisfy rule 2, we assigned a
set of preferences to each node based on that node’s partnerships in the
initial starting network. The set of preferences included all other nodes,
ranked by interaction frequency with the focal node in the initial network.
Hence, the probability of choice was correlated with initial interaction fre-
quency. To satisfy rule 3, each node was also allotted a specific number of
interaction attempts per time step (ranging from 1 to 4). This number was
calculated by log-transforming the strength of the focal node in the initial
network (also referred to as weighted degree) to obtain its behavioral
phenotype; higher values meant that a node could attempt more social in-
teractions per unit time. To satisfy rule 1, a partnership was only formed if
both nodes chose each other within a given time step. The simulation ran
over five time steps, and the final network was determined by summing the
new interactions that occurred (SI Appendix, Fig. S3). No filtering was ap-
plied to calculate network stability in the simulation. Note that for simplicity,
the preference ranks were not updated during the time steps that occurred
within the simulation.

For the null model, we followed the same procedures above, except that
each individual’s partner choice probabilities were assigned randomly to the
set of all other nodes, the number of attempted interactions per time step
was fixed across individuals, and reciprocal partner choice was not required
for partnership formation in the null model (i.e., assumptions 2, 3, and 1
were removed). We also tested models with either 1, 2, or 3 alone. After
running the simulations, we used linear models to statistically analyze the
variation in network stability and examine the three predictors of interest
from SI Appendix, Table S2: network size, weight, and density. To compare
the results of this analysis with the statistical estimates derived from the
observed data, all predictors and response variables were standardized to
have a mean of 0 and SD of 1 (SI Appendix, Table S3). To test whether the
simulation model of reciprocity and heterogeneity could also explain our
edge-level analysis, we used a binomial mixed-effects regression of edge
persistence in the simulation, with the identity of the initial network as a
random effect and edge weight and edge connectivity as the predictors.

We chose five as the number of time steps in these simulations to corre-
spond to a period of about 5 d of behavioral activity. To verify that the results
of the simulation model would be robust to alternative time parameters, we
also repeated these analyses using simulations with either 3 or 10 time steps
instead. In each case, we reached the same conclusions with nearly identical
effect sizes for network size, weight, and density (SI Appendix, Table S3).
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