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The idea that simplicity of explanation is important in science is as old as science 
itself. However, scientists often assume that parsimonious theories, hypothesis and 
models are more plausible than complex ones, forgetting that there is no empirical 
evidence to connect parsimony with credibility. The justification for the parsimony 
principle is strongly dependent on philosophical and statistical inference. Parsimony 
may have a true epistemic value in the evaluation of correlative and predictive models, 
as simpler models are less prone to overfitting. However, when natural mechanisms are 
explicitly modelled to represent the causes of biological phenomena, the application 
of the parsimony principle to judge the plausibility of mechanistic models would 
entail an unsupported belief that nature is simple. Here, we discuss the challenges 
we face in justifying, measuring, and assessing the trade-off between simplicity and 
complexity in ecological and evolutionary studies. We conclude that invoking the 
parsimony principle in ecology and evolution is particularly important in model-
building programs in which models are viewed primarily as an operational tool to 
make predictions (an instrumentalist view) and in which data play a prominent role 
in deciding the structure of the model. However, theoretical advances in ecology and 
evolutionary biology may be derailed by the use of the parsimony principle to judge 
explanatory mechanistic models that are designed to understand complex natural 
phenomena. We advocate a parsimonious use of the parsimony principle.

Keywords: parsimony principle, statistical inference, Ockham’s razor, correlative 
models, mechanistic models

Introduction

The idea that simple (parsimonious) theories are important in science is as old as 
science itself. It is difficult to disagree that simple theories, hypothesis and models 
are elegant, easy to understand and to remember. However, rooted in the parsimony 
principle, scientists often assume that simple theories, hypothesis and models are more 
plausible or reliable, although there is no empirical evidence to connect simplicity 
with credibility (Quine 1963). For example, in the quest to understand the causes 
of complex biodiversity patterns, such as spatial diversity gradients, ecologists and 

A parsimonious view of the parsimony principle in ecology and 
evolution

Marco Túlio P. Coelho, José Alexandre Diniz-Filho and Thiago F. Rangel

M. T. P. Coelho (http://orcid.org/0000-0002-7831-3053) (marcotpcoelho@gmail.com), J. A. Diniz-Filho and T. F. Rangel, Depto de Ecologia, Univ. 
Federal de Goiás, Goiânia, Goiás, Brazil. MTPC also at: Dept of Human Dimensions of Natural Resources, Colorado State Univ., Fort Collins, CO, USA.

Forum



2

evolutionary biologists study how multiple processes, inter-
acting over space and time, produce complex biological 
phenomena across all scales (Wiens and Donoghue 2004, 
Rangel et al. 2007, 2018, Warren et al. 2014, Rosindell et al. 
2015, Connolly 2017, Coelho et al. 2018). However, even 
acknowledging that biodiversity patterns are immensely 
complex, and that disentangling their causes is an extremely 
challenging endeavor (Vellend 2010), simplicity has always 
had a special role in the judgment of ecological and evolu-
tionary theories (Marquet et al. 2014), hypothesis (Hilborn 
and Stearns 1982) and models (Holling 1966, Evans et al. 
2013, Houlahan et al. 2017). Yet, little discussion is found 
in ecology and evolution about how to justify, measure and 
trade-off simplicity.

The ecological and biogeographical phenomena (e.g. 
uneven distribution of species over space) do not provide 
universal opportunity for experimental research. Thus, 
ecologists and evolutionary biologists are usually limited to 
observational studies, in which curve-fitting techniques are 
employed to measure the statistical correspondence between 
observed biological patterns and suspected causal factors. In 
many cases, the main interest is to elect the most plausible 
model that fits to the data in hand, as the mathematical rep-
resentation of a theory or hypothesis (Box 1). If goodness-of-
fit was the only criterion to judge the plausibility of models, 
a complex model that best fits to the data would be assumed 

as the most plausible. However, parsimony is also viewed as 
valuable criterion to evaluate the plausibility of alternative 
models (Box 1). The main question that emerges from our 
scientific practice is whether/how parsimony can be used 
to understand natural processes. Although simple theories, 
hypothesis and models often strike us as beautiful and easier 
to understand (Quine 1963, Keuzenkamp et al. 2004), our 
psychological comfort when dealing with simpler explana-
tions for complex phenomena is not a valid epistemic justi-
fication for its general use as a criterion to judge reliability 
(Pearl 1978, Sober 1981, 2015). For centuries scientists and 
philosophers have been struggling to find epistemic justifi-
cations for the parsimony principle, but no consensus has 
arisen yet. In this paper, we show that ecology and evolu-
tionary biology employ different justifications for the role 
of parsimony in alternative inferential frameworks, such as 
frequentist, Bayesian, likelihood and multi-model inference. 
We also provide a historical perspective to the parsimony 
principle, discussing its role in predicting versus explain-
ing nature, and its application to evaluate correlative and 
mechanistic models. We show that 1) there is an instrumen-
tal value in the use of parsimony to judge models that are 
designed for predictive purposes, but 2) the application of 
the parsimony principle to evaluate explanatory models is 
counterproductive, as it may prevent the elucidation of truly 
complex phenomena.

Box 1. The curve-fitting problem

Since Laplace and Gauss, curve-fitting is one of the most uni-
versal methodologies employed in scientific research (Mulaiktt 
2001). Given the observations made during an experimental (or 
observational) study of the correspondence between a predictor 
(x) and a response variable (y), an infinite number of hypotheses 
(curves, Fig. 1) can be proposed to summarize and explain the 
relationship between the variables (Fig. 1). However, praxis is the 
choosing of only one hypothesis, based on an arbitrary balance 
between the criteria of goodness-of-fit and simplicity. The curve 
that best describes the data is always the one that comes closest to 
the largest number of observations, therefore the best-fit curve. 
Thus, if goodness-of-fit was the only criteria, one would have 
to choose the curve that connects all data points (dashed curve, 
Fig. 1). However, the geometric irregularity of the best-fitting 
curve indicates the mathematical complexity of the hypothesis, 
which is thus considered not parsimonious. Conversely, the sim-
plest hypothesis is a straight line (red line, Fig. 1), which is far 
more regular but fails to account for all the available informa-
tion about the relationship between the variables. Thus, the sim-
plicity criterion is used as a counterweight to the goodness-of-fit 
criterion, and vice-versa. However, there are infinite alternatives 
between the simplest and best-fit curves (e.g. blue curve, Fig. 1). 
The use of simplicity as an additional criterion to select the most 
plausible hypothesis creates the philosophical problem of how to 
measure and justify the criterion. Because simplicity is so loosely 
defined and justified, the final choice is based on an arbitrary 
evaluation of how well the line fits the observation and how sim-
ple it personally feels to the scientist.

x

y

Which line is the most plausible
given the observations ? 

Figure 1. The curve-fitting problem. The choice of the most plausible 
hypothesis is based on an arbitrary balance between goodness-of-fit and 
simplicity criteria. The red curve is the simplest, indicating a linear 
relationship between the two variables, but also the worst-fit. The dashed 
line is the most complex, but also the best-fit. The blue line is just one of 
the infinite possible balances between the best-fit and simplest 
hypotheses.



3

Historical perspectives of the parsimony principle

Traditionally, most of the slogans used to discuss simplicity 
are found in William of Ockham’s (1285–1348) writings such 
as ‘It is futile to do with more what can be done with fewer’, 
or ‘plurality should not be posited without necessity’ (Brown 
1950, Sober 2015). Not surprisingly, the Ockham’s razor cri-
teria for judging competitive theories, hypothesis and models 
is one of the most popular names for the parsimony prin-
ciple. However, the origins of the parsimony principle can be 
traced back at least to Aristotle, whom invoked the principle 
in many of his writings (Brown 1950, Keuzenkamp  et  al. 
2004). Until the 20th century many philosophers and scien-
tists believed that Ockham’s razor was epistemically relevant 
because simplicity was assumed to be a true feature of nature 
(e.g. Descartes, Leibniz, Newton and Kant; Sober 2015). 
Some of them proposed theistic justifications for the parsi-
mony principle (Descartes, Leibniz, Newton), arguing that 
the Abrahamic God had created a simple world, with simple 
rules (Sober 1981, 2015), and that understanding nature 
was equivalent of understanding the mind of God. Thus, the 
assumption of a simple nature would be a sufficient epistemic 
justification for the parsimony principle in science. However, 
other philosophers (e.g. Hume, Mill, Morgan) painted a dif-
ferent picture of parsimony. In their perspective, parsimony 
is viewed as necessary to make predictions about the world, 
without any assumption or assurance that nature is indeed 
simple (Sober 2015). Thus, parsimony would have an opera-
tional and methodological justification for scientific research, 
without any assertion of how nature works.

The rise of modern statistics in the 20th century trans-
formed science into a data-driven investigation of natural 
phenomena, reducing the emphasis of narrative accounts and 
description/categorization of observables. However, modern 
statistics gave rise to many alternative inferential strategies, 
which differ not only methodologically, but also epistemo-
logically. The epistemological distinction of alternative infer-
ential strategies of modern statistics unchained the concept 
of plausibility from parsimony, therefore creating multiple 
directions in the search for a conceptual justification of the 
parsimony principle.

The parsimony principle in alternative frameworks of 
statistical inference

The most common use of Fisher’s significance test is the 
assumption of a parsimonious null hypothesis as a prem-
ise (default position). In critical tests of this kind the null 
hypothesis invokes the least possible complexity by assum-
ing the absence of relationship, association or effect among 
measured phenomena. Thus, the goal of the analysis is to esti-
mate the degree of compatibility between the observed data 
and the scenario in which the null hypothesis is assumed to 
be true (Sokal and Rohlf 1981, Efron and Tibshirani 1994). 
The null hypothesis may only be rejected if the observed 
data is substantially (i.e. ‘significantly’) different from the 

expectation of the parsimonious null scenario. Because Fisher 
is also the proponent of the much flexible likelihood theory, 
it is arguable that he proposed the test of the null hypothesis 
for its mathematical convenience in analysis of experimental 
results, in which the experimental manipulation (i.e. treat-
ment) is assumed to produce no effect. In addition, it is easier 
to derive the probability distribution of the clearly defined 
null hypothesis, as opposed to the infinite alternative hypoth-
eses in which experimental treatment would promote some 
undefined degree of effect. Thus, the parsimony of the null 
hypothesis is a methodological strategy, rather than a state-
ment about the reality of nature.

Parsimony also plays a prominent role in the compari-
son of models within the framework of model selection and 
multi-model inference (Burnham and Anderson 2001, 2002). 
Some information criteria (i.e. Akaike information crite-
rion – AIC, corrected Akaike information criterion – AICc, 
kernel-based information criterion – KIC and empirical 
information criterion – EIC) are designed to asymptotically 
maximize the expected relative predictive accuracy of models 
(i.e. the ability to fit future data, Aho et al. 2014). Notably, 
the AIC have been widely used in ecological and evolution-
ary research in the last decade (MacNally et al. 2018). The 
simplicity criterion is mathematically relevant to access the 
relative predictive accuracy of models because very complex 
models tend to have poor predictive power (i.e. the curse of 
dimensionality; Burnham and Anderson 2001, Sober 2002, 
2004a, b, Hastie et al. 2009, James et al. 2013). Because com-
plex models tend to over-fit the data, therefore confounding 
noise with signal, AIC may be used to penalize model com-
plexity to identify the best balance between goodness-of-fit 
and simplicity. Thus, parsimony has a justifiable epistemic 
value to gauge the relative predictive accuracy of a model. 
However, model selection does not downgrade complex mod-
els because they are less plausible than simpler models, but 
because they are often a poor choice for prediction of future 
data. In addition, model selection does not provide absolute 
estimates of predictive accuracy, but only a relative measure 
given the alternative models under consideration. Although 
model selection with AIC became a popular inferential strat-
egy in ecology and evolutionary biology (MacNally  et  al. 
2018), few models are designed for predictive purposes, as 
prediction is traditionally not a frequent goal in those sci-
ences (Houlahan et al. 2017).

Some theoretical, simulation and applied studies have 
shown that AIC is not as parsimonious as once believed. 
Because AIC is designed to avoid underfitting errors (i.e. 
potential omissions of processes that do influence the phe-
nomena under study), it becomes prone to overfitting errors 
(i.e. overrating models that include processes that do not 
influence the phenomena) (Taper 2004). However, there are 
more parsimonious alternative information criteria, which 
seek to avoid overfitting errors by accepting a higher rate of 
underfitting errors. For example, consistent AIC (CAIC), 
Bayesian information criterion (BIC), Hannan–Quinn infor-
mation (HQC) and many others, can asymptotically identify 



4

the model that is closest to the true generating process, given 
a set of candidate models. As a result, this group of informa-
tion criteria tend to select compact models, composed mostly 
of processes with strong influence in the phenomena under 
study, but potentially missing processes with minor effects.

In contrast with information theoretical approach, 
Bayesians aim to estimate the probability of different theories, 
given the available evidence and current knowledge (Ellison 
2004), as they equate probability of a theory with its degree 
of plausibility. Thus, their concept of probability is a measure 
of credibility, certainty or belief (Horwich 1982, Hilborn and 
Mangel 1997, Hacking 2001, Ellison 2004). The Bayes theo-
rem is used as a model for the learning process, indicating 
how scientists should update their knowledge in the light of 
new evidence. Thus, with the Bayes theorem one can iden-
tify the most probable theory, hypothesis or model, given the 
alternatives. However, parsimony does not play any role in 
traditional Bayesian estimation of the probability of a theory, 
as the simplicity of the theory does not increase its probabil-
ity (Sober 2015).

Although parsimony is not a core principle of Bayesian 
inference, Jeffrey’s postulate of simplicity suggests that when 
multiple alternative hypotheses are confronted, simple theo-
ries should be given higher prior probability (i.e. the degree 
of justified belief of a researcher in a hypothesis before new 
evidence of the studied phenomenon is uncovered) (Jeffrey 
1965). However, Jeffrey does not provide a valid epistemic 
justification for his approach, just a heuristic methodologi-
cal strategy to use the parsimony principle in Bayesian infer-
ence. Indeed, Jeffreys’ framework is not commonly applied 
by Bayesians, and one should search for the most probable 
hypothesis based only on available knowledge and new evi-
dence (Gelman  et  al. 2013, Sober 2015). However, there 
are multiple Bayesian techniques used for model selection 
that weight models by their goodness-of-fit and simplicity 
(Hooten and Hobbs 2015). Yet, those methods are seldom 
employed in ecology, and few discussions about their validity 
emerged in applied ecological problems. Some Bayesian tech-
niques used in model selection justify the use of parsimony 
based on predictive accuracy, while others offer heuristic jus-
tification similar Jeffrey’s postulate of simplicity (Hooten and 
Hobbs 2015, Sober 2015). Discussions of the correct use of 
Bayesian model selection emerged in social sciences where it 
is argued that performing Bayesian model selection is unim-
portant when the main task is to construct realistic models 
for complex systems that agree with both theory and data 
(Gelman and Rubin 1995), which seems to be what ecolo-
gists crave. Finally, ecologists frequently use AIC for model 
selection, instead of alternative Bayesian information criteria 
(MacNally  et  al. 2018), which makes the discussion about 
AIC even more relevant in ecology and evolution.

Likelihoodists and Bayesians share a similar perspective on 
how to deal with parsimony, but they disagree in the use of 
prior probabilities. While Bayesians attempt to carry knowl-
edge over time, updating it as new information arises, like-
lihoodists see no value in the use of prior probabilities. For 
them, if the model with highest likelihood happens to be the 

simplest, then parsimony happens to mirror evidential sup-
port, but the likelihood of a hypothesis is still proportional 
to the probability of observing the data if that hypothesis was 
true (Sober 2004a, b).

Finally, as the parsimony principle started to be unchained 
from plausibility, it is no longer viewed as a pre-20th cen-
tury magical argument used by classical philosophers and 
scientists. However, there is no universal justification for 
the parsimony principle. As different frameworks of sta-
tistical inference have different epistemic goals, the parsi-
mony principle is invoked, or not, under different epistemic 
justification.

Simplicity and falsifiability in ecology and evolution

Karl Popper provided a different epistemic justification for 
parsimony by arguing that simple theories are more falsifiable 
(Popper 1959). According to him, because the goal of empiri-
cal science should be the refutation of theories, parsimonious 
theories are desirable because they are in principle easier to 
be refuted. For example, Popper’s ‘bold hypotheses’ are parsi-
monious because they use few assumptions to make a myriad 
of predictions about natural phenomena, being easier to be 
refuted in case any of the predictions fail. However, according 
to Popper, if a theory is evaluated repeatedly over time and 
not refuted, it should not be considered more plausible, but 
only to have been more corroborated. Although most philos-
ophers of science consider the concept of corroboration too 
obscure for a useful application in research (Godfrey-Smith 
2003), it is frequently assumed that the most plausible theory 
are those that have been most corroborated (Sober 2004b).

One could argue that ecologists give great importance to 
parsimony when judging theories, hypothesis and models 
because of the Popperian argument that simple theories are 
easier to falsify. However, it is difficult to argue that ecolo-
gist and evolutionary biologists are strict Popperians, such 
that one single critical test that contradicts a model is suf-
ficient to falsify its underlying theory (here not including 
‘naive falsifications’; Godfrey-Smith 2003). Let’s take as an 
example the latitudinal gradient of species diversity, ecology 
oldest pattern (Hawkins 2001). It does not seem that we 
have falsified any hypothesis over time, which can be noticed 
by analyzing Pianka’s (1966) seminal ‘Latitudinal gradients 
in species diversity: a review of concepts’ that still captures 
currently discussed hypotheses for latitudinal diversity gra-
dients. Ecologists and evolutionary biologists work simulta-
neously with a plethora of competing theories, hypotheses 
and models, but rarely discard any, even when conflicting 
empirical evidence is found. Indeed, ecology and evolution-
ary biology seems to be best described by Lakatos’ compe-
tition among multiple scientific programs (Godfrey-Smith 
2003), in which scientific progress is associated with grad-
ual improvements of theories that continuously explain the 
available empirical data. Also, as all scientists, we are deeply 
attached to our theories (Ginzburg and Jensen 2004). Thus, 
the importance that a scientist gives to a certain characteristic 
of a theory, hypothesis or model (e.g. specificity vs generality, 



5

simplicity vs complexity) is very much a matter of personal 
taste (Kuhn 1977).

The parsimony principle in predicting versus 
explaining nature

Does science truly explain how nature works, or does it 
identify patterns in natural phenomena? These are two oppo-
site philosophical views about the role of science on under-
standing nature (Okasha 2002, Godfrey-Smith 2003). On 
the one hand, the scientific realism argues that the goal of 
science is to provide a description or explanation of the true 
underlying reality of nature. On the other hand, scientific 
instrumentalism holds that scientific theories and models 
are just instruments to assist researchers to predict natural 
phenomena. Thus, from an instrumentalist point of view, 
theories are used to provide predictions of observable data, 
and there is no contradiction if alternative theories are just as 
accurate. Conversely, under the realistic perspective, there is 
only one true theory, which perfectly describes the underlying 
mechanisms of nature.

From the realistic perspective, invoking parsimony to 
evaluate a theory is a metaphysical assumption that nature 
is indeed simple, like many pre 20th century philosophers 
and scientists defended. However, under an instrumentalist 
view of science, the Ockham’s razor is a methodological crite-
rion to judge among the infinite models that can fit the data  
(Box 1), as well as choosing the most reliable model to predict 
new data (higher predictive accuracy). These two different 
epistemic views of science, which are coupled with alterna-
tive uses and justifications of parsimony principle to evaluate 
theories, are present in discussions of alternative models to 
reconstruct phylogenetic history within evolutionary biology 

(Box 2). In fact, the core of that debate was the epistemic 
value of two alternative model building programs in ecology 
and evolution: models to describe nature (i.e. correlative) 
or models to explain nature (i.e. mechanistic) (Gotelli et al. 
2009).

Correlative models are designed to probe nature and find 
functional relationships (patterns) among observed phenom-
ena, but no causal story is built into the model. In fact, the 
data used to fit the model is more important than theory 
itself, as the statistical methods are used only in summarizing 
observed data, without explicitly including theories a priori 
(Gotelli et al. 2009, Pearl and Mackenzie 2018). Because the 
correlative model-building program is instrumentalist in its 
essence, the epistemic justification of parsimony is also con-
ceptually tied to an instrumentalist view of science. Thus, 
parsimony should be invoked by ecologists and evolution-
ary biologists to judge competing correlative models because 
predictive accuracy is the main goal of such models. Since 
reliable predictions of highly complex phenomena and noisy 
data can be difficult to achieve (Burnham and Anderson 
2001, Hastie et al. 2009), applying the parsimony principle 
to judge between the infinite alternative models reduces the 
probability of confounding noise with signal. Thus, the par-
simony principle within the instrumentalist framework is 
justifiable only in predictive science, which is not the strong 
characteristic of ecology (Houlahan et al. 2017).

In contrast, mechanistic models have been used as vehicles 
for theoretical exploration, proposing causal explanation of 
a biological phenomenon (Peck 2004, Connolly et al. 2017, 
Rangel et al. 2018). Contrary to purely correlative models, 
the parameters of mechanistic models are designed with bio-
logical meaning, therefore contributing to the interpretation 
of the modelled phenomena (Gotelli et al. 2009). Therefore, 

Box 2. The use of parsimony in evolutionary biology

Parsimony principle has been intensely discussed in evolutionary biology within the context of phylogenetic reconstruction (Sober 
1989, 2015, Felsenstein 2004). A parsimonious model of trait evolution assumes that the fewest changes in a given trait has occurred 
over evolutionary history. Thus, one can apply the parsimony criterion as a realistic evolutionary process to estimate the most plausible 
phylogenetic tree from the observation of traits of a set of species (Felsenstein 2004). The puzzle that tormented evolutionary 
biologists was how to justify the use of the parsimony principle as an evolutionary model (Sober 1989, 2015). A realistic view of the 
parsimony principle was invoked by Camin and Sokal (1965) when affirming that the correctness of their method of phylogenetic 
reconstruction ‘depends on the assumption that nature is, indeed, parsimonious’. Others provided a methodological justification for 
parsimony, arguing that parsimony could mirror likelihood (Cavalli-Sforza and Edwards 1967) which was later shown to occur only 
under specific assumptions (e.g. drift is the process governing trait evolution (Felsenstein 1973, 1978). Popperian arguments were 
also invoked by suggesting that the most parsimonious tree is easier falsifiable by data (Wiley 1975, 2011). The problem with the 
Popperian argument is that data used in phylogenetic reconstruction cannot, in any way, falsify the hypothesis of tree topology (Sober 
2015). Later, an instrumentalist view of parsimony was clarified by suggesting that parsimony is not necessarily an assumption about 
how evolution occurs in nature, but just as a simple and useful methodology for phylogenetic reconstruction (Sober 1989), although 
not the only methodology available (Felsenstein 2004).

The real weakness of the use of parsimony in evolutionary biology is the impossibility of incorporating knowledge from different 
processes of evolution to reconstruct a phylogenetic tree (Yang and Rannala 2012). The sophisticated evolutionary models allowed 
by Bayesian and likelihood methods began to gradually replace parsimony, especially when molecular data is used in phylogenetic 
reconstruction. Parsimony remains a controversial issue in evolutionary biology (Yang and Rannala 2012), although it is still used 
in phylogenetic inference, especially when dealing with discrete characters (i.e. paleontology, behavioral sciences). Today, most 
phylogenies are reconstructed using statistical procedures that explicitly assume multiple models of evolutionary processes and make 
no use of parsimony (Felsenstein 2004, Sober 2015).
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theory is more important than data for mechanistic model-
ing, since the final goal is to propose or evaluate the theory 
behind the ecological and evolutionary processes built into 
the model (Rangel et al. 2018). Philosophers and modelers 
argue that those models defy the restrictions found in com-
mon correlative models (Winsberg 1999, 2001), because 
they represent an attempt to realistically describe nature. 
Thus, invoking the parsimony principle to judge the plau-
sibility a mechanistic model implies the belief that nature is 
simple, with few basic processes driving complex observed 
natural patterns.

Correlative and mechanistic models must not be com-
pared using the parsimony criterion, as they emerge from 
alternative philosophical approaches, with different scientific 
goals (Winsberg 1999, 2001). Mechanistic models are in 
general more complex than correlative models by design, as 
they attempt to realistically incorporate and integrate com-
plex causal processes. There are, of course, correlative mod-
els that are more complex than mechanistical models (e.g. 
geographically weighted regressions; Fotheringham  et  al. 
2002), assuming that the number of adjustable parameters is 
a valid measure of complexity (Box 3).

One should not expect simplicity from mechanistic 
models that attempt to unify different areas of knowledge 
in ecology and evolution (Cabral  et  al. 2017), as ecologi-
cal and evolutionary patterns at high organizational levels 

(e.g. latitudinal diversity gradients) are among the most com-
plex natural phenomena. However, as Hilborn and Stearns 
(1982) affirmed over thirty years ago, we face a pathology of 
avoiding complex models, which promotes a major difficulty 
of publishing conclusions based on integrative mechanistic 
models (Evans et al. 2013). Neglecting complex models that 
try to understand and explain causal relationships among 
ecological and evolutionary processes prevents significant 
advances in our understanding of nature.

Because mechanistic models are attempts to explain 
nature as a vehicle for theoretical exploration, these models 
should be judged by their consistency and consilience (i.e. 
how well the built-in processes and assumptions of the model 
capture what is currently accepted by scientific community 
as valid explanation, or explanations with higher potential to 
integrate theories from different research fields), accuracy (i.e. 
how well the model reproduces empirical patterns) and preci-
sion (i.e. the amount of variation in model predictions among 
replicates of the model) (Gotelli  et  al. 2009). Conversely, 
evaluating mechanistic models by contrast against correlative 
models is analogous to comparing apples with oranges.

Notice that not employing the parsimony principle in 
the judgment of mechanistic models does not, in any way, 
neglect or denies the trade-offs between specificity and 
generality of model building strategies (Levins 1966, Grimm 
2005). However, the traditional view that simple models are 

Box 3. Measuring simplicity

Parsimony has a practical value in science but has little support for its epistemic value (Sober 2015), especially when complexity is 
expected in natural systems. The use of the parsimony principle as a valid criterion in scientific practice raises the problem of how to 
measure simplicity. The problem begins, first and simply, when using different communication formats. The degree of complexity 
used to describe reality through theories, models and hypothesis depends of language (Pearl 1978). Thus, our perception of complexity 
varies greatly according to the language used. Although it is assumed that models and hypotheses are described following a standardized 
scientific language, valid models and hypotheses can be proposed in a myriad of formats (e.g. verbal, deterministic equation, stochastic 
equation, computer simulation, etc).

Traditionally, the complexity of a model is measured using two criteria: 1) the number of adjustable parameters or, 2) the number 
of assumptions. However, even for very simple models these two criteria may lead to conflicting evaluations. Consider, for example, 
the linear (A) and parabolic (B) models:

A( ) = +    y a bx  

B( ) = + +      y a bx cx 2  

The linear relationship is a special case of the parabolic, where c = 0. According to the criterion of simplicity based on the least 
number of parameters, the linear model is the simplest, as it has two adjustable parameters (a and b) while the parabolic model has 
three parameters (a, b and c). However, the fewer number of adjustable parameters in the linear model may also be considered as an 
assumption about a natural process (i.e. x2 does not affect y, therefore c = 0). Thus, one should deem the parabolic model as the simpler 
regarding the number of assumptions, as it has one less assumption than the linear model. Measuring complexity by counting the 
number of parameters gained much popularity in inferential criteria. However, model complexity in statistics depend on many factors 
such as parameter redundancy, parameter stability, random error structure of the model, linearity and nonlinearity of parameters and 
many others (Bozdogan 2000, Taper 2004).

Although it is common practice in ecology and evolution to evaluate models based on their simplicity, it is important to notice 
that it is difficult not only to justify the use of simplicity in model building and selection, but it is especially difficult to measure and 
compare the simplicity of models. While the parsimony of ecological theories is sometimes judged and compared without a clear 
epistemological justification, completely ignoring parsimony may lead to uninterpretable over-fit models, with hundreds of adjustable 
parameters (Phillips et al. 2006, Rangel and Loyola 2012).
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the safest route towards a general theory is another common 
misconception, which has been identified as an obstacle for 
advance of ecological and evolutionary sciences (Evans et al. 
2013). Both general and specific models may be complex 
or simple, as specificity and generality refer to the range of 
natural phenomena explained by the model, whereas com-
plexity and simplicity refer to the number of assumptions 
and/or processes that are incorporated by the model. As 
Dayton (1973) affirm, simple models offer an easier short-
cut for generalization, but if they are not based on a deep 
understanding of natural processes, then they are fated to 
produce the right predictions for the wrong reasons. Not 
rarely correlative models have higher predictive accuracy than 
mechanistic models, but they usually provide poor additional 
understanding of causal processes (Rangel and Loyola 2012).

Finally, when mechanistic models are used to perform 
predictions of natural patterns, then they may be compared 
against alternative models that attempt to predict the same 
patterns. Thus, parsimony reinserts itself into explanatory 
modelling as an instrumental criterion to identify compet-
ing models with poor predictive accuracy, even under the 
assumption that nature is complex. Greater evidential sup-
port for a model comes from the ability to predict new data 
than from the ability to match existing data. Echoing many 
before us, ecology and evolution should be more committed 
to predictions (Houlahan et al. 2017). However, one should 
always consider if the empirical patterns used to validate the 
model aren’t too simple, because, if they are, then they could 
also be reproduced by some competing model, regardless of 
complexity. Yet, measuring the complexity or simplicity of 
models is conceptually and methodologically challenging 
(Box 3).

The parsimonious view of the parsimony principle

In this paper we discussed the challenge of justifying, 
measuring and trading-off simplicity/complexity. The par-
simony principle can be dangerously used as a silver bullet 
to solve any argument when contrasting theories, hypoth-
esis and models. Of course, we do not view the instrumen-
tal use of simple models as a problem. Indeed, they require 
less effort to fit and specially to understand. However, the 
usefulness of simplicity is not a valid justification to judge 
reliability. Ecologists would benefit from evidential statistics 
(Taper and Ponciano 2016) when evaluating their theories, 
models and hypothesis. Evidential statistics has in its core 
a measure of strength of evidence of a proposition about 
the studied phenomenon, and is explicit when not enough 
data is available to reach a conclusion (i.e. indeterminacy). 
Unfortunately, the framework of evidence statistics is new 
and has received little attention in ecology and evolution 
(Taper and Ponciano 2016).

Invoking the parsimony criterion in ecology and evolu-
tion is particularly important when building and compar-
ing correlative models, in which theory plays only a modest 
role, whereas data is critical to decide the structure of the 
model. Thus, the parsimony principle tends to become even 

more important with the growing scientific use of big data, 
deep learning and artificial intelligence techniques, in which 
scientists use computing power to automate the building 
of predictive models, without emphasis in understanding 
or explaining natural phenomena. However, when natu-
ral mechanisms are explicitly modelled as representations 
of causal explanation of biological phenomena, the appli-
cation of the parsimony principle to judge the plausibil-
ity of mechanistic models would imply a realistic belief in 
a simple nature. Thus, enforcing the parsimony principle 
in evaluating explanatory mechanistic models could halt 
the advance of ecology and evolutionary biology. We hope 
that ecologists and evolutionary biologists, in their roles as 
authors, reviewers and editors, use the parsimony principle 
parsimoniously.
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