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The majority of the genome is shared between the sexes, and it is expected that the genetic architecture of most traits is shared as

well. This common architecture has been viewed as a major source of constraint on the evolution of sexual dimorphism (SD). SD is

nonetheless common in nature, leading to assumptions that it results from differential regulation of shared genetic architecture.

Here, we study the effect of thousands of gene knockout mutations on 202 mouse phenotypes to explore how regulatory variation

affects SD. We show that many traits are dimorphic to some extent, and that a surprising proportion of knockouts have sex-specific

phenotypic effects. Many traits, regardless whether they are monomorphic or dimorphic, harbor cryptic differences in genetic

architecture between the sexes, resulting in sexually discordant phenotypic effects from sexually concordant regulatory changes.

This provides an alternative route to dimorphism through sex-specific genetic architecture, rather than differential regulation of

shared architecture.
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In organisms with separate sexes, different evolutionary interests

of males and females can lead to divergent trait optima, which can

be realized through the evolution of sexual dimorphism (SD). The

change from monomorphic to dimorphic requires that the under-

lying genetic mechanisms be decoupled between males and fe-

males. However, even in species with sex chromosomes, males

and females share the vast majority of their genome (Bachtrog

et al. 2014), leading to the expectation that traits are controlled by

the same loci in both sexes (Lande 1980). This shared genomic

architecture is typically considered a source of significant con-

straint on the evolution of dimorphism (Stewart and Rice 2018),

as traits would need to first become genetically decoupled be-

tween females and males before divergence can occur (Lande

1980; Poissant et al. 2010; Hermansen et al. 2018). Shared trait

architecture can lead to intralocus sexual conflict (Rice and Chip-

pindale 2001), where alleles at a locus have different fitness ef-

fects in males and females, and is this assumed to limit the degree

to which the sexes can achieve their respective fitness optima

(Hansen 2006). Indeed, the constraints on the evolution of SD

are often considered both pervasive and persistent, resulting in

enduring sexually conflict for many traits (Rice and Chippindale

2001; Chenoweth et al. 2008; Poissant et al. 2010; Ruzicka et al.

2019). This persistent constraint is, however, difficult to reconcile

with the fact that SD evolves rapidly (Stewart and Rice 2018), is

seen in a broad array of traits, and differs markedly among related

species (Owens and Hartley 1998).

It has been suggested that SD arises from regulatory differ-

ences between males and females (Ellegren and Parsch 2007;

Mank 2017), and there are good examples of this (e.g., Ga-

louzis and Prud’homme 2021). Indeed, recent genome-wide

scans in fruit flies have shown that protein coding sequence

differences are overrepresented among evolutionarily persistent

variants thought to be maintained by sexual antagonism (Ruz-

icka et al. 2019). This might suggest that conflict over coding se-

quence variation is much harder to resolve compared to conflict

over gene expression. However, functional studies have revealed

that the genes underlying some dimorphisms are not expressed

differently between the sexes (Khila et al. 2012). This indicates
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that sex-biased expression alone cannot explain all dimorphism,

and other mechanisms may exist.

Another perspective on the genetics of sexually dimorphic

traits stems from investigations grounded in quantitative genetic

theory (Lande 1980). By comparing the phenotypes of individ-

uals of known relatedness, usually through breeding designs or

pedigrees, one can estimate the between-sex genetic correlation

(rfm) for a trait of interest. This correlation describes the extent

to which a particular genotype affects both male and female phe-

notypes in the same way. If rfm ≈ 1, genotypes affect males and

females similarly (i.e., brothers and sisters look alike), whereas if

rfm ≈ 0, male and female phenotypes vary independently (Lande

1980). This estimate of rfm is based on autosomal additive stand-

ing genetic variation and measures the additive effects of the

many genetic variants that exist in that population at that time.

It can therefore be used to predict the extent to which a popula-

tion can respond to sexually divergent selection. Because this rfm

estimate is based on the additive genetic variance, we will denote

it here as rA
fm for clarity.

Average estimates of rA
fm often approach 1 (Poissant et al.

2010), suggesting that there is little standing genetic variation

with sex-specific effects. However, these estimates are also inter-

preted by many to reflect the extent to which the autosomal ge-

netic architecture underlying the trait is shared between the sexes

(Chenoweth et al. 2008; Poissant et al. 2010; Griffin et al. 2013;

e.g., Stewart and Rice 2018). In other words, a strongly positive

rA
fm is interpreted to mean that the gene network that produces the

phenotypic trait value is largely identical between the sexes, sug-

gesting that genetic architecture needs to be decoupled before SD

can evolve. Furthermore, if rA
fm is an evolutionary important con-

straint, one would expect those traits with weak rA
fm to be more

likely to evolve SD, resulting in a negative relationship (Bonduri-

ansky and Rowe 2005; Fairbairn and Roff 2006; Poissant et al.

2010). Alternatively, selection in favor of SD may drive reduc-

tions in rA
fm, leading to the same prediction. This negative asso-

ciation is supported by the prevailing evidence (Poissant et al.

2010); however, the correlation varies widely between studies,

and rA
fm is generally a poor predictor of SD. Furthermore, rA

fm has

been shown to be quickly eroded under artificial selection (Delph

et al. 2011), suggesting that strong genetic correlations need not

translate into significant evolutionary constraints.

rA
fm estimates provide a statistical description of genotype to

phenotype mapping across the sexes and are an aggregate across

standing genetic variation in the population; however, we know

very little about the loci that underlie this statistic. Additionally,

this metric does not reveal whether sexually discordant pheno-

typic effects are more often the product of variation in protein

coding sequence or expression. Here, we use high-throughput

phenotype data from a genome-wide panel of gene knockouts

in mice to reveal unexpected differences in the gene expression

architecture between the sexes (The International Mouse Phe-

notyping Consortium et al. 2016; Karp et al. 2017). We find

that although most phenotypic traits are dimorphic, even many

monomorphic traits harbor sex-dependent architectures, indicat-

ing substantial cryptic sex-specific variation. Changes in both

sexes to these loci through expression may provide a way for SD

to rapidly evolve, as traits are already partially decoupled and the

phenotypic effect differs between males and females. These find-

ings imply that the evolutionary constraint in SD may be more

easily overcome than previously thought and explain the broad

diversity of SD observed in nature, as well as the apparent rapid

evolution of many sexually dimorphic traits.

Methods
We evaluated the sex-specific effects of gene expression change

by leveraging data from large-scale high-throughput phenotyping

of gene knockout lines from the International Mouse Phenotyp-

ing Consortium (IMPC) (The International Mouse Phenotyping

Consortium et al. 2016). The IMPC uses highly standardized phe-

notyping assays on C57BL/6 inbred mice. Both control mice and

phenotype knockout lines are tested continuously, with the even-

tual goal of knocking out each gene in the mouse genome. This

immense scientific effort provides an unprecedented opportunity

to quantify the between-sex genetic correlation across many traits

and many genotypes in highly standardized conditions.

We selected phenotypes for analysis by requesting all unidi-

mensional continuous traits, excluding legacy pipelines. We also

excluded traits that were not measured in both sexes, fitness-

related traits (such as reproductive screening), body size (we an-

alyzed body size separately), traits with fewer than 100 geno-

types, and traits that were clearly not actually continuous (such

as a count of the number of ribs). After triage, we had 260 traits

for which we downloaded all available phenotype data, includ-

ing both knockout phenotypes and control data. On average, we

obtained data for 8069 control mice and 21,513 mice from 1713

knockout lines, per trait. Per knockout line, seven females and

seven males were typically phenotyped.

SD AND rK
fm OF MOUSE TRAITS

If males and females share the genetic architecture of traits,

knockouts should affect the phenotype of both sexes similarly,

and as architectures diverge the knockout effects should diverge

as well. This null model is similar to that proposed by Stewart and

Rice (2018). We estimated the genetic correlation between males

and females analogous to the conventional approach outlined

above (rA
fm). However, to delineate the knockout lines from the

traditional approach, we denote these estimates as rK
fm, where K

denotes the genetic variance-covariance matrix between knock-

out genotypes (Fig. S1). Note that rK
fm measures the correlation

between the phenotypic effects of genetic knockouts, whereas rA
fm
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measures the correlation for genome-wide additive genetic vari-

ance.

As we were interested in estimating a single value for rK
fm

per trait, we collapsed different sources of genetic variance into

genotypes. As some gene knockouts were performed in different

genetic backgrounds, some genes had multiple allelic knockouts,

and some were tested in different zygosities, we defined each

unique gene:allele:background:zygosity combination as a sepa-

rate genotype. Note that the genetic backgrounds are all C57BL/6

mice, but a different sub-strain.

To each of the trait datasets, we fitted a Bayesian linear

mixed model with the goal of estimating both the between-sex

genetic correlation (rK
fm) and SD. The Bayesian approach allowed

us to evaluate and propagate the uncertainty in the estimates of

rK
fm and SD in downstream analyses. This is especially impor-

tant for rK
fm, because this correlation can be biased toward 0 if

it is difficult to estimate (Griffin et al. 2013). We opted for the

analysis of single traits as opposed to multivariate models, be-

cause phenotypes have been measured across differing sets of

individuals and knockouts. Additionally, the univariate models

were computationally expensive, with each model taking several

days to a week to fit, and multivariate models would be logisti-

cally unfeasible. Each model had one of the phenotypes as the

dependent variable, which was standardized (centered and scaled

to unit variance) and transformed (see below). We included sex

as a population-level effect (also called fixed effect), allowing an

average level of dimorphism across genotypes, although we did

not directly use this parameter as our measurement of SD (see

below). We also included body mass as a population-level param-

eter, because mice are size dimorphic. Body mass was standard-

ized (centered and scaled to unit variance) prior to analysis. All

analyses were repeated without body mass, and the qualitatively

similar results can be found in the Supporting Information.

To estimate rK
fm, we added group-level parameters (also

called random effects) of genotype for each sex, and their correla-

tion. Finally, we added group-level intercepts for known sources

of variation when they were present, which were (1) the pheno-

typing center in which testing was performed, a parameter en-

coding several methodological differences (“meta group”), and

(2) the date of testing. This leads to the final model definition in

lme4/brms syntax: phenotype ∼ weight + sex + (0 + sex | geno-

type) + (1 | center) + (1 | meta_group) + (1 | date). In mathe-

matical notation, following Gelman and Hill (2006):

traiti ∼ N
(
α j[i],k[i],l[i],m[i] + βsex, j[i] (sex) + β3

(
body mass

)
, σ2) ,

⎛
⎝βfemale, j

βmale, j

⎞
⎠ ∼ N

⎛
⎝

⎛
⎝μβ f emale, j

μβmale, j

⎞
⎠ ,

⎛
⎝ σ2

βfemale, j
ρβfemale, jβmale, j

ρβmale, jβfemale, j σ2
βmale, j

⎞
⎠

⎞
⎠ ,

for genotype j = 1, . . . , J,

αk ∼ N
(
μαk , σ

2
αk

)
, for center k = 1, . . . , K,

αl ∼ N
(
μαl , σ

2
αl

)
, for meta group l = 1, . . . , L,

αm ∼ N
(
μαm , σ2

αm

)
, for date m = 1, . . . , M.

Parameter values were estimated using the brms (Bürkner

2017, 2018) interface to the probabilistic programming language

Stan (Carpenter et al. 2017). We used weakly informative prior

distributions, with priors of N(0, 1) for the intercept and N(0, 2)

for the effect of body mass. For the group-level standard devia-

tions and residual standard deviation, we used the positive range

of unit student-t distributions with 5 degrees of freedom. Finally,

we used a Lewandowski-Kurowicka-Joe (LKJ) prior with η = 1

for rK
fm, which is uniform over the range −1 to 1. Posterior dis-

tributions were obtained using Stan’s no-U-turn HMC sampler,

with two chains of 8000 iterations, with the first 4000 used as

warm-up and discarded. We additionally set the max tree depth

to 20 and the adapt delta parameter to 0.9. To evaluate the abil-

ity of our models to accurately estimate the between-sex genetic

correlation, even though the sample size for each genotype was

limited, we performed a simulation study (Fig. S7), confirming

that our approach recovers the true value for rK
fm.

To satisfy the assumption of approximately normal residuals,

we preceded each analysis by estimation of a Box-Cox transfor-

mation, following the established methods by the IMPC (Kurba-

tova et al. 2019), using the simplified model definition: pheno-

type ∼ weight + sex + (0 + sex | genotype). We estimated the

transform using the bcnPower method in the car package (Fox

et al. 2019), with model fitting performed by lme4 (Bates et al.

2015).

After fitting all 260 trait models, we performed model crit-

icism. For each model, we obtained the maximum R̂ param-

eter, the number of divergences, and the minimum effective

sample size. We removed all models that had a maximum R̂

> 1.05, >2.5% divergent draws, or minimum effective sam-

ple size <400. Finally, we performed visual posterior predic-

tive checks (Gabry et al. 2019), and removed models that did

not reproduce the observed data distribution. Given the com-

putational effort required for each model and that the number

of successful models was more than sufficient for our analy-

ses, we did not attempt to remedy the failing models. We visu-

ally checked to confirm that the excluded traits did not have a

bias in SD or rK
fm. After model criticism, 202 out of 260 models

remained.

For each of these models, we derived posterior distributions

for three metrics of the genetic variance structure: rK
fm, the ratio

of the sex-specific genetic variances VG(larger)

VG(smaller)
, and the Riemannian

distance of the scaled variance-covariance matrix from
[1 1

1 1

]
. For

more information about the Riemannian distance, see the Sup-

porting Information. We then derived posterior distributions of
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SD by predicting average male and female phenotypes for wild-

type (i.e., control group) mice. When there were multiple ge-

netic background variations in which a trait was tested, we used

the marginal means across backgrounds. To make SD estimates

comparable across traits, we used a mean standardized effect

size for SD for downstream analyses, the SD index: x̄larger sex

x̄smaller sex
− 1.

Note that the SD index requires that comparisons to 0 are bio-

logically meaningful (i.e., traits are measured on a ratio scale),

which was not true for all the traits in our dataset, such as

body temperature, indices, and fractional measures. We there-

fore performed back transformations of the marginal means to

the original scale, and we only calculated SD for 156 out of 202

traits.

After obtaining the posteriors for each trait, we used a linear

model to test for a relationship between each of the three genetic

(co-)variance measures and SD. To account for uncertainty in

those estimates, we performed random draws from the posterior

distributions of those estimates to create 500 datasets. For each of

those samples, we ran one MCMC chain of a measure ∼ SD in-

dex model using the brm_multiple function, and performed infer-

ence on the combined set of 500 chains. Note that we performed a

Z-transformation on rK
fm, also called the Fisher transformation, to

stabilize the variance. Additionally, we log transformed the ratio

of the genetic variances and the Riemannian distance.

DEVELOPMENT OF SIZE DIMORPHISM AND rK
fm

Because data on body mass were available at different ages, we

analyzed this trait separately. To quantify sexual size dimorphism

(SSD) during development, and associated changes in rK
fm, we

split the body mass data into different ages. Mice were weighed

once a week, with most mice being measured between 4 and 16

weeks of age. For each week, we ran the same analysis as for the

separate traits outlined above.

IDENTIFICATION OF KNOCKOUT GENOTYPES WITH

SEXUALLY DISCORDANT EFFECTS

In addition to the trait-level analyses above, we made use of the

repeated phenotyping of knockouts for different traits to ascribe

sexually discordant effects to particular genotypes. The concor-

dant and discordant nature of knockout genotypes was deter-

mined by evaluating whether the genotypes were consistently

ranked low or high along the concordant and discordant axes

across traits. For each trait, we used the multilevel model that was

used to estimate SD and rK
fm, described above, to obtain estimates

of the male and female trait values for the measured genotypes.

We extracted the posteriors for the male and female parameter

for the genotype group term (Best Linear Unbiased Predictor).

Note that these estimates are adjusted for body weight and envi-

ronmental effects, have already undergone parameter shrinkage,

and are centered around 0. We then translated the male and fe-

male phenotypes into concordant and discordant effects, by ro-

tating the axes so that the concordant axis is the positive diagonal

(female = male) and the discordant axis is the negative diago-

nal (female = -male). The absolute value along the two diagonal

axes was taken, so that the effect of a genotype is larger when

it is further from the population average. Because the size of the

discordant effects of a genotype is strongly affected by the trait

architecture (i.e., rK
fm), we assigned genotypes percentile ranks to

aid comparison across traits.

For all genotypes that were tested on at least 100 phenotypes,

we calculated the average concordant and discordant rank across

traits. Credible intervals (CIs) for this average were calculated by

computing that average for 100 random draws of the posteriors.

We categorized genotypes as less or more discordant than aver-

age by checking whether the CI overlapped a median rank (50th

percentile in Fig. 4).

For the genotypes that were more discordant than average,

we analyzed the gene ontology (GO) terms for the underlying

knockout genes. Using goseq (Young et al. 2010), we tested for

overrepresented GO terms, using the hypergeometric method for

obtaining P-values. Finally, we adjusted the P-values to control

the false discovery rate (Benjamini and Hochberg 1995).

SEX-BIASED GENE EXPRESSION AND FERTILITY

We obtained published gene expression profiles of male and fe-

male gonadal tissue from the ArrayExpress database under ac-

cession number E-GEOD-1148 (Rinn et al. 2004). Using limma

(Ritchie et al. 2015), we calculated the difference in expres-

sion between the sexes (log2-fold change), and empirical Bayes

moderated t-statistics with adjusted P-values. We then classified

genes as sex biased if the fold change was at least 2, and the ad-

justed P-values were significant (α = 0.05). Genes that did not

satisfy both those criteria were categorized as unbiased.

We then obtained female- and male-specific fertility

data from the IMPC (phenotypes IMPC_FER_019_001 and

IMPC_FER_001_001), which are binary traits (fertile vs. infer-

tile) where each sex has been allowed to breed with a wild-type

mate. Combining these, we defined four fertility categories: fer-

tile, female-limited infertile, male-limited infertile, and infertile.

To test for an association between gene expression category and

fertility outcome after knockout, we performed a 3 × 4 chi-

squared test for independence.

SOFTWARE

All analyses were performed in R version 3.6.1 (R Core Team

2019). Specific R packages used in the analyses are listed above,

and the tidyverse (Wickham et al. 2019) was used for general data

handling and visualization.
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Figure 4. Identifying genotypes with consistent sexually discor-

dant effects. Each point is a genotype, having been tested for at

least 50 traits, with error bars denoting 95% credible intervals

(CIs). The average percentile rank for the absolute sexually dis-

cordant effect of a genotype is plotted along the x-axis. The y-axis

shows the average percentile tank for the absolute concordant ef-

fect. Red points indicate genotypes that tend to have more sexu-

ally discordant effects than other genotypes, whereas blue points

are genotypes that have less discordant effects (CI does not over-

lap 50th percentile).

Results
SD AND rK

fm OF MOUSE TRAITS

Many of the measured traits showed substantial SD (Fig. 1A),

confirming a previous report on the IMPC data (Karp et al. 2017),

with an average SD index of 0.09 [0.08, 0.10] (posterior me-

dian [95% CI]). As the large sample size in this study makes it

possible to distinguish small effects with little biological rele-

vance, we evaluated SD using equivalence testing (Wellek 2010).

We compared the 95% CIs of the SD index for each trait with a

region of practical equivalence (ROPE) between 0 and 0.05 (Kr-

uschke 2018) (i.e., between 0% and 5% difference in absolute

magnitude). When the entire CI falls outside the ROPE, we can

be confident the sexes differ by more than 5% and the trait is con-

sidered dimorphic. We consider a trait monomorphic if we are

confident there is less than a 5% difference, so when the entire CI

falls within the ROPE. Under this decision rule (Kruschke 2018),

dimorphic traits roughly equal monomorphic traits in number.

Forty-nine out of the 156 traits (31.4%) were found to be clearly

dimorphic, whereas 47 traits (30.1%) to be monomorphic, and

60 traits (38.5%) were not classified, as their CI overlapped the

5% threshold. Some of the most monomorphic traits include cal-

cium levels in the blood and the time spent on the periphery of

an open field. Strongly dimorphic traits include a variety of im-

mune function-related traits, such as spleen weight and counts of

different T-cell types, as well as glucose tolerance (Table S1).

Traits showed a wide variety of estimates for rK
fm, from a cor-

relation close to 1 between the phenotypes of the sexes down to

correlations indistinguishable from 0 (Fig. 1B). The average cor-

relation was clearly positive, but not as strong as we expected

(0.650 [0.622, 0.689]). Surprisingly, very few traits showed a

strong concordance between male and female effects, with fewer

than 5% of traits having an estimate above 0.9. Some of the traits

with the highest correlation are body temperature and eye mor-

phology, whereas several immune phenotypes have a correlation

close to 0 (Table S1).

To test the constraint that high rK
fm places on the evolution

of dimorphism, we assessed whether rK
fm is lower for more di-

morphic traits, which we would expect if dimorphism is more

often associated with a reduced intersexual correlation. Contrary

to expectation, the between-sex genetic correlation is not asso-

ciated with SD (Fig. 2, slope: −0.49 [−1.34, 0.35]). Although

there is a trend in the expected direction, the relationship is non-

significant, and rK
fm at monomorphism (i.e., the intercept) is only

slightly higher than the overall average: 0.630 [0.557, 0.698].

To investigate whether there were differences in the genetic

architecture of dimorphism between trait types (Poissant et al.

2010), we assigned each of the traits one of four categories: be-

havior, morphology, physiology, or immunity (Table S1). There

is no evidence that the relationship between rK
fm and SD is differ-

ent for different trait categories (Fig. S2). The average rK
fm of trait

categories, estimated at monomorphism, can also not clearly be

distinguished (Fig. S1).

Male and female genetic variances were often unbalanced,

and there was a clear tendency for the male genetic variance to

be larger (VG(m)

VG(f)
= 1.14 [1.04, 1.23]). Thus, knockout mutations

have, on average, substantially larger phenotypic effects in males.

It has been noted previously that mutations have larger fitness ef-

fects in male Drosophila (Sharp and Agrawal 2013), and differ-

ences in genetic variance between the sexes may contribute to-

ward the evolution of dimorphism, even under a strong between-

sex genetic correlation (Wyman and Rowe 2014). However, we

found no relation between the imbalance of sex-specific vari-

ances and the level of SD (slope: 0.03 [−0.26, 0.30]). We also

used a combined measure of both sex-specific genetic variance
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A B

Figure 1. (A) Estimates and associated uncertainty for sexual dimorphism for each trait analyzed. Each horizontal line displays the

credible intervals for one trait, where traits have been arranged by the posterior median. Shaded regions indicated the credible intervals

of 50%, 80%, and 95% of the posterior densities from amultilevel model. Sexual dimorphism is averaged across the wild-type genotypes,

and defined as the ratio of female and male means. (B) As in panel A, but depicting the between-sex genetic correlation rKfm. Note that

the traits have been arranged independently in each panel.

Figure 2. The between-sex genetic correlation does not depend on sexual dimorphism in the trait. Each point is a trait, with error bars

indicating the 95% credible interval (CI) in the estimates. The red line represents the model fit of a linear model on the Fisher-transformed

rKfm, with the shaded region indicating the 95% CI, including propagation of trait level uncertainty. Sexual dimorphism is expressed as

the SD ratio.
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A

B

C

Figure 3. The between-sex genetic correlation decreases as size dimorphism increases over development. (A) Estimates for sexual di-

morphism in body mass for wild-type mice. Points indicate the posterior median with wide and narrow line segments denoting the 66%

and 95% credible intervals, respectively, and the density gradient represents the posterior density. (B) As in panel A, but depicting the

between-sex genetic correlation. (C) Association of sexual size dimorphism and the rKfm during development. Points are posterior medians

with 95% credible intervals, as in panels A and B, with lines connecting subsequent week. Weeks 3 through 7 are numbered.

and the between-sex genetic correlation, the Riemannian distance

to the null model (see Supporting Information), which was also

not related to SD (slope: 0.75 [−0.52, 2.06], Fig. S4). Finally, we

related the fraction of knockout experiments (as defined by Karp

et al. 2017) with significant genotype-by-sex interactions to SD,

which were again not related (slope: −0.01 [−0.09, 0.07], Fig.

S5; see Supporting Information).

DEVELOPMENT OF SIZE DIMORPHISM AND rK
fm

Body size is dimorphic in many species, including the mouse, yet

it has been found numerous times that rA
fm for this trait is close to 1

(Roff 2012). Nonetheless, SSD can rapidly change in response to

the environment (Badyaev 2002), making this an important trait

to study to better understand the link between the evolution of

SD and sex-specific architectures. As SSD is established through

variable development rates and times, it is especially useful to

understand when in development the effect of body size loci di-

verges between the sexes. Unfortunately, there are very little data

available for the development of rA
fm, with studies usually includ-

ing only two or three time points (Poissant and Coltman 2009).

In contrast, the IMPC measures body weight weekly from week

3 through 16, providing the opportunity to estimate when dur-

ing development the effects of expression changes become sex

biased.

SSD increases strongly at the start of this period, more than

doubling between weeks 3 and 7 (Fig. 3A). rK
fm decreases during

that same time (Fig. 3B), and both parameters stabilize around 8

weeks. The two variables follow a roughly linear negative rela-

tionship during development (Fig. 3C). A developmental link be-

tween SSD and rK
fm may be the result of sexually antagonistic se-

lection mainly acting in adulthood. This would bias sex-specific

loci to be expressed only later in development, driving an increas-

ing SSD and decreasing rfm. Alternatively, strong trait integration

during early development may pose significant constraints on the

divergence of the sexes before 6 weeks.

IDENTIFICATION OF KNOCKOUT GENOTYPES WITH

SEXUALLY DISCORDANT EFFECTS

To gain insight into the extent to which sex-specific architec-

tures are shared between different traits, we quantified to what

extent knockout genotypes have consistent sexually concordant

or discordant effects. We identified five knockout genotypes that

consistently had smaller sexually discordant effects, compared to

other genotypes (Fig. 4). Those five genotypes also had much

smaller concordant effects, indicating that their phenotypes are

consistently average. Unsurprisingly, these were five wild-type

genotypes. Additionally, 24 genotypes had larger than average

discordant effects (Fig. 4; Table S2). These genotypes tended to

affect the sexes differently, across many traits. An analysis of

Gene Ontologies for the genes that were knocked out in these

genotypes revealed no significantly overrepresented categories.

In contrast to the 29 discordant genotypes, 292 genotypes (out of
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2543) had consistently small or large concordant effects. This dif-

ference suggests that traits are more likely to genetically covary

in their average value, rather than in their dimorphism.

SEX-BIASED GENE EXPRESSION AND FERTILITY

Many investigations into the evolutionary significance of gene

expression to SD have focused on sex-biased gene expression

(Grath and Parsch 2016). Of specific interest are expression dif-

ferences in the gonads, where most sex-biased expression occurs.

In these studies, it is often assumed that gonadal expression bias

reflects important sex-specific fertility functions; however, it is

usually not possible to verify this. Combining previously pub-

lished gonadal expression data (Rinn et al. 2004) with fertility

data from the IMPC database, however, allowed us to test whether

the expression knockout of sex-biased genes causes sex-specific

infertility.

As predicted, fertility status was significantly associated

with expression bias category (i.e., male-biased, female-biased,

or unbiased; χ2
6 = 76.6, P < 0.001; Fig. S6). Gene knockouts of

female-biased or unbiased genes led to male-limited infertility in

1.5% of cases, but this increased to 11% of cases when knocking

out male-biased genes. Female-limited fertility on the other hand

was less common in general and showed no increase with knock-

outs of female-biased genes (Fig. S6), possibly because female

gametogenesis is largely encoded during fetal development and

then arrested.

Discussion
Using the extensive phenotyping effort of gene knockout mouse

lines by the IMPC, we have tested for the extent of overlap in

trait genetic architecture between males and females. Even in

the mouse, which is relatively monomorphic when compared to

many other vertebrates, it is surprisingly common for traits to

show clear differences between the sexes after controlling for

body size. This therefore suggests that SD is not the exception

but the norm across many crucial somatic traits.

Furthermore, traits are affected differently by knockout mu-

tations depending on the sex of the individual. This clearly il-

lustrates that studies of gene function must account for sex, as

knockout effects may only be easily detectable in one of the sexes

(Karp et al. 2017; Khramtsova et al. 2019). Alterations in gene ex-

pression are often thought to be a common mechanism to resolve

intralocus sexual conflict by making gene expression sex biased

or sex specific (Grath and Parsch 2016). This assumes a shared

genetic architecture, which is differentially regulated between the

sexes. Our work suggests that the underlying architecture may

differ between the sexes in many cases, and the low estimates of

rK
fm that we recover highlight a different potential role of gene

expression in the evolution of SD.

Mutations of large regulatory effect can often be expected

to alter SD, providing one way to resolve intralocus sexual con-

flict. However, these regulatory changes need not result in sex-

biased gene expression, as our work suggests that regulatory

changes in both sexes, in this case elimination of expression in

both sexes through knockouts, often predominantly only affect

the phenotype of one. In other words, sexually concordant regula-

tory changes can result in sexually discordant phenotypic effects,

and our results suggest that this commonly occurs. This provides

an alternative route to dimorphism through sex-specific genetic

architecture, rather than differential regulation of shared archi-

tecture. This could, for example, be the result of interactions with

sex-biased genes in the same regulatory network, or of a sex bias

in the size of the cell populations expressing the gene. It appears

likely that the modulation of gene expression, either through sex

bias in the downstream phenotypic effects or in the expression

itself, is a major contributor to the evolution of SD.

Although mutations of large effect, especially gene dele-

tions, can have deleterious effects on other traits through

pleiotropy, most genes are nonessential (Amsterdam et al. 2004;

Liao and Zhang 2007; Georgi et al. 2013). This suggests signif-

icant regulatory potential in the evolution of SD. Additionally,

the knockout mutations assessed here likely represent an extreme

form of regulatory variation, which we would expect to have sim-

ilar, if less drastic, sex-specific effects, and more often contribute

to SD.

As others have previously indicated (Cowley and Atchley

1988; Reeve and Fairbairn 2001; Bonduriansky and Rowe 2005),

rA
fm may not be as strong an indicator of constraint as was orig-

inally suggested (Lande 1980). Although rA
fm is very useful in

describing the potential for the standing genetic variation to alter

SD in a single or a few generations, it cannot detect decoupling in

trait architectures that are currently lacking variation. Our results

indicate that even high rA
fm traits may be susceptible to changes

in SD, as most traits have cryptic parts of the genetic architecture

in which new mutations may have sex discordant effects. Impor-

tantly, changes in the architecture itself, such as changes in gene

pathways or the recruitment of new transcription factors, are not

necessary to have occurred, contrasting with a common interpre-

tation of a strong rA
fm.

A potential limitation of this study is that the mice are in-

bred, resulting in genome-wide homozygosity. This means that

the phenotypic variation is expected to be relatively small, mak-

ing the effects of knockouts appear stronger. Additionally, the

effects of dominance and epistasis are artificially limited. As it

has been suggested that sex-specific dominance may be pervasive

(Grieshop and Arnqvist 2018), and epistatic interactions could be

affected by sex as well, our estimates of rK
fm could potentially be

biased upward. It is also important to note that sex-linked genetic

architecture can allow for the evolution of dimorphism. However,
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given the relatively small size and limited gene content of the

mouse Y chromosome (Soh et al. 2014), the role of the Y in sex-

specific genetic architecture for a broad array of somatic traits is

unclear.

Sex can be thought of as a hormonal context (Lawson et al.

2011; Pavličev and Cheverud 2015), and represents a form of

plasticity. Many have argued that context influences phenotype

through gene expression variation, and this is certainly the case

for the context of sex (Mank 2017), where sex-biased gene ex-

pression is assumed to underpin sexually dimorphic traits. Our

analysis shows that sex-dependent plasticity can arise in the ab-

sence of gene expression differences. Environment is another im-

portant context, and it has been previously noted that environ-

ment and condition can affect the degree of SD (Bonduriansky

and Rowe 2005). This is evident in the IMPC data, as the degree

of dimorphism varied for many knockouts based on the pheno-

typing center (Karp et al. 2017), although it is not clear whether

there is any systematic pattern to this.

The vast majority of genotypes were neither strongly nor

weakly discordant across traits, suggesting there are very few

or no “sex-specific genes” or “SD genes” but rather many dif-

ferent genes have sex-specific effects on different traits. The

few genotypes that did show some consistently discordant ef-

fects had no functional categories in common, also suggest-

ing that SD is regulated differently in different traits. As we

identified more genotypes that had consistently large concor-

dant effects, the genetic covariance between trait means is likely

stronger than between SD of different traits. Large-scale anal-

yses in a multivariate framework are needed to fully clarify

the covariance of expression variance across traits and sex, to

come to a complete understanding of the evolutionary constraints

on SD.

In conclusion, using a dataset of unprecedented size, we

demonstrated that both dimorphic and monomorphic traits har-

bor a surprising amount of sex-specific genetic architecture,

as sexes respond variably to knockout mutations. These re-

sults may help explain why SD is common, evolvable, and

variable. Although these differences clearly indicate that the

genotype-to-phenotype mapping is sex dependent for most

traits, it remains unclear what underlying mechanisms are

the cause for this. We hope future work will help eluci-

date proximate causes and evolutionary consequences of this

work.
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