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The long-running debate about the role of selection in maintaining genetic variation has been given new impetus by the discovery

of hundreds of seasonally oscillating polymorphisms in wild Drosophila, possibly stabilized by an alternating summer-winter

selection regime. Historically, there has been skepticism about the potential of temporal variation to balance polymorphism,

because selection must be strong to have a meaningful stabilizing effect—unless dominance also varies over time (“reversal of

dominance”). Here, we develop a simplified model of seasonally variable selection that simultaneously incorporates four different

stabilizing mechanisms, including two genetic mechanisms (“cumulative overdominance” and reversal of dominance), as well as

ecological “storage” (“protection from selection” and boom-bust demography). We use our model to compare the stabilizing

effects of these mechanisms. Although reversal of dominance has by far the greatest stabilizing effect, we argue that the three

other mechanisms could also stabilize polymorphism under plausible conditions, particularly when all three are present. With

many loci subject to diminishing returns epistasis, reversal of dominance stabilizes many alleles of small effect. This makes the

combination of the other three mechanisms, which are incapable of stabilizing small effect alleles, a better candidate for stabilizing

the detectable frequency oscillations of large effect alleles.

KEY WORDS: Balancing selection, eco-evolutionary dynamics, polygenic adaptation, rapid adaptation.

Understanding how populations maintain genetic variation for
fitness-associated traits is a foundational problem in evolutionary
biology. In the “classical view,” genetic variation appears by mu-
tation and is removed by a combination of selection and random
genetic drift, resulting in unstable variation that continually turns
over. In contrast, the “balance view” posits that genetic variation
is stably maintained by selection.

The theoretical basis of mutational variation is simple: muta-
tions will maintain variation if mutation rates are sufficiently high.
Empirically, deleterious mutation rates can sometimes exceed one
per individual per generation (Lynch et al. 1999; Lesecque et al.
2012), and it is well established that transient mutations contribute

substantially to standing genetic variation in fitness-associated
traits (Keightley and Halligan 2008; Charlesworth 2015).

The contribution of balancing selection to standing genetic
variation can also be substantial (Bitarello et al. 2018; Good et al.
2017; Charlesworth 2015). In a particularly striking example, se-
quencing studies in temperate Drosophila populations have found
hundreds of polymorphic loci that undergo seasonal oscillations
in allele frequency (Bergland et al. 2014; Machado et al. 2018).
Many of these polymorphisms appear to be ancient (Bergland
et al. 2014), suggesting pervasive, long-term balancing selection.

The possibility of pervasive balancing selection poses a
theoretical problem. Unlike the case of mutational variation,
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the conditions leading to balanced polymorphism are not re-
solved (Yi and Dean 2013; Svardal et al. 2015; Wittmann
et al. 2017). Fundamentally, stable polymorphism requires nega-
tively frequency-dependent selection, that is low frequency al-
leles must be favored over high frequency alleles. In tempo-
rally and spatially uniform environments, instances of negative
frequency-dependence are largely restricted to immune system
genes (Aguilar et al. 2004), Batesian mimicry (Kunte 2009), and
self-incompatibility loci (Charlesworth 2006). Heterogeneous se-
lection substantially broadens the types of loci potentially subject
to negative frequency-dependence, since the latter only needs to
arise when averaged over the environmental heterogeneity, rather
than within each generation, or within spatially homogeneous
subpopulations (Frank and Slatkin 1990; Svardal et al. 2015).
The theoretical problem is to explain how environmental hetero-
geneity can lead to sufficiently strong balancing selection under
a plausible range of conditions.

In the Drosophila example above, polymorphism appears to
be stabilized by temporal heterogeneity, specifically adaptation
to alternating seasonal selection regimes (Bergland et al. 2014;
Machado et al. 2018). Inspired by this example, we restrict our
attention to temporal heterogeneity (for discussion of spatial het-
erogeneity see Frank and Slatkin (1990); Hedrick (2006); Svardal
et al. (2015); and references therein). We distinguish between two
broad classes of mechanism by which temporal heterogeneity can
stabilize polymorphism.

The first are mechanisms that rely on purely genetic fac-
tors such as diploid Mendelian inheritance and epistasis. Early
studies of fluctuating selection focused on the consequences of
incomplete dominance. Rare alleles all appear in heterozygotes,
and so incomplete dominance can reduce selection against rare
alleles in the environments they are unsuited to, making selection
negatively frequency-dependent (Dempster 1955; Haldane and
Jayakar 1963). Following Dempster (1955), we call this “cumu-
lative overdominance.”

“Reversal of dominance” (also known as “segregation lift”;
Wittmann et al. 2017) also relies on diploid Mendelian inheri-
tance, but additionally requires dominance to change over time
such that the favored allele at any moment is dominant. Reversal of
dominance was the basis of Gillespie’s SAS-CFF model of non-
neutral genetic variation (Gillespie 1978; Hedrick 1986). More
recently, Wittmann et al. (2017) showed that reversal of domi-
nance can simultaneously stabilize hundreds of polymorphic loci
in mutation-selection balance, without an attendant genetic load
problem (i.e., the large number of segregating loci did not imply
fitness differences so large that they require an implausibly large
reproductive capacity; see also Gillespie 2010, p. 74).

Sign epistasis between locus pairs can stabilize polymor-
phism via an interaction with linkage disequilibrium (Novak and
Barton 2017). While this mechanism may be important at some

loci, we will not discuss it further because it is not clear how it
should be applied to more than two loci (other than that there are
simply many pairs of sign-epistatic loci).

Our second class of stabilizing mechanisms are ecological,
that is they depend on ecological interactions between individuals
rather than genetic interactions between alleles. We consider two
mechanisms in particular, which are both particular instances of
the “storage effect.” The storage effect encompasses a broad class
of fluctuation-dependent coexistence scenarios with potentially
very different biological underpinnings (Chesson 2000). Histor-
ically, the storage effect was introduced using a model with two
life stages, adults and juveniles, with overlapping generations and
competition among juveniles only (Chesson and Warner 1981).
In this model, some adults are “stored” over multiple rounds of
juvenile recruitment without themselves experiencing competi-
tion. This reduces losses in unfavorable environments, and allows
rare genotypes to rapidly recoup their losses when favorable envi-
ronmental conditions return. Overlapping generations and similar
phenomena like resting eggs in Daphnia have so far been the
focus of genetic applications of the storage effect (Ellner and
Hairston 1994; Yi and Dean 2013; Hedrick 2006; Svardal et al.
2015; although see Gulisija et al. 2016 for an epistatic interpre-
tation of the storage effect). What ties these phenomena together
is “protection from selection,’ that is, a fraction of each geno-
type/species experiences weakened selection. This is the first of
our ecological mechanisms.

The storage effect also includes scenarios where there is
no protection from selection in the above sense. We will con-
sider a stabilization phenomenon that occurs when population
density undergoes repeated “boom-bust” demographic cycles (Yi
and Dean 2013; Li and Chesson 2016), as is the case in temperate
Drosophila populations driven in part by seasonal variation in fruit
availability (Bergland et al. 2014). This phenomenon is a conse-
quence of crowding effects at higher densities, which can result in
longer generation times. When a rapid summer grower genotype
is common, the population will reach high densities more rapidly
than when a slow-growing winter-adapted type is common, result-
ing in fewer versus more generations of selection in the summer
for the two respective cases. This creates frequency-dependent
selection for the seasonal cycle as a whole, which can stabilize
polymorphism (Yi and Dean 2013).

The preceding paragraphs demonstrate that there is no short-
age of mechanisms that can stabilize polymorphism in the pres-
ence of temporal variability. Nevertheless, temporal variability
has not been regarded as a robust basis for arguing that balanced
polymorphism should be prevalent, or for explaining known bal-
anced polymorphisms, even though temporal variability is ubiq-
uitous. The reason for this is that most stability mechanisms based
on temporal variability require fluctuating selection to be strong
to have an appreciable stabilizing effect (Hoekstra et al. 1985;

8 8 4 EVOLUTION MAY 2019



STRONG VERSUS WEAK FLUCTUATING SELECTION

Smith and Hoekstra 1980; Hedrick 1986, 2006). That is, selec-
tion must strongly favor different genotypes at different times to
be able to counteract a nonnegligible difference in time-averaged
genotypic fitness. For example, taken in isolation, cumulative
overdominance is too weak to stabilize polymorphism unless se-
lection coefficients are at least of order 0.1 (Hoekstra et al. 1985,
Fig. 3). By comparison, in the above Drosophila example the
overall absolute change in allele frequency over a season—which
constitutes multiple generations— is itself only of order ∼ 0.1,
implying smaller selection coefficients (Wittmann et al. 2017;
Machado et al. 2018).

Reversal of dominance is the major exception to the strong-
selection requirement, and has recently been investigated as a
possible candidate to explain multilocus balancing selection in
Drosophila (Wittmann et al. 2017). However, escaping the strong
selection requirement means that reversal of dominance can sta-
bilize alleles of weak effect, which poses different problems. Un-
der the empirically well-supported assumption of diminishing-
returns epistasis (Chou et al. 2011; Kryazhimskiy et al. 2014),
Wittmann et al. (2017) found that the majority of polymorphic
loci in mutation-selection-drift balance had fitness effects so small
that their frequency oscillations were undetectable—at most ∼ 10
detectably oscillating loci could be stabilized. Because reversal
of dominance is able to stabilize polymorphism between seg-
regating alleles with weak fitness effects, the model predicted
the accumulation of weak-effect polymorphic loci. In the pres-
ence of diminishing returns epistasis, this accumulation made
the model incapable of generating stable polymorphisms of suf-
ficiently strong effects to match the many detectably oscillating
loci that have been observed in Drosophila. We are therefore faced
with the conundrum that most of the stability mechanisms depen-
dent on temporal variability require selection that is implausibly
strong, but the more effective reversal of dominance mechanism
allows selection to be so weak as to create other difficulties (it
is also unknown whether reversal of dominance is likely to be
prevalent in nature; see Gillespie 1978 and Wittmann et al. 2017
for discussion).

Here, we argue that ecological coexistence mechanisms help
to explain how it is possible to have a large number of detectably
oscillating polymorphisms stabilized by temporal variability. The
ecological mechanisms we consider also have a strong selection
requirement, offering nothing new over and above cumulative
overdominance in this respect. However, we will show that the
ecological mechanisms operate in conjunction with cumulative
overdominance. This expands the region of allelic fitness effects
compatible with balanced polymorphism, partly mitigating the
strong selection requirement. Moreover, this mitigation occurs
in such a way that the diminishing returns problem that arises
with reversal of dominance (discussed above) is avoided. Together
these results give a more favorable view of the stabilizing potential

of temporal variability, and could help to explain the Drosophila
findings of Bergland et al. (2014) and Machado et al. (2018).

Our analysis rests on a simplified model of fluctuating se-
lection that incorporates reversal of dominance, cumulative over-
dominance, protection from selection, and boom-bust demog-
raphy all at once. We assume that the environment alternates
between two states, “summer” and “winter.’ This significantly
simplifies the mathematical analysis compared to the more gen-
eral case of a stochastic environment (e.g., Chesson and Warner
1981). We use our model to derive a combined stability condition
including the effects of all of these mechanisms, which reveals
both their individual contributions to stability, as well as their in-
teractions.

Basic Model and Assumptions
Our basic model is a straightforward extension of the standard
equations for selection in diploids. We assume that a winter al-
lele W and a summer allele S are segregating at one locus in
a randomly mating population. Each iteration of the model in-
volves one round of random mating and juvenile recruitment to
reproductive maturity. Some fraction of the copies of each allele
are completely “protected” from selection, so that the allele fre-
quencies within the protected fraction remain constant from one
iteration to the next. The classic example of this form of protec-
tion is generational overlap (Chesson and Warner 1981): if only
a fraction 1 − f of reproductively mature individuals die and are
replaced each round of juvenile recruitment, then alleles in the
remaining fraction f experience no viability selection. Note that
the particular copies of each allele that are protected may change
between iterations. The environment alternates between summer
and winter such that the per-iteration relative fitnesses of unpro-
tected alleles take the values in Table 1. The change in winter
allele frequency pW over one iteration is thus given by

p′
W =

[
f + (1 − f )

wW W pW + wSW pS

w

]
pW , (1)

and similarly for the summer allele, where w = p2
SwSS +

2pS pW wSW + p2
W wW W is the mean relative fitness of unpro-

tected alleles. If there is no protection ( f = 0), we have the usual
p′

W = wW W pW +wSW pS
w

pW .
For polymorphism between W and S to be stable, both W and

S alleles must increase in frequency over a full summer/winter
cycle when rare. We will generally assume that the winter allele
is rare (pW % 1); the behavior of a rare summer allele will then
be obtained by swapping the S and W labels. Since W is rare, p2

W

terms are negligibly small in equation (1), which thus simplifies
to

p′
W =

[
f + (1 − f )

wSW

wSS

]
pW . (2)
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Table 1. Relative fitness values for unprotected summer/winter alleles in an alternating summer/winter environment. The variables aS

and aW denote the juvenile advantages of the S and W alleles in the summer and winter, respectively.

Summer homozygote Heterozygote Winter homozygote

Summer wSS(S) = 1 + aS wSW (S) = 1 + dSaS wW W (S) = 1
Winter wSS(W ) = 1 wSW (W ) = 1 + dW aW wW W (W ) = 1 + aW

Equation (2) expresses the fact that almost all individuals are S
homozygotes, and almost all copies of W occur in heterozygotes.

We denote number of summer and winter iterations by iS and
iW respectively. Therefore, the condition for the rare winter allele
to increase in frequency over a complete seasonal cycle is

[
f + (1 − f )

wSW (S)
wSS(S)

]iS
[

f + (1 − f )
wSW (W )
wSS(W )

]iW

> 1. (3)

Equation (3) will be the foundation for much of the analysis pre-
sented below. When we come to consider boom-bust population
demography we will also evaluate some extensions of equation (3)
that are better equipped for handling the effects of nonconstant
population density.

Results
STABILIZING MECHANISMS

In this section, we compare four mechanisms that can stabilize
polymorphism at a single locus in the presence of fluctuating se-
lection: cumulative overdominance, reversal of dominance, pro-
tection from selection, and boom-bust population demography.
We start by considering the first three of these separately, since
these are substantially simpler to analyze in the absence of boom-
bust demography. In particular, we can make the simplifying as-
sumption that iS and iW are constants (i.e., in each season selection
proceeds in the same way for a fixed number of iterations; as we
will see, this is not the case in the presence of boom-bust demog-
raphy).

To further simplify, we begin by setting iS = iW (unequal but
constant values of iS and iW do not induce frequency-dependence
and thus do not stabilize polymorphism). It is then straightforward
to show that equation (3) becomes (details in Appendix A)

(1 − dS)aS − dW aW < [ f + (1 − f )dS]dW aSaW . (4)

Below we use special cases of equation (4) to isolate the effects of
cumulative overdominance, reversal of dominance, and protection
from selection. We then extend our analysis to incorporate the
effects of boom-bust population demography.

Cumulative overdominance and reversal of dominance
We first consider the case of no protection ( f = 0) in equation (4).
Polymorphism can then be stabilized in two distinct ways. First,

cumulative overdominance (Dempster 1955) is a consequence of
weakened negative selection on rare winter alleles in the sum-
mer due to incomplete dominance. Its effect can be seen most
easily by assuming that dominance is constant between seasons,
such that the winter dominance is the complement of the summer
dominance dW = 1 − dS . Equation (4) then simplifies to

aS − aW < dSaSaW . (5)

Equation (5) shows that the rare winter allele can persist even if the
summer allele is superior (aS > aW ). The stabilizing effect gets
stronger with increasing summer dominance dS . Strong fluctuat-
ing selection is needed for stability, since the product of juvenile
advantages aW aS appears on the right hand side (the asymmetry
between allelic fitness effects can be at most second order in the
juvenile advantages aS and aW ).

Combining equation (5) with the corresponding condition
for a rare summer allele (given by eq. (5) with the S and W labels
swapped) defines a region of stable polymorphism for a given
dominance (Fig. 1 A, red). The requirement for strong fluctuating
selection can be seen not just by the small size of the red region as
a whole, but more specifically by the way it tapers to little more
than a line for small values of aS and aW .

The second way that stable polymorphism can occur is rever-
sal of dominance. This requires dominance to alternate between
seasons. For simplicity, let the magnitude of alternating domi-
nance be constant, that is dS = dW = d . Then equation (4) can be
written as

1 − d
d

aS − aW < daSaW . (6)

The right hand side of equation (6) represents the effects of cumu-
lative overdominance (compare eq. (5)). The effects of reversal of
dominance can be viewed in isolation by setting this term to zero,

1 − d
d

aS − aW < 0. (7)

In equation (7), the summer advantage aS is multiplied by the
factor (1 − d)/d , which is smaller than 1 if the favored allele
is dominant (d > 1

2 ). This stabilizes polymorphism by partly
offsetting any advantage that the common summer allele may
have. Unlike cumulative overdominance, which is second order
in the juvenile advantages, reversal of dominance has a first-order
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Figure 1. (A) Cumulative overdominance alone only stabilizes a
small region (red; dS = dW = 0.5 in eq. (5)), especially if selection
does not fluctuate strongly (aS and aW are not large). Reversal of
dominance creates a much larger region of stability (blue; d = 0.6
in eq. (7)). (B) Protection from selection in haploids (eq. (8)) stabi-
lizes a region with the same shape as cumulative overdominance
in diploids, and magnitude set by f . In diploids with both cumula-
tive overdominance and protection from selection, the stabilized
region is only modestly larger than protection from selection in
haploids (blue; dS = dW = 0.5 and f = 0.5 in eq. (4)). (C) Boom-
bust demography alone (red; c = 0.5 in eq. (11)) is similar to cumu-
lative overdominance, but is not symmetric (more of the red lies
below than above the dashed line) since it hinges on the summer
advantage aS. (D) Reversal of dominance alone (blue; eq. (7)) is ef-
fective at stabilizing alleles of any strength, but the combination
of cumulative overdominance and protection from selection (red)
is similarly effective for larger effect alleles.

effect (Fig. 1 A, blue). This powerful effect arises because rare
alleles are more often found in heterozygotes, thus granting them
the major benefit that heterozygotes are always closer in fitness
to the favored homozygote than to the unfavored homozygote.

Protection from selection
We now examine the effects of protection from selection, allow-
ing f > 0 (but still keeping the number of summer and winter
iterations equal iS = iW ). We do this in two stages for ease of
comparison with the diploid case discussed above. First, we con-
sider a haploid variant of our model where the winter genotype
has wW (S) = 1 and wW (W ) = 1 + aW , and the summer genotype

wS(S) = 1 + aS and wS(W ) = 1. It is then easily verified that the
condition for persistence of a rare winter allele is

aS − aW < f aSaW (8)

This condition can be derived from scratch in a similar way to
equation (4). Alternatively, we can simply observe that the haploid
case is a special instance of the diploid model where dS = 0 and
dW = 1 when the winter allele is rare, and dS = 1 and dW = 0
when the summer allele is rare (compare the haploid fitnesses
with Table 1, and then substitute these values into equation (4)).

Equation (8) is the same condition as equation (5), but with
dS replaced by f . Thus, as in the case of cumulative overdomi-
nance, stable polymorphism under protection from selection re-
quires fluctuating selection to be strong (Fig. 1 B, red). Intuitively,
protection favors rarity because, in the absence of protection, an
abundant type can easily displace a large fraction of a rare type’s
individuals when the abundant type is favored, due to sheer nu-
merical advantage. Protection thus limits the rare type’s fractional
losses. By contrast, a rare type can only displace a tiny fraction
of an abundant type’s individuals when the rare type is favored,
and its growth is therefore not limited by protection of the abun-
dant type.

In diploids, the effect of protection from selection is rep-
resented by the f + (1 − f )dS factor on the right hand side of
equation (4), representing an increase of (1 − f )dS over the cor-
responding factor in the haploid case equation (8). This increase
gets smaller for larger f , because cumulative overdominance only
affects unprotected allele copies.

Boom-bust demography
We now derive a condition analogous to equation (4) that ac-
counts for an additional source of negative frequency dependence
induced by boom-bust demography. This boom-bust demography
stabilizing mechanism requires: (1) alternating periods of popu-
lation expansion and collapse; (2) selection favoring the S allele
in the summer must be weaker at higher population density; (3)
the overall amount of growth in the summer (as measured by
the growth factor D from summer start to summer end) must be
frequency-independent. We comment on the plausibility of (2)
and (3) at the end of this section; first we illustrate the essential
features of the boom-bust demography stabilizing mechanism by
considering an idealized scenario in which selection ceases en-
tirely at high density (our approach follows Yi and Dean (2013)).

Although our basic model equation (1) does not explicitly
represent population density, it can nevertheless be used to il-
lustrate the boom-bust stabilizing mechanism by relaxing our
previous assumption that iS is constant. To show why this is
so, we first assume for simplicity that there is no protection
(the interaction between protection and boom-bust demography is
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addressed in the following section). Next, we assume that each
genotype grows at a constant rate in the summer (r -selection).
These genotype-specific absolute growth rates are assumed to
be proportional to the relative fitnesses in Table 1, and will be
denoted by r . For instance, the abundance of a rare winter al-
lele grows according to n′

W = rSW (S)nW , while n′
S = rSS(S)nS

for the summer allele, where rSW (S) = (1 + dSaS)rW W (S) and
rSS(S) = (1 + aS)rW W (S). Density-dependence is incorporated
by assuming that total population density N reaches carrying ca-
pacity before the end of summer, at which point selection ceases
entirely (satisfying condition (2)).

The winter is assumed to consist of density-independent
mortality at a constant rate α such that, in the rare-W case,
n′

W = αwSW (W )
w(W ) nW and n′

S = αwSS (W )
w(W ) nS where α < 1 and w is de-

fined in Table 1. Ecologically, this could represent the gradual loss
of viable overwintering sites, with the winter allele being better
at securing and holding those sites. Since the population growth
factor D in the summer is equal to the winter decline when the
boom-bust cycle is in a steady state, this winter mortality model
ensures that D is frequency-independent such that it has the same
value in the rare-S and rare-W cases.

The allele frequencies in the above model obey equation (1)
with f = 0, and so equation (3) applies with f = 0. However,
the number of iterations of selection in the summer iS is not
constant in equation (3), as was assumed in the preceding sec-
tions. Now iS depends on how many iterations of growth it takes
for the population to reach carrying capacity. This induces nega-
tive frequency-dependence because the common type determines
the mean population growth rate. Thus, a lower winter allele fre-
quency implies more rapid population saturation, and hence fewer
iterations of negative selection experienced by the winter allele.
Conversely, a lower summer allele frequency implies more itera-
tions of positive selection on the summer allele (Fig. 2). The result
is a stabilizing effect.

In Appendix B, we use equation (3) to quantify the boom-bust
stabilizing effect under the above assumptions. The number of
summer iterations iS is shown to depend on frequency as follows

iS|Srare ≈ iW (1 + caS) iS|Wrare ≈ iW (1 − caS), (9)

where c is a constant approximately equal to 1/2. The difference in
iS between the summer-rare versus winter-rare frequency regimes
is therefore first order in the summer advantage aS . This introduces
second-order terms into the stability condition equation (4), giving

(1 − dS)aS − dW aW < dSdW aSaW + c(1 − dS)a2
S . (10)

The condition for a rare summer allele to grow is obtained as
before by swapping labels in all terms apart from the last, which is

Figure 2. Illustration of a winter/summer boom-bust demo-
graphic cycle in a simplified model of exponential growth up to
saturation in the summer, and exponential decline in the winter.
The periods of selection in the summer and winter are marked
with green and blue boxes, respectively. Selection ceases when
total population density is at carrying capacity, causing there to
be more iterations of summer selection when the summer allele is
rare.

replaced by cdSa2
S (details in Appendix B). Similar to our analysis

of protection from selection, the effect of boom-bust demography
can be isolated by considering the haploid case (dS = 0 and dW =
1 when the winter allele is rare, dS = 1 and dW = 0 when the
summer allele is rare), which gives

aS − aW < ca2
S (11)

for a rare winter allele (and aW − aS < ca2
S for rare S).

Equations (10) and (11) show that the strength of the boom-
bust stabilizing mechanism is second order in the juvenile ad-
vantages, like cumulative overdominance and protection from
selection, but with the difference that the stabilizing term depends
on the summer advantage only (Fig. 1 C, red). Equation (10) also
shows that there is no interaction between the stabilizing contribu-
tions of boom-bust demography and cumulative overdominance
(the corresponding terms on the right hand side are simply added).
Intuitively we do not expect dominance to affect the boom-bust
mechanism because the latter depends on the growth rate of W and
S homozygotes; these determine the overall population growth
rate when the corresponding allele is common.

The above model of constant growth followed by stasis at
carrying capacity follows Yi and Dean’s (2013) model of coex-
istence in a microbial serial transfer experiment. The alternating
“seasons” in Yi and Dean (2013) are both booms, each followed
by a selectively neutral dilution step by a fixed dilution factor
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D. Here, the environmental cycle only involves a single boom
followed by a nonneutral bust, and we have shown that a rarity
advantage can also arise in this case under conditions (1)–(3).

Are conditions (2) and (3) plausible? The density-dependent
selection in (2) could reflect trade-offs between traits favorable
at low versus high densities, but (2) could also occur simply be-
cause less selection occurs at high density compared to the initial
low-density “boom” (e.g., due to reduced population turnover).
Condition (3) is open to the objection that we might expect total
population size at the end of the winter to be smaller if the winter
survivor W is rare than if it is common (Fig. 2). In this case,
the summer growth factor D up to carrying capacity would itself
depend on frequency in a way that eliminates the rarity advantage
induced by density-dependent growth (there would be no nega-
tive frequency dependence if we had assumed r -selection in the
winter as well). Thus, the plausibility of condition (3) hinges on
the extent to which selection in the winter represents simple dif-
ferences in extrinsic mortality rates versus a relatively inflexible
population bottleneck (e.g., scarce overwintering sites).

To complete our analysis of the boom-bust stabilizing mech-
anism, we supplement the above proof of principle with a sim-
ulation example that incorporates a more realistic description of
density-dependence. To preclude the possible stabilizing effects of
diploidy discussed in the preceding sections, we restrict ourselves
to the haploid case. We assume that growth in the summer follows
the Ricker model n′

S = erS (1−N/K )nS and n′
W = erW (1−N/K )nW

where rS = (1 + aS)rW and N = nS + nW . This model ensures
that selection favoring the S allele gets weaker at higher densi-
ties (condition (2) above). Our motivation for using the Ricker
model is that the comparably simple discrete-time logistic model
n′

S = rS(1 − N/K )nS does not satisfy condition (2) because se-
lection is density-independent (unless we additionally assume that
K differs between alleles; this is both more complicated and po-
tentially introduces coexistence in a constant environment that
would make analyzing the boom-bust stabilizing mechanism im-
possible). Winter mortality is the haploid version of the model
used above to obtain equation (10). Figure 3 shows the frequency
and abundance trajectories of S and W haplotypes coexisting sta-
bly due to the boom-bust demography coexistence mechanism.

Combining protection and boom-bust demography
In the previous section, we gave a simplified treatment of the
boom-bust stabilizing mechanism, which assumed (among other
things) that there was no protection. Here, we consider the com-
bined effects of protection and boom-bust demography.

In addition to allowing the boom-bust stabilizing mechanism
to occur, boom-bust demographic cycles can also modify the sta-
bilizing effects of protection, even if the boom-bust stabilizing
mechanism is not present (e.g., because selection favoring the
summer allele in the summer does not get weaker with increasing

Figure 3. An example of haploid polymorphism stabilized by
boom-bust demography where selection in the summer follows
the Ricker model n′

S = erS(1−N/K )nS and winter mortality occurs at
a constant rate n′

S = bSnS (blue areas indicate the summer allele).
Parameters: α = 0.6, aW = 0.1, rS = 0.7, aS = 0.2, K = 105, 10 gen-
erations/season.

density). The reason is that the effect of protecting a fraction f
of the allele copies in a given iteration depends on how many
juveniles are recruited in the next iteration. There will be essen-
tially no protective effect if the protected alleles are swamped by
juveniles during a demographic boom, and conversely the protec-
tive effect is amplified in a shrinking population. To illustrate this
point, consider a simple extension of equation (2) that allows pop-
ulation density to vary depending on the magnitude of juvenile
recruitment:

n′
W =

[
f + α(1 − f )

wSW

wSS

]
nW , (12)

and similarly for a rare summer allele. Here α represents the
magnitude of juvenile recruitment, and takes the constant values
αS > 1 in the summer and αW < 1 in the winter (our original
model eq. (2) is retrieved when αS = αW = 1, corresponding to
constant total population size N ). If the population is expand-
ing rapidly (αS ' 1), then the f term in equation (12) will be
negligibly small by comparison and it will be as though there is
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no protection in the summer. Conversely, the influence of the f
term will be amplified in the winter (when αW < 1) compared to
equation (2).

To measure the stabilizing effect in equation (12), we cal-
culate the average of each allele’s growth when rare over a full
seasonal cycle,

1
2

(
pinitial − pfinal

pinitial

∣∣∣∣
Srare

+ pinitial − pfinal

pinitial

∣∣∣∣
W rare

)
, (13)

where the juvenile advantages aS = aW are assumed to be equal.
Equation (13) allows us to quantify stabilizing effects numeri-
cally when we do not have neat analytical results such as equa-
tion (4). Importantly, since we average over the two rarity cases,
equation (13) is not sensitive to any asymmetries between win-
ter and summer that might intrinsically favor the S or W allele
even though aS = aW . Such asymmetries could be confused for
a rarity advantage/disadvantage if only one of the rarity scenar-
ios is examined in isolation, and are difficult to avoid in all but
the simplest models (e.g. eq. (2)). The stabilizing effect of pro-
tection in equation (12), as measured by equation (13), can be
enhanced or diminished relative to the constant-N case depend-
ing on the values of αS , αW , and f . The effect is enhanced in
many cases of biological relevance; Figure 4 shows two examples
(solid and black dashed lines). Intuitively, the reason for this is
that the enhanced protective effect due to the winter bust αW < 1
expands the overall region of coexistence more than the reduced
protective effect due to the summer boom truncates the region of
coexistence—but the region of coexistence will be asymmetric
(see Appendix C for more details).

Having considered the effects of boom-bust cycles on pro-
tection, we now turn to the interaction between the boom-bust
stabilizing mechanism and protection. Intuitively, we expect that
the combination of protection from selection and boom-bust de-
mography will be “zero-sum” because these mechanisms are most
effective under contrasting conditions. Protection is most effec-
tive in crowded conditions; protection only inhibits the growth of
a common allele if it must displace the rare allele to grow (see
“Protection from selection”). On the other hand, the boom-bust
stabilizing mechanism is most effective when summer growth
starts in uncrowded conditions, since this allows for the largest
proportional weakening in the strength of selection due to density-
dependence (see “Boom-bust demography”).

Equation (12) thus exaggerates the stabilizing potential of
protection, because juvenile recruitment is modeled as though
conditions are crowded at all population densities (the juvenile
recruitment rate is divided by the mean relative fitness). To rep-
resent the fact that selection at low densities will typically occur

Figure 4. The mere presence of boom-bust cycles enhances the
stabilizing effect of protection (solid and dashed black lines;
eq. (12)) compared to the case where N remains constant (blue
line), even in the absence of the boom-bust stabilizing mechanism.
The red line shows the rarity advantage in equation (14), which
captures the combined effects of protection, cumulative overdom-
inance, and the boom-bust stabilizing mechanism (this is our more
realistic model, in which crowding gradually becomes more impor-
tant with increasing density and selection is density-dependent).
The quantity on the vertical axis is defined in equation (13). Simu-
lation parameters: f = 0.5, αW = 0.5, dS = dW = 0.5, iS = iW = 10,
Ninitial = 103, K = 105.

in uncrowded conditions, we consider a slightly modified version
of equation (12) in the summer

n′
W =

[
f + αS(1 − f )

(
1 − N

K

)
wSW

]
nW , (14)

and similarly for a rare summer allele. Here N = nS + nW , and K
represents the environmental carrying capacity. In equation (14),
selection favoring the summer allele gets weaker as density in-
creases (provided that f (= 0), as required for the boom-bust sta-
bilizing mechanism to work. At low population densities there
is no competition and selection is based purely on intrinsic
growth rates (r -selection). On the other hand, once the popu-
lation has grown to high density and reached equilibrium, N
must be constant that implies that the population mean abso-
lute fitness f + αS(1 − f )(1 − N

K )w is equal to 1. Substituting
this equilibrium requirement into equation (14) brings us back to
our basic model equation (2) again, where selection happens in
crowded conditions.

In Figure 4, we compare the rarity advantages obtained
from simulations of equation (12) and equation (14). It can be
seen that, in both of these models, boom-bust demography has a
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stabilizing effect. The stabilizing effects of protection in equa-
tion (12) (solid black line) are indeed exaggerated compared to the
more realistic treatment of density dependence in equation (14)
(red line). Nevertheless, the rarity advantage in the latter result-
ing from the combination of protection in a variable population,
cumulative overdominance, and the boom-bust stabilizing mecha-
nism, is still substantially stronger than protection and cumulative
overdominance in a constant population (blue line; i.e., the situa-
tion summarized by equation (4)).

STABILIZING WEAK VERSUS LARGE EFFECT ALLELES

In sections 3.1.1-3.1.3 we showed that, for polymorphism to be
stable, the difference between aS and aW (which represents the
extent to which one allele is superior to the other over a seasonal
cycle), can be at most first order in the juvenile advantages under
reversal of dominance, but at most second order under the other
three mechanisms. This has consequences for the stabilization of
alleles with weak versus strong fitness effects.

The “effectiveness” of stabilization can be quantified in terms
of the greatest difference in juvenile advantages aS and aW com-
patible with stable polymorphism. The simple difference aS − aW

is not a good measure of effectiveness because the magnitude of
this difference will often be proportional to the magnitude of the
underlying advantages (the contribution of a locus to fitness sets
the scale for aS and aW , as well as their difference). Thus, the fact
that the regions of stability in Figure 1 grow wider for larger aS

and aW does not mean that stabilization is more effective, because
the allelic differences that would typically need to be stabilized
are growing as well. Consequently, a better measure of effective-
ness is the greatest proportional difference compatible with stable
polymorphism, given by aS−aW

aW
for a rare winter allele, and aW −aS

aS

for a rare summer allele.
In the case of reversal of dominance, a rare winter allele

can stably segregate with a summer allele with advantage up
to aS = d

1−d aW , and so the effectiveness of balancing selection
is a constant d

1−d − 1. Thus, reversal of dominance is equally
effective at stabilizing alleles with weak or strong fitness effects.
This results in a broad region of stability even for small juvenile
advantages (Fig. 1 D).

On the other hand, the effectiveness of balancing selection
for cumulative overdominance in equation (5) is dSaS (or dW aW

for a rare summer allele). Thus, balancing selection is completely
ineffective for alleles with very small juvenile advantages, but
becomes more effective as the juvenile advantages increase. Sim-
ilar results apply for protection from selection and boom-bust
demography. The combined stability region for cumulative over-
dominance, protection from selection and boom-bust demography
is thus negligibly small for small aS and aW (Fig. 1 D, red), but
rapidly becomes comparable to the reversal of dominance stabil-
ity region as the juvenile advantages increase. The combination of

cumulative overdominance, protection from selection, and boom-
bust demography therefore filters out alleles with weak effect
while stabilizing stronger effect alleles.

JUVENILE ADVANTAGES AND THE STRENGTH OF

SELECTION

Cumulative overdominance, protection from selection, and boom-
bust demography require aS, aW ∼ 0.1 or more to have a mean-
ingful “effectiveness” (see preceding section). Equation (4) im-
plies an effectiveness of ≈ 10% when the juvenile advantages are
≈ 0.1. The permissible difference aW − aS grows rapidly with
increasing aS thereafter. Such values may seem implausibly high
to be prevalent in nature. Even in the temperate Drosophila case,
where selection at the individual level is regarded as strong, the
total change in allele frequencies over a season is only of or-
der ∼ 0.1. The number of generations per season is not known
(Machado et al. 2018), but each season probably constitutes mul-
tiple generations (e.g., Wittmann et al. (2017) suggest ∼ 10 gen-
erations/season). At face value this does not seem compatible with
selection strong enough to allow cumulative overdominance, pro-
tection from selection, and boom-bust demography to be effective.

In Figure 5, we compute the juvenile advantage implied by
a given seasonal allele frequency change for an allele at interme-
diate frequencies. For simplicity, we assume that only protection
from selection and cumulative overdominance are present. Since
we are considering alleles at intermediate frequencies we use
equation (1)). Following the temperate Drosophila case, we set
our given allele frequency change as an increase of 0.1 over the
summer from pS = 0.45 to pS = 0.55 (most of the fluctuating
loci observed by Machado et al. (2018) exhibited smaller fluctu-
ations of 0.04 − 0.08 per season but it is not clear which of these
are balanced versus hitchhiking; we follow (Wittmann et al. 2017)
in using 0.1 as a representative figure). We consider a range of
possible values of summer iterations iS = 10 − 20. This range of
values is based on the assumption that each “season” constitutes
half a year, and that the portion of the life cycle from egg lay-
ing to reproductive maturity takes ∼ 10 − 15 days in Drosophila
(corresponding to one iteration of our model). Figure 5 shows that
the summer advantage must be at least aS ∼ 0.05 for a seasonal
allele frequency change of 0.1. Larger values are needed if there
is protection, or if fewer iterations occur per season.

Discussion
We have analyzed four different mechanisms that induce balanc-
ing selection under temporal variation, the resulting effective-
ness of balancing selection, and how these mechanisms interact.
Previous analyses critiquing the stabilizing potential of temporal
variability considered cumulative overdominance and reversal of
dominance only (Smith and Hoekstra 1980; Hoekstra et al. 1985;

EVOLUTION MAY 2019 8 9 1



J. BERTRAM AND J. MASEL

A

B

Figure 5. (A) Juvenile advantages of at least ∼ 0.05 per iteration
are needed to produce a total juvenile allele frequency change of
0.1. Larger values are needed in the presence of protection, or if
there are fewer rounds of juvenile recruitment each season. The
change in allele frequency is given by equation (1). (B) An example
of stable polymorphism assuming protection from selection and
cumulative overdominance only (iS = 10, aS = 0.2, aW = 0.21, f =
0.5, dS = dW = 0.5 in eq. (4)). After running for 100 seasonal cycles
to ensure that the steady-state cycle has been reached, the summer
allele oscillates between P = 0.3 and P = 0.4.

Hedrick 1986), and concluded that only reversal of dominance has
a strong enough stabilizing effect to be taken seriously as a basis
for balanced polymorphism. Here, we also consider the ecologi-
cal effects of protection from selection and boom-bust demogra-
phy. In our model, the juvenile advantages aS and aW determine
whether selection is strong enough for balanced polymorphism
(Fig. 1). Protection from selection and boom-bust demography
expand the region of juvenile advantages compatible with stable
polymorphism. Moreover, we show that seasonal allele frequency
changes of ∼ 0.1, as observed in temperate Drosophila popula-
tions, imply juvenile advantages of at least ∼ 0.05, with larger
values needed in the presence of protection (Fig. 5). Together
these findings suggest that the scope for temporal variability to
balance polymorphism is wider than previous analyses appre-
ciated (Smith and Hoekstra 1980; Hoekstra et al. 1985; Hedrick
1986), particularly due to mechanisms other than reversal of dom-
inance.

EMPIRICAL TESTS AND IMPLICATIONS

Protection from selection and cumulative
overdominance
The protection from selection mechanism is probably widespread,
given some amount of protection from the overlapping gener-
ations of iteroparous organisms. However, protection from se-
lection will not be effective at stabilizing polymorphism unless
selection is also strong, as measured by the juvenile advantages
aS and aW . Similar considerations apply for cumulative over-
dominance; the required incomplete dominance is also likely to
be widespread, but will not be effective at stabilizing polymor-
phism unless selection is strong. The strong selection requirement
presumably limits the prevalence of these mechanisms as a sta-
bilizers of polymorphism. However, as we have seen in Sec. 3.3,
Drosophila data are compatible with juvenile advantages being
surprisingly large, particularly if the fraction of protected alleles f
is appreciable. Specifically, Figure 5 suggests that juvenile advan-
tages of order ∼ 0.1 are compatible with the magnitude of allele
frequency oscillations; this is strong enough for mechanisms other
than reversal of dominance to stabilize polymorphism.

Estimating the magnitude of f is challenging. In many mod-
els with protection, generational overlap is the primary form of
protection, fecundity remains constant with age, and total popu-
lation density is constant (Chesson and Warner 1981; Ellner and
Hairston 1994; Svardal et al. 2015). The strength of protection f is
then simply the fraction of surviving adults each round of juvenile
recruitment. With this simple model model in mind we can get
a rough estimate of the magnitude of f in wild Drosophila from
laboratory measurements. Female fecundity peaks ≈ 5 days after
reaching reproductive maturity but egg laying continues up to
20 days after which female survivorship declines rapidly (Le
Bourg and Moreau 2014). We approximate this as death occur-
ring at 20 days. Assuming that it takes 10 days to develop from
an egg to reproductive maturity, this means that females persist
for roughly two rounds of juvenile recruitment under laboratory
conditions. This corresponds to a protection due to overlapping
generations of f = 0.5. This number is probably an overestimate
since females in the wild are subject to additional sources of
mortality such as predation and parasitism, and female fecundity
declines with age.

In reality, protection is more complicated. Adults may also
experience some selection, for example due to predation/parasites.
In this case, protected alleles only experience weakened negative
selection, not complete protection; f + (1 − f ) w

w
in equation (2)

would then be replaced by f wP
wP

+ (1 − f ) wU
wU

where P and U
stand for “protected” and “unprotected,” respectively. Additional
complications arise in an expanding population. For instance, the
strength of protection may depend on how rapidly the population
is growing; even if the proportion of surviving adults is large, they
will only constitute a small fraction of the population if a large
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number of juveniles is recruited to adulthood each iteration. Other
forms of protection include maternal effects, which can confer
protection because, in any given iteration, some fraction of unfa-
vored alleles will have a favored mother (e.g., the heterozygote
offspring of a summer homozygote in the summer). We would
then need to distinguish between the possible parental combina-
tions that an allele might experience (Wolf and Wade 2016). The
development of population genetic methods to quantify protection
from selection is needed.

Finally, note that protection depends upon the presence of
crowding (section “Combining protection and boom-bust demog-
raphy”). While crowding is likely to be important in organisms
with relatively stable demography, which are presumably at or
near their environmental carrying capacity, the presence of strong
crowding effects is less certain in populations that undergo cycli-
cal collapses in population density.

Boom-bust demography
Boom-bust demography is distinguished by its reliance on
density-dependent selection induced by crowding. A relatively
simple way to test for the presence of stabilization driven by boom-
bust demography would be to alleviate the effects of crowding by
artificially constraining density, for example via culling of adults.
Adult culling would also mitigate the effects of overlapping gen-
erations (which would also be affected by changes to crowding).
If boom-bust demography is indeed stabilizing polymorphism,
we would then expect temporally averaged allele frequencies to
shift (potentially even losing the polymorphism), as a result of the
weakening of the boom-bust demography rarity advantage.

Reversal of dominance
Reversal of dominance is distinguished by its high effectiveness:
it is an order of magnitude stronger than cumulative overdom-
inance, protection from selection and boom-bust demography.
Among the mechanisms considered here, reversal of dominance
is unique in being insensitive to the magnitude of the juvenile ad-
vantages (Sec. 3.2). Thus, we might be able to test for the presence
of reversal of dominance stabilization by experimentally weak-
ening the juvenile advantages aS and aW by similar proportions.
We would then expect to only see a reduction in the amplitude
of allele frequency oscillations, with comparatively little change
in temporally averaged allele frequencies. The reason for this is
that the temporally averaged allele frequency is set by a balance
between the superior juvenile advantage of one allele and the
rarity advantage of the other; under reversal of dominance these
both scale with the juvenile advantage. By contrast, under cumu-
lative overdominance, protection from selection and boom-bust
demography, the rarity advantage rapidly disappears for smaller
aS and aW , and we would expect to see the allelic superiority
overwhelming it if we weaken selection.

Multilocus polymorphism
Our analysis has considered the simple case of two alleles seg-
regating at a single locus. To understand pervasive balancing se-
lection, we must confront the multilocus case (Wittmann et al.
2017), which requires us to account for the interactions between
loci. These interactions can occur via linkage or epistasis. Note
that, even if recombination rates are high, overlapping generations
in the presence of selection will generate linkage disequilibrium.
Linkage can either act to preserve or eliminate genetic variation at
a given locus depending on whether nearby loci are under direc-
tional or balancing selection. As such, linkage does not directly
promote or eliminate balanced polymorphism (although linkage
can stabilize polymorphism in combination with sign epistasis;
Novak and Barton 2017).

Many different forms of epistasis are possible, some of which
can dramatically alter the stability of polymorphism at individual
loci (Novak and Barton 2017; Gulisija et al. 2016). However, at the
genomic scale there is empirical support for diminishing returns
epistasis when combining the beneficial effects of segregating al-
leles across loci (Chou et al. 2011; Kryazhimskiy et al. 2014). Di-
minishing returns epistasis has important consequences for mul-
tilocus polymorphism if weak effect alleles can be stabilized:
weak effect polymorphic loci will accumulate and preclude larger
effect polymorphisms from being present in mutation-selection-
drift balance as a result of diminishing returns (Wittmann et al.
2017). This poses a problem for reversal of dominance, but not
cumulative overdominance, protection from selection and boom-
bust demography (Sec. 3.2).

We can therefore make the following conclusions about mul-
tilocus polymorphism in Drosophila. If reversal of dominance
is indeed responsible for balancing these polymorphisms, then
it must somehow get around its weak allele problem. One way
this might occur is if reversing dominance is less likely to oc-
cur in weak effect alleles. Unless there is a solution to the weak
allele problem, mechanisms that do not stabilize weak effect al-
leles must be responsible for stabilizing many of the observed
polymorphisms (assuming that these alleles are indeed balanced;
migration is one important alternative); this could include the three
weaker mechanisms considered here. Although we have shown
that seasonally oscillating selection in Drosophila could plausibly
be strong enough for these weaker mechanisms to be effective, a
more definitive conclusion rests upon either estimating the mag-
nitude of f , or on direct measurements of the juvenile advantages
aS and aW .

EXTENSIONS AND LIMITATIONS

Much of our analysis rests on standard population genetic mod-
els of selection in diploids, and is therefore subject to the usual
caveats (e.g., the lack of frequency-dependence in aS and aW , ran-
dom mating, and so on). Our extension of these standard models to
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incorporate protection is derived from classical models of protec-
tion induced by generational overlap (Chesson and Warner 1981;
Svardal et al. 2015). As discussed above, our description of pro-
tection would need to be modified to describe more complicated
forms of protection.

In our treatment of boom-bust demography, we have only
considered one model that explicitly represents density-dependent
selection (eq. (14)). Many other choices are possible here, which
could depend on the model of protection. The variable-density
territorial contest model of Bertram and Masel (2019), which
has overlapping generations as its protection mechanism, is one
possibility for exploring some of these issues. One important
possibility that we have not discussed is if density dependence
causes selection to switch sign such that the winter type is favored
at high density (e.g., due to a growth/competitive ability trade-off).
We have specifically avoided this scenario here since it would
allow polymorphism in a stable environment and our focus is on
fluctuation-dependent stability mechanisms.

Due to our focus on fluctuation-dependent stability mecha-
nisms, we have also not attempted to explore spatial variation or
phenotypic variation within genotypes (individual variation), or
how different sources of variation interact (see Frank and Slatkin
1990 and Svardal et al. 2015).

When evaluating whether two alleles will stably persist, we
have taken the allelic juvenile advantages to be fixed quantities. In
the long term the juvenile advantages will evolve, leaving open the
possibility that polymorphism is not evolutionarily stable (Ellner
and Hairston 1994). This scenario is addressed by Svardal et al.
(2015), who derive conditions for polymorphism in variable en-
vironments based on “evolutionary branching.” That is, Svardal
et al. (2015) require a rarity advantage at an attractor in the dy-
namics of a quantitative trait evolving by sequential substitutions
of small effect mutations. Our model does not have any attractors
in this sense, because in the absence of further assumptions, evo-
lution will favor generalist alleles with ever increasing advantages
in both seasons. This is not biologically reasonable because it fails
to account for trade-offs in traits associated with summer versus
winter success. In the absence of a model of these trade-offs, it is
therefore not possible to further connect the findings of Svardal
et al. (2015) to ours.

This points to a broader divide between population genetic
and more phenotypic approaches (such as adaptive dynamics) to
the study of genetic variation. Adaptive dynamics approaches typ-
ically view variation through the lens of evolutionary branching,
which implies disruptive selection at the phenotypic level. One
consequence of disruptive selection is that fitness-associated ge-
netic variation is expected to become concentrated at a few loci,
not dispersed over many, because recombination is more likely
to produce less fit intermediate phenotypes when genetic vari-
ation is dispersed (Kopp and Hermisson 2006; van Doorn and

Dieckmann 2006; Svardal et al. 2015). The population genetic
approach does not require phenotypic disruptive selection, and
predicts no tendency for genetic variation to be concentrated
(Wittmann et al. 2017). However, population genetic approaches
generally do not specify the phenotypic basis of selection at all.
This quickly becomes problematic when trying to account for
ecological factors, as we have seen in the case of boom-bust
demography. There is therefore a need to better integrate the pop-
ulation genetic and phenotypic approaches.
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Appendix
Appendix A: Details of the Diploidy and

Protection from Selection Conditions

Here derive the condition for stable polymorphism under the com-
bined effects of diploid Mendelian inheritance and protection from
selection, equation (8). Recall that this condition assumes iS = iW ,
and so we can take the iW ’th root to remove the exponents in equa-
tion (3). Multiplying by wSS(S)wSS(W ), equation (3) can thus be
written as

[ f wSS(S) + (1 − f )wSW (S)][ f wSS(W ) + (1 − f )wSW (W )] >

wSS(S)wSS(W ). (A1)

Substituting from Table 1 we have,

[ f (1 + aS) + (1 − f )(1 + dSaS)][ f + (1 − f )(1 + dW aW )] >

1 + aS, (A2)

which can be simplified to

[1 + ( f + (1 − f )dS)aS][1 + (1 − f )dW aW ] > 1 + aS . (A3)

Multiplying out the square brackets and subtracting the right hand
side gives

( f − 1)aS + (1 − f )dSaS + (1 − f )dW aW + (1 − f )

( f + (1 − f )dS)aSdW aW > 0. (A4)

Dividing by (1 − f ) then gives

(dS − 1)aS + dW aW + ( f + (1 − f )dS)aSdW aW > 0, (A5)

which yields equation (4).
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Appendix B: Details of the Boom-bust Condition

Here, we derive equation (10), which gives gives the condition
for stable polymorphism in the presence of boom-bust popula-
tion demography assuming a simplified representation of density-
dependence in which only r -selection occurs (see section “Boom-
bust demography” for assumptions and notation).

If the winter allele is rare, the summer homozygote deter-
mines the overall rate of population expansion, and we have
(bSS)iS|Wrare = D, or equivalently iS|Wrare = ln D/ ln bSS . On
the other hand, if the summer allele is rare, then
iS|Srare = ln D/ ln bW W = ln D/[ln bSS − ln(bSS/bW W )], where
bSS/bW W = wSS(S)/wW W (S) = 1 + aS . Thus, to first order in
aS we have ln bSS/bW W ≈ aS , and

iS|Srare ≈ ln D
ln bSS − aS

= ln D
ln bSS

1
1 − aS/ ln bSS

≈ iS|Wrare(1 + aS/ ln bSS). (B1)

Defining i = (iS|Srare + iS|Wrare)/2 as the “baseline” number of
summer iterations, we therefore have iS|Srare ≈ i(1 + caS) and
iS|Wrare ≈ i(1 − caS) to first order in aS , where c = 1/(2 ln bSS).

The strength of the boom-bust stabilizing mechanism is con-
trolled by the constant c = 1/(2 ln bSS). This dependence of c on
bSS is a consequence of the discrete-time nature of our model.
In the continuous time limit where each iteration represents a
vanishingly small growth increment, c → 1/2 and the boom-bust
stability mechanism depends entirely on relative ratios between
absolute Malthusian parameters (compare Yi and Dean 2013). In
practice, c will typically be of close to 1/2 unless growth is ex-
tremely rapid (e.g., c ≈ 0.72 in a population that doubles every
summer iteration). We therefore set c = 1/2 in Fig. 1.

For simplicity, in equation (9) we assume symmetry between
the seasons, such that the winter has the same number of iterations
as the baseline number of summer iterations, that is iW = i with
iS = iW in the case where aS = 0. In the asymmetric case where
either summer or winter is intrinsically longer, a different region
of juvenile advantages can permit stable polymorphism. For in-
stance, the summer advantage must be larger for a given winter
advantage if iW > i . But this asymmetry does not affect the overall
magnitude of the stabilized region, because constant differences
between iS and iW do not introduce frequency dependence.

Taking the iW ’th root of equation (3) with f = 0, our stability
condition for a rare winter allele can thus be written analogously
to equation (A3) as

[1 + dSaS]iS/ iW [1 + dW aW ] > (1 + aS)iS/ iW , (B2)

where iS/ iW = 1 − caS . We then apply the general-
ized binomial theorem: (1 + x)r = 1 + r x + r−1

2! x2 + · · · This

implies (1 + aS)1−caS = 1 + (1 − caS)aS + O(a3
S), and simi-

larly [1 + ( f + (1 − f )dS)aS]1−caS = 1 + ( f + (1 − f )dS)(1 −
caS)aS + O(a3

S). Neglecting third-order terms in aS , equa-
tion (B2) is thus the same as equation (A3), but with aS replaced
by (1 − caS)aS and f = 0. The same steps used to obtain equa-
tion (4) from equation (A3) (Appendix A) will therefore yield
equation (4) with aS replaced by (1 − caS)aS . In the resulting
inequality, the caS contribution on the right hand side is O(a3

S)
and can be neglected, and we move the caS contribution on the
left hand side to the right to obtain equation (10).

The corresponding condition for a rare summer allele is ob-
tained by swapping S and W labels in equation (A3) and then
replacing aS → (1 − caS)aS , again neglecting O(a3

S) terms and
setting f = 0. The caS contribution on the left now appears in
the term −dS(1 − caS)aS ; the boom-bust demography term on the
right is thus cdSa2

S for a rare summer allele.

Appendix C: Protection in the Presence of

Boom-bust Cycles

Here, we give some mathematical details of how protection be-
haves in the presence of boom-bust cycles. Applying the same
procedure as outlined in Appendix A to the haploid version of
equation (12), it can be shown that the condition for stable poly-
morphism is given by

aW − aS + f
(

αW − 1
αW

aS − αS − 1
αS

aW

)
<

f
αW

aSaW

aS − aW + f
(

αS − 1
αS

aW − αW − 1
αW

aS

)
<

f
αS

aSaW (C1)

for the rare-S and rare-W cases, respectively. The last term on the
left represents the fact that the juvenile advantages aS and aW no
longer contribute on equal terms to per-capita growth due to the
asymmetrical effects of protection in the summer and winter. This
term simply switches sign when the S and W labels are switched
in the rare-W versus rare-S cases, and it therefore makes zero
contribution to the overall advantage of rarity in equation (13).
The enhancement of the overall region of stability arises due to the
fact that in a population undergoing boom-bust cycles, 1/αW ' 1
on the right hand side. Provided that the boom-bust cycles are large
enough (i.e., αW is small enough), this will more than offset the
loss of coexistence due to the fact that 1/αS < 1 in the rare-W
case—but the region of coexistence will now be asymmetric.
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Diminishing returns epistasis among beneficial mutations decelerates
adaptation. Science 332:1190–1192.

Dempster, E. R. 1955. Maintenance of genetic heterogeneity. Cold Spring
Harb. Symp. Quant. Biol. 20:25–31.

van Doorn, G. S., and U. Dieckmann. 2006. The long-term evolution of mul-
tilocus traits under frequency-dependent disruptive selection. Evolution
60:2226–2238.

Ellner, S., and N. G. Hairston. 1994. Role of overlapping generations in
maintaining genetic variation in a fluctuating environment. Am. Nat.
143:4603–417.

Frank, S. A., and M. Slatkin. 1990. Evolution in a variable environment. Am.
Nat. 136:244–260.

Gillespie, J. H. 1978. A general model to account for enzyme variation in
natural populations. v. the sas-cff model. Theoret. Popul. Biol. 14:1–45.

———. 2010. Population genetics: A concise guide. 2nd ed. John Hopkins
Univ. Press, Baltimore, Maryland.

Good, B. H., M. J. McDonald, J. E. Barrick, R. E. Lenski, and M. M. Desai.
2017. The dynamics of molecular evolution over 60,000 generations.
Nature 551:45.

Gulisija, D., Y. Kim, and J. B. Plotkin. 2016. Phenotypic plasticity promotes
balanced polymorphism in periodic environments by a genomic storage
effect. Genetics 202:1437–1448.

Haldane, J., and S. Jayakar. 1963. Polymorphism due to selection of varying
direction. J. Genet. 58:237–242.

Hedrick, P. W. 1986. Genetic polymorphism in heterogeneous environments:
a decade later. Ann. Rev. Ecol. Syst. 17:535–566.

———. 2006. Genetic polymorphism in heterogeneous environments: the age
of genomics. Ann. Rev. Ecol. Evol. Syst. 37:67–93.

Hoekstra, R. F., R. Bijlsma, and A. Dolman. 1985. Polymorphism from envi-
ronmental heterogeneity: models are only robust if the heterozygote is
close in fitness to the favoured homozygote in each environment. Genet.
Res. 45:299–314.

Keightley, P. D., and D. L. Halligan. 2008. Analysis and implications of
mutational variation. Genetica 136:359.

Kopp, M., and J. Hermisson. 2006. The evolution of genetic architec-
ture under frequency-dependent disruptive selection. Evolution 60:
1537–1550.

Kryazhimskiy, S., D. P. Rice, E. R. Jerison, and M. M. Desai. 2014. Global
epistasis makes adaptation predictable despite sequence-level stochas-
ticity. Science 344:1519–1522.

Kunte, K. 2009. Female-limited mimetic polymorphism: a review of theories
and a critique of sexual selection as balancing selection. Anim. Behav.
78:1029–1036.

Le Bourg, E., and M. Moreau. 2014. Individual late-life fecundity plateaus do
exist in Drosophila melanogaster and are very common at old age. Exp.
Gerontol. 55:102–106.

Lesecque, Y., P. D. Keightley, and A. Eyre-Walker. 2012. A resolution of the
mutation load paradox in humans. Genetics 191:1321–1330.

Li, L., and P. Chesson. 2016. The effects of dynamical rates on species coex-
istence in a variable environment: the paradox of the plankton revisited.
Am. Nat. 188:E46–E58.

Lynch, M., J. Blanchard, D. Houle, T. Kibota, S. Schultz, L. Vassilieva, and J.
Willis. 1999. Perspective: spontaneous deleterious mutation. Evolution
53:645–663.

Machado, H., A. O. Bergland, R. Taylor, S. Tilk, E. Behrman, K. Dyer,
D. Fabian, T. Flatt, J. Gonzalez, T. Karasov, et al. 2018. Broad ge-
ographic sampling reveals predictable and pervasive seasonal adapta-
tion in drosophila. bioRxiv URL https://www.biorxiv.org/content/early/
2018/06/03/337543.

Novak, S., and N. H. Barton. 2017. When does frequency-independent selec-
tion maintain genetic variation? Genetics 207:653–668.

Smith, J. M., and R. Hoekstra. 1980. Polymorphism in a varied environment:
how robust are the models? Genet. Res. 35:4557.

Svardal, H., C. Rueffler, and J. Hermisson. 2015. A general condition for
adaptive genetic polymorphism in temporally and spatially heteroge-
neous environments. Theoret. Popul. Biol. 99:76–97.

Wittmann, M. J., A. O. Bergland, M. W. Feldman, P. S. Schmidt, and D.
A. Petrov. 2017. Seasonally fluctuating selection can maintain polymor-
phism at many loci via segregation lift. Proc. Natl. Acad Sci. 114:E9932–
E9941.

Wolf, J. B., and M. J. Wade. 2016. Evolutionary genetics of maternal effects.
Evolution 70:827–839.

Yi, X., and A. M. Dean. 2013. Bounded population sizes, fluctuating selec-
tion and the tempo and mode of coexistence. Proc. Natl. Acad. Sci.
110:16945–16950.

Associate Editor: T. Cooper
Handling Editor: M. Servedio

8 9 6 EVOLUTION MAY 2019


