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Phenotypic plasticity refers to the capacity of the same organisms
to exhibit different characteristics under varied environmental
conditions. A plastic developmental program allows organisms to
sense environmental cues in early stages of life and express phe-
notypes that are better fitted to environments encountered later
in life. This is often considered an adaptive strategy for living
in varying environments as long as the plastic response is suffi-
ciently fast, is accurate, and is not too costly. However, despite
direct costs of maintaining plasticity and producing phenotypes,
a fundamental constraint on the benefit of phenotypic plasticity
comes from the predictability of the future environment based
on the environmental cues received during development. Here,
we analyze a model of plastic development and derive the lim-
its within which this strategy can promote population growth. An
explicit expression for the long-term growth rate of a develop-
mentally plastic population is found, which can be decomposed
into several easily interpretable terms, representing the bene-
fits and the limitations of phenotypic plasticity as an adaptation
strategy. This growth rate decomposition has a remarkably similar
form to the expressions previously obtained for the bet-hedging
strategy, in which a population randomly diversifies into coex-
isting subgroups with different phenotypes, implying that those
evolutionary strategies may be unified under a common general
framework.
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Many organisms have the ability to express different phe-
notypes in response to environmental conditions. Such

phenotypic plasticity allows individual organisms to develop
appropriate morphological, physiological, or behavioral traits
that better fit a particular environment that they encounter.
Some remarkable examples are found in animals that show
distinctive polyphenism (1, 2). For instance, different genera-
tions of butterfly (e.g., Araschnia levana) may develop alternative
color patterns on their wings, known as the spring and the sum-
mer forms, depending on which season they emerge from pupa
(3). Water fleas (Daphnia) can grow large helmets and spikes
in defense against predators—a response induced by predator
cues, such as the concentration of kairomones in the water (4).
More remarkably, the tadpoles of certain spadefoot toads (Spea),
which live in desert areas and breed in temporary ponds filled
by rain, can become carnivorous and even cannibalistic to facil-
itate early metamorphosis if they sense that the pond is drying
out (5).

Such phenotypic plasticity can be considered as an evolution-
ary strategy for adapting to variable environments. To overcome
the uncertainty of the environment, juvenile organisms may rely
on environmental cues sensed during their development to guide
the expression of phenotypes that have a better chance of sur-
viving in the environment that they encounter as adults. Such a
“plastic strategy” is useful if the environmental cues are reliable
and if the plastic response is not too costly. Several types of costs
and limits of phenotypic plasticity have been discussed in the
literature (6, 7). Among the most important ones are the costs
connected with the extended period often necessary for devel-

opment and with unexpected changes of the environment during
or after this time, which may render the expressed phenotype
maladapted.

For unpredictable stochastic environmental variations, an
alternative strategy of adaptation is bet hedging. In its extreme
form, the population does not need to sense the environmental
cues: it may randomly diversify into coexisting subpopulations
of different phenotypes so that one of them will have the
chance to survive. This bet-hedging strategy has been exten-
sively studied from both experimental and theoretical points of
view (8–16). One of the general quantitative results found in
these studies is that the limit to which bet hedging can promote
long-term population growth is given by the amount of infor-
mation that the organisms can extract from the environment
(Discussion).

Here, we study an analogous problem for the plastic strategy.
That is, in a stochastically varying environment, how much can
the growth of a population benefit from phenotypic plasticity?
We also address related questions: for example, what is the opti-
mal form of the plastic response? We answer these questions by
considering a simple but general model and by deriving within its
framework a fundamental limit to the benefit of phenotypic plas-
ticity in terms of population growth rate. Finally, we compare
our results with those for the bet-hedging strategy and reveal an
interesting similarity between them.

Model
Consider an organism that undergoes a plastic developmental
process over a finite time and expresses an adult phenotype that
is then irreversible for the rest of the life. During its develop-
mental stage, the juvenile organism receives certain cues about
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Reviewers: M.-A.F., École Normale Supérieure; and E.K., New York University.y

The authors declare no conflict of interest.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: bkxue@ias.edu or livingmatter@
rockefeller.edu.y

www.pnas.org/cgi/doi/10.1073/pnas.1813447115 PNAS Latest Articles | 1 of 6

http://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:bkxue@ias.edu
mailto:livingmatter@rockefeller.edu
mailto:livingmatter@rockefeller.edu
http://www.pnas.org/cgi/doi/10.1073/pnas.1813447115
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1813447115&domain=pdf&date_stamp=2018-11-22


the environment, such as the temperature, the photoperiod, or
the close presence of predators at the time. These environmental
cues may influence the course of development that determines
the phenotypic traits of the adult organism, such as the body
size, the wing color, or the quality of defensive organs. After
reaching maturity, the adult organism will encounter an environ-
ment, which could be different from the one that it experienced
during development. This may happen, for example, if the organ-
ism migrates to a new habitat as an adult or if the environment
itself changes over time. The condition of the environment that
the organism encounters as an adult will affect the number of
offspring that it can produce. Those organisms that can better
anticipate their future environment and express a favorable
phenotype during development will be able to produce more
offspring in adulthood. In the long term, such organisms will
reach greater abundance and are more likely to be evolutionarily
successful.

We will model such developmentally plastic organisms as fol-
lows. Let the environmental cue that the organism receives
during development be denoted by ξ, and let the phenotype that
the organism expresses as an adult be denoted by φ. Both of
these quantities are in general high-dimensional vectors, with dif-
ferent components representing different environmental factors
sensed by the organism and different quantitative traits char-
acterizing the organism, respectively. The expressed phenotype
φ will depend on the environmental cue ξ as a result of the
organism’s developmental program. Such dependence will be
summarized by a function φ= Φ(ξ), which will be called the
“plastic response” of the organism. Furthermore, the environ-
ment that the organism encounters as an adult will be denoted by
ε. In that environment, the number of offspring that the organ-
ism can produce is given by a function f (φ; ε), which is a measure
of fitness. We assume that the environment ε randomly switches
between a set of conditions labeled by a superscript µ. Each
environment εµ favors a particular phenotype ψµ, such that the
fitness of the organism in εµ depends on how close its phenotype
φ is to the favored phenotype ψµ. For simplicity, we assume that
f (φ; ε) is a Gaussian function, f (φ; εµ) = f µ e−γ

2(φ−ψµ)2 , where
f µ is the maximum number of offspring in each environment εµ

and (··· )2 is the squared distance between the phenotypes. The
parameter γ measures the selection pressure (1/γ provides a
unit for the distance between phenotypes); for brevity, we set
γ= 1 without loss of generality. We consider asexual reproduc-
tion, although the model can be extended to sexually reproducing
organisms; we also neglect potential parental effects on the
phenotype. Our notations are summarized in Table 1.

Our goal is to analyze the growth rate of a population of
such organisms. Their generations are assumed to be discrete
and largely synchronized, which is the case for many animals
that breed in a particular season each year and plants that
germinate and flower annually. Each generation is labeled by
a number t . For now, we ignore phenotypic variation among
individuals of the same generation (a more general case is in
Materials and Methods). Therefore, in each generation, all indi-
viduals will have the same fitness, f (φt ; εt), where φt = Φ(ξt).
For a large population with demographic fluctuations that can
be neglected, the growth of the population size N during that
generation will be given by Nt+1 =Nt f (φt ; εt). Over many gen-
erations, t = 0, 1, . . . ,T , the long-term growth rate (LGR) of the
population will be (derivation is in Materials and Methods)

Λ =
1

T
log

NT

N0
=
∑
ξ,ε

P(ξ, ε) log f (Φ(ξ); ε). [1]

Here, we denote by P(ξ) the probability of occurrence of a
particular environmental signal ξ received at the time of devel-
opment and by P(ε) the probability of occurrence of a partic-

ular environmental condition ε at the time of selection; then,
P(ξ, ε) is the joint probability that both the environmental cue
ξ and the environmental condition ε occur together in the same
generation.

Results
Solving our simple model of a developmentally plastic popula-
tion growing in a stochastically varying environment, we obtain
an explicit expression for the LGR Λ. This expression can be
decomposed into four easily interpretable terms (derivation is
in Materials and Methods):

Λ = Λmax−V[ψ] +V [E[ψ | ξ]]− d2(Φ∗, Φ), [2]

which represents

(LGR) = (maximum possible growth rate)

− (cost of environmental uncertainty)

+ (benefit of phenotypic plasticity)

− (cost of suboptimal plasticity).

• The first term, Λmax≡
∑
µ P(εµ) log f µ, represents the fastest

possible growth rate for any population. This maximum growth
rate could only be achieved by organisms with the pheno-
type that matches the environment perfectly. Such organisms
would always make a right choice at the time of development
to express the phenotype ψµ if the environment at the time
of selection is εµ. This type of development can be called
“perfect anticipation,” which would require that the organ-
ism could fully predict the future environment at the time of
development.
• The second term, V[ψ], is the variance of the favored pheno-

type ψ due to environmental variations. Such environmental
variations will reduce the growth rate of a population. For
organisms with development that is nonplastic (i.e., individuals
that express the same predetermined phenotype regardless of
the environmental cues), the maximum growth rate is given by
the difference of the first two terms: Λbnp≡Λmax−V[ψ]. The
greater is the variance of the favored phenotype, the larger
is the reduction of growth rate in the absence of phenotypic
plasticity.
• The third term, V[E[ψ | ξ]], is connected with the correlation

between the environmental cue ξ received during develop-
ment and the favored phenotype ψ at the time of selection.
This term represents the “benefit of phenotypic plasticity” that
helps to increase the LGR of a population. As long as the
environmental cue is correlated with—and thus, potentially
informative about—the favored phenotype, phenotypic plas-
ticity can be beneficial. However, since the correlation between
the environmental cue and the favored phenotype can rarely
be perfect, the benefit of phenotypic plasticity would generally
not be able to bring the population growth rate to the value
Λmax. For a given degree of such correlation, the maximum
growth rate of a developmentally plastic population is given by

Table 1. Main symbols used in the model

Symbol Meaning

ξ Environmental cue received during development
ε Environment at the time of selection
φ Phenotype expressed by the adult organism
ψ Favored phenotype in a given environment
Φ Plastic response: a function that maps cues to phenotypes
γ Parameter controlling the strength of selection pressure
σ Parameter controlling the noisiness of environmental cue
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the total of the first three terms: Λ∗≡Λmax−V[ψ] +V[E[ψ |
ξ]]. The “optimal plastic response,” which yields the growth
rate Λ∗, is denoted by Φ∗(ξ) and will be described below.
• The last term, d2(Φ∗, Φ)≡

∑
ξ P(ξ)(Φ∗(ξ)−Φ(ξ))2, mea-

sures the difference between the optimal plastic response Φ∗

and the actual response Φ used by a population. Because of
possible physical constraints, such as a limited range of phe-
notypes that the developmental program can produce, the
organisms may not be able to exactly implement the optimal
plastic response. As a result, the population growth rate, Λ,
will be lower than the optimal value Λ∗. Hence, this last term
represents the loss of population growth rate due to the use of
a suboptimal plastic response.

The above decomposition of the population growth rate sum-
marizes the main result of this paper. The relation between those
terms is illustrated schematically in Fig. 1. It shows that a popu-
lation using an optimal plastic response can, in general, achieve
faster growth than being nonplastic but not faster than having
phenotypes perfectly matched to the environment at all times.
The optimal plastic response yields perfectly matched pheno-
types only when the environmental cue received by the organism
during development is fully predictive of the future environ-
ment that it encounters as an adult, in which case the population
achieves the maximum growth rate Λmax. However, being non-
plastic is the optimal response if the environmental cue is not
informative about the future environment at all, in which case
the population can only grow at a lower rate Λbnp. Somewhere
in between these two limits is the realistic case where information
extracted from the environment during development is partially
predictive of the future, which allows the population with optimal
plasticity to grow at an intermediate rate Λ∗. Finally, although a
population using a suboptimal plastic response will grow slower
than Λ∗, it is still better than being totally nonplastic if Λ is
greater than Λbnp. In that case, the difference between those
two terms can be called the “achieved” benefit of phenotypic
plasticity, as indicated in Fig. 1.

The key point in deriving the above results (details are in Mate-
rials and Methods) is to find the optimal plastic response, Φ∗, that
maximizes the value of Λ in Eq. 1. This can be done by setting the
variation of Λ over Φ(ξ) to zero, which yields

Φ∗(ξ) =
∑
µ

P(εµ | ξ)ψµ≡E[ψ | ξ]. [3]

Here, P(εµ | ξ) is the conditional probability of encountering
the environment εµ at adulthood when the cue ξ is received

during development. This expression implies that the optimal
plastic response takes the form of Bayesian inference—given
the environmental cue ξ, the organism has to effectively esti-
mate the posterior probability of each environment εµ and take
the average of the favored phenotypes ψµ accordingly. If the
environmental cue is informative enough to single out the envi-
ronment that will occur, then the expressed phenotype will be
perfectly matched to that environment. Otherwise, a compro-
mise is made between all possible environments that may be
encountered.

As an example, consider fruit flies (Drosophila), which have
larvae that develop in rotting fruits and adults that migrate by
air. An important phenotype of the adult fly is the ratio of wing
and thorax sizes, which affects the flight capability in a given air
condition—the colder the air, the better it is to have a large wing
to thorax ratio (17, 18). This phenotype is plastic and depends on
the temperature under which the larvae develop (17, 19). In this
case, the temperature of the rotting fruit provides an environ-
mental cue received during development, ξ, and the temperature
of the air serves as a proxy for the environmental condition of the
adult, ε. The environment ε can vary over a wide range, and the
favored phenotype ψ is a decreasing function of ε.

To study the optimal plastic response in this case, let us assume
that the favored phenotype ψ is a linear function of the environ-
ment ε:ψ(ε) = a − b ε. The slope b here characterizes the perfect
level of plasticity for the organism. For simplicity, we assume
that the environment ε follows a normal distribution, N (0, δ2),
and the cue ξ is normally distributed around ε with an SD of σ.
Using Eq. 3, we find that the optimal plastic response is given by
Φ∗(ξ) = a − ρ b ξ, where ρ= δ2/(δ2 +σ2). This is also a linear
function, but the slope is reduced by a factor ρ, which character-
izes the correlation between ε and ξ (Fig. 2A) (similar theoretical
results were found in, for example, refs. 20 and 21). This example
clearly illustrates that the optimal level of phenotypic plasticity
depends on the amount of correlation between the environment
of the adult and the cue received during development. If they
are not fully correlated, ρ< 1, then the slope of the optimal plas-
tic response will be smaller than that of the favored phenotype.
This is found to be the case for the plastic wing to thorax ratio
of Drosophila melanogaster with respect to temperature, which is
attributed to the lack of correlation between the temperatures at
development and selection (20).

An important feature of the optimal plastic response is that,
when the environmental cue received during development is
noisy, the plastic response would be robust against such noise.
This feature is best observed in cases where the environmen-
tal conditions are discrete. As an example, consider butterflies

Fig. 1. Decomposition of the long-term population growth rate Λ. The growth rates of the perfectly anticipating population (Λmax), the best nonplastic
population (Λbnp), the optimally plastic population with given environmental cues (Λ*), and an actual population with suboptimal plasticity (Λ) are drawn
as lines at different heights. Λ* is in between Λmax and Λbnp; it approaches Λmax if the environmental cue received during development is fully predictive
of the favored phenotype at the time of selection and approaches Λbnp when the environmental cue is not informative about the favored phenotype at all.
Moreover, Λ is below Λ* if the plastic response is suboptimal; phenotypic plasticity is still beneficial if Λ is above Λbnp.
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Fig. 2. Examples of optimal plastic responses. (A) The environment ε has a
normal distributionN (0, 1); the environmental cue ξ is normally distributed
around ε with an SD of σ. The favored phenotype ψ is a linear function of
ε with a negative slope (normalized to one; black line). The optimal plastic
response has a reduced slope, since for σ> 0, the cue ξ is not fully correlated
with the environment ε. (B) There are two discrete environments, ε1,2 =±1,
which occur with equal probability; the environmental cue ξ is normally dis-
tributed around εµ with an SD of σ, which measures the size of random
noise (A). The optimal plastic response varies in between the favored phe-
notypes ψ1 and ψ2, with a sigmoidal shape that is robust to noise around ε1

and ε2.

(Bicyclus anynana) living in a seasonal environment with dis-
tinct dry and wet seasons. Alternative seasonal forms, differing
in wing pattern, relative abdomen mass, metabolic rate, etc. can
be induced by the temperature during larval development (22,
23). Those phenotypic traits will affect the survival and breeding
success of adult butterflies. For instance, in the warm wet season,
prominent eyespots on the ventral wings of B. anynana help to
deflect predator attacks, whereas in the cool dry season, reduced
color patterns provide better camouflage (22). To develop the
correct seasonal form, the larvae would sense the temperature
during development to help distinguish which season they will
emerge in as adults. However, the temperature fluctuates over
time and introduces noise in the received signal. Therefore, the
developmental program must be plastic yet, at the same time,
robust to the environmental noise.

Such robustness is implied by our model. Let us denote the
environmental conditions of the dry and wet seasons by ε1 and
ε2, respectively, which could represent relatively low and high
temperatures. The favored phenotypes in those environments
are denoted by ψ1 and ψ2, respectively, which may represent
less or more prominent wing patterns as well as other dimorphic
traits. The environmental cue ξ will represent the temperature
at the time of development, which correlates with the season
during which the adults emerge and breed. For simplicity, we
assume that ε1 and ε2 are equally likely and that ξ has a normal
distribution centered around either εµ, with an SD of σ repre-
senting the level of environmental noise. According to Eq. 3, the
optimal plastic response is Φ∗(ξ) = (1−α)ψ1 +αψ2, where α
as a function of ξ is plotted in Fig. 2B. It can be seen that, for
a relatively low noise level, the response function has a sharp
sigmoidal shape. As a result, the relatively flat regions near ε1

and ε2 are robust to noise in the environmental cue ξ, whereas
the steep region in the middle is sensitive to signal changes and
leads to a plastic response. For high levels of noise, however,
the plastic response becomes more smooth and linear within the
environmental range between ε1 and ε2. Such sigmoidal shape,
with various degrees of smoothness, has been observed for the
aforementioned phenotypic traits of B. anynana (23).

Discussion
Our main result (Eq. 2) is reminiscent of a similar decomposi-
tion of the LGR for a population using a bet-hedging strategy
while receiving environmental information (9, 15). In that model,

the population diversifies into coexisting groups of distinct phe-
notypes described by a phenotype distribution π(φ | ξ) that may
depend on the received environmental cue ξ. It is assumed that
the environment switches between a set of conditions, {εµ},
each associated with a favored phenotype ψµ; however, in con-
trast to our model, the phenotype φ that an organism expresses
is selected only from the set {ψµ}, and the organism survives
only if its phenotype exactly matches the favored phenotype for
the present environment. Under those assumptions, it has been
found that the LGR of the population is given by (equation 23
in ref. 15)

Λ = Λmax−H (ψ) + I (ψ; ξ)−D(π∗‖π). [4]

The term Λmax represents the maximum population growth
rate, which can only be achieved by organisms that express the
environmentally favored phenotype at all times, the same as
in our model. The term H (ψ) is the entropy of the favored
phenotype ψ or, equivalently, that of the environment ε. It
measures the intrinsic uncertainty of the environment and the
favored phenotype, which reduces the population growth rate,
similar to the term V[ψ] in our model. The term I (ψ; ξ) is
the mutual information between the favored phenotype ψ and
the environmental cue ξ, which is a measure of their correla-
tion, similar to the term V[E[ψ | ξ]] in our model. For a bet-
hedging population that uses environmental information, this
term is interpreted as the “value of information” in promot-
ing long-term population growth. Finally, the term D(π∗‖π)
is the relative entropy between the optimal phenotype distri-
bution π∗ and the actual distribution π, which measures the
difference between the two distributions. This term represents
the cost of using a suboptimal bet-hedging strategy, analogous
to the term d2(Φ∗, Φ) in our model for a suboptimal plastic
strategy.

The strong resemblance between Eqs. 2 and 4 suggests a
close connection between the two adaptation strategies of plas-
tic development and bet hedging. Indeed, a bet-hedging strat-
egy that uses environmental information to alter the pheno-
type distribution can be viewed as a type of plasticity—not
only the phenotype is plastic (since individuals of an iso-
genic population can develop different phenotypes), but the
distribution of phenotypes (or the propensity of each indi-
vidual to express different phenotypes) is also plastic and
depends on environmental cues. In contrast, a purely bet-
hedging population that does not rely on environmental infor-
mation is analogous to a nonplastic population with an LGR
that is limited by the environmental uncertainty, as expressed
by the first two terms of the growth rate decomposition
[4]. From this perspective, the third term representing the
value of environmental information may also be viewed as
the benefit of plasticity provided by the amount of correla-
tion between the received environmental cue and the favorable
phenotype.

The fact that both models of phenotypic plasticity and bet
hedging, under different assumptions, give rise to the same form
of growth rate decomposition hints that they could be unified
under the same theoretical framework. Indeed, an environmen-
tally dependent bet-hedging strategy can be biologically realized
by coupling a plastic developmental program to an environ-
mental cue that varies between individuals (more details are in
Materials and Methods). Although the particular expression for
the population growth rate will depend on the detailed assump-
tions of the model, the existence and the meaning of the terms
in the growth rate decomposition will generally be independent
of such details. Those terms can be defined, in principle, as
the differences between the LGRs of the perfectly anticipat-
ing population (Λmax), the best nonplastic population (Λbnp),
the optimally plastic population under given environmental
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cues (Λ∗), and the actual population with a certain level of
phenotypic plasticity (Λ). The relation between those terms can,
in general, be depicted by a diagram similar to the one shown
in Fig. 1.

Conceptually, the terms in the growth rate decomposition
can be associated with various types of constraints of pheno-
typic plasticity discussed in the literature (6). For example, the
difference between Λmax and Λ∗ can be interpreted as the “infor-
mation reliability limit” of phenotypic plasticity, since it is caused
by the incomplete correlation between the environment and the
cue. Similarly, the term d2(Φ∗, Φ) that measures the difference
between Λ∗ and Λ can be interpreted as the “developmental
range limit” of phenotypic plasticity, since it is caused by the
inability of the developmental process to produce the optimal
phenotypic response. Moreover, the optimal plastic response
Φ∗(ξ), given by Eq. 3, is undetermined for a vanishing P(ξ) (i.e.,
for environmental cues that rarely occur); this may represent the
situation where the organism encounters extreme environments
under which it could develop abnormal phenotypes. This would
give rise to the problem of “developmental instability,” another
type of constraint for phenotypic plasticity (6).

Note that, in our simple model, we did not include direct
costs of plasticity, such as “maintenance” and “production”
costs associated with sensory and regulatory machineries for
expressing plastic phenotypes. It is expected that phenotypic
plasticity is overall adaptive if its growth benefit outweighs these
costs. By deriving the fundamental limit to the benefit of phe-
notypic plasticity, we effectively put a bound on the cost of
plasticity that allows phenotypic plasticity to emerge through
evolution.

Materials and Methods
Derivation of Population Growth Rate. Recall that, in our model, ξ is the envi-
ronmental cue that an organism receives during development and that ε
is the environmental condition that it encounters as an adult. The pheno-
type of the organism is determined by a plastic response function, φ= Φ(ξ),
and the expected number of offspring is determined by a fitness function,
f(φ; ε). We denote by P(ξ, ε) the joint probability distribution of ξ and ε.

Neglecting phenotypic variation between individuals and demographic
fluctuation of the population, the population size N will grow in every
generation t according to

Nt+1 = Nt f(φt ; εt), where φt = Φ(ξt). [5]

Both ξt and εt may vary over time, with possible correlation between them.
The LGR of the population can be formally defined as

Λ≡ lim
T→∞

1

T
log

NT

N0
. [6]

Using Eq. 5 in the above definition, one finds that

Λ = lim
T→∞

1

T

T−1∑
t=0

log f(Φ(ξt); εt). [7]

It can be considered as the time average of the per generation growth rate
log f(Φ(ξt); εt). In the long term, the time average can be replaced by a
probability average, yielding

Λ =
∑
ξ,ε

P(ξ, ε) log f(Φ(ξ); ε). [8]

Specializing to the case where the fitness is given by a Gaussian function

f(φ; ε) = f(ε) e−γ
2(φ−Ψ(ε))2 , where f(ε) is the maximum fitness and Ψ(ε) is

the favored phenotype (both being functions of the environment ε), the
LGR becomes

Λ =
∑
ε

P(ε) log f(ε)− γ2
∑
ξ,ε

P(ξ, ε)(Φ(ξ)−Ψ(ε))2
. [9]

Note that γ and Λ have the units of (phenotype unit)−1 and (generation
number)−1, respectively. If we label different ε by εµ and denote f(εµ) = fµ

and Ψ(εµ) =ψµ, then

Λ =
∑
µ

P(εµ) log fµ− γ2
∑
ξ,µ

P(ξ, εµ)
(
Φ(ξ)−ψµ

)2
. [10]

Solution of Optimal Plastic Response. To find the optimal plastic response
Φ*, we take the variation of Λ with respect to Φ(ξ):

δΛ

δΦ(ξ)
=−2γ2

∑
µ

P(ξ, εµ)
(
Φ(ξ)−ψµ

)
. [11]

Setting this variation to zero leads to the equation

P(ξ)Φ(ξ) =
∑
µ

P(ξ, εµ)ψµ. [12]

Solving this equation yields

Φ*(ξ) =
∑
µ

P(εµ | ξ)ψµ≡E[ψ | ξ], [13]

where we used Bayes’ rule to find the conditional probability distribution,
P(εµ | ξ) = P(ξ, εµ)/P(ξ), and E[ψ | ξ] denotes the conditional mean of ψ for
a given ξ. Note that P(εµ | ξ) is undefined for those ξ that have P(ξ) = 0;
hence, Φ*(ξ) is obtained only for environmental cues that occur. Since the
coefficients, P(εµ | ξ), are nonnegative and sum to one, the resultant phe-
notype Φ*(ξ) is inside the convex polytope formed by {ψµ} as vertices in
the phenotype space.

Decomposition of LGR. We can decompose the value of Λ from Eq. 10 as
follows (setting γ= 1 for brevity):

Λ =
∑
µ

P(εµ) log fµ−
∑
ξ,µ

P(ξ, εµ)
[(
ψ
µ−E[ψ | ξ]

)
+ (E[ψ | ξ]−Φ(ξ))

]2
=
∑
µ

P(εµ) log fµ−
∑
ξ

P(ξ)
∑
µ

P(εµ | ξ)
(
ψ
µ−E[ψ | ξ]

)2
−
∑
ξ

P(ξ)(E[ψ | ξ]−Φ(ξ))2
. [14]

The first term is the maximum possible value of Λ, which is denoted by Λmax.
The second term is the conditional variance of ψ given ξ and then averaged
over ξ, which is denoted by E[V[ψ | ξ]]; this term can be further decom-
posed using the law of total variance as E[V[ψ | ξ]] =V[ψ]−V[E[ψ | ξ]].
The last term is the only term that depends on Φ(ξ), from which it is clear
that Φ*(ξ) =E[ψ | ξ]; this term defines a squared distance between the
functions Φ*(ξ) and Φ(ξ), which is denoted by d2(Φ*, Φ). Putting all terms
together, we find

Λ = Λmax−V[ψ] +V [E[ψ | ξ]]− d2(Φ*, Φ), [15]

which is the growth rate decomposition (Eq. 2).
Now consider a nonplastic population with individuals that always ex-

press a predetermined phenotype regardless of environmental cues. Such a
nonplastic response can be described by Φ(ξ) =φ0 for all ξ, where φ0 is a
constant phenotype. Then, the LGR (Eq. 10) becomes

Λ =
∑
µ

P(εµ) log fµ−
∑
µ

P(εµ)
(
φ0−ψµ

)2
. [16]

Maximizing the above value of Λ with respect to φ0 yields the best nonplas-
tic phenotype, φ0* =

∑
µ P(εµ)ψµ =E[ψ]. Accordingly, the maximum growth

rate for the nonplastic population is

Λbnp = Λmax−
∑
µ

P(εµ)
(
ψ
µ−E[ψ]

)2
= Λmax−V[ψ], [17]

the first two terms of the decomposition (Eq. 15).
Moreover, the maximum growth rate for a plastic population is given by

inserting the optimal plastic response Φ*(ξ) into Eq. 10, which yields

Λ* = Λmax−V[ψ] +V [E[ψ | ξ]]= Λbnp +V [E[ψ | ξ]]. [18]

This corresponds to the first three terms of Eq. 15 as can be expected, since
the last term d2(Φ*, Φ) vanishes when Φ = Φ*. Note that Λ* always is in
between Λmax and Λbnp (i.e., Λmax≥Λ*≥Λbnp), because the termV[E[ψ | ξ]]
satisfies 0≤V[E[ψ | ξ]]≤V[ψ]. The upper limit Λ* = Λmax is reached only
when V[ψ]−V[E[ψ | ξ]] =E[V[ψ | ξ]] = 0; this happens if V[ψ | ξ] = 0 for all
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ξ (i.e., when ψ is fully determined by ξ). It means that the optimal plas-
tic response is perfect when the environmental cue can help to single out
the favored phenotype. The lower limit Λ* = Λbnp is reached when V[E[ψ |
ξ]] = 0, which happens if E[ψ | ξ] does not vary with ξ; this is the case
when ξ is totally irrelevant for predicting ψ. It means that, when the envi-
ronmental cue is not informative at all, the optimal response is to be
nonplastic.

Generalization to Individual Variations. So far, we have ignored phenotypic
variation among individuals of the same generation. It was assumed that
they receive the same environmental cue ξ that determines their phenotype.
This environmental cue can be thought to represent the macroenviron-
ment shared by all individuals that undergo development around the
same time.

Now consider the case where, on top of such macroenvironment ξ, each
individual experiences a unique microenvironment, ζ, during development.
We assume that, for a given macroenvironment ξ, the microenvironment
ζ varies among individuals according to a conditional probability distribu-
tion P(ζ | ξ). An organism experiencing a microenvironment ζ will develop a
phenotype φ= Φ(ζ). In that case, instead of Eq. 8, the LGR of the population
will be given by

Λ =
∑
ξ,ε

P(ξ, ε) log
∑
ζ

P(ζ | ξ)f(Φ(ζ); ε). [19]

For a fitness function given by f(φ; ε) = f(ε) e−γ
2(φ−Ψ(ε))2 as before, the

LGR becomes

Λ =
∑
ε

P(ε) log f(ε)−
∑
ξ,ε

P(ξ, ε) log
∑
ζ

P(ζ | ξ)e−γ
2(Φ(ζ)−Ψ(ε))2

. [20]

The optimal plastic response will be determined by the equation δΛ/δΦ(ζ)
= 0, which, unfortunately, does not have an explicit solution in this case.
To find the optimal plastic response, Φ*, one could use numerical methods
instead.

Relation to Bet-Hedging Model. The expression of the LGR in the presence of
individual variations (Eq. 19) bears a strong resemblance to that in a model
of bet hedging with environmental information (15). To see the connection,
we can define a phenotype distribution among the population by

π(φ | ξ)≡
∑
ζ

P(ζ | ξ)δ(φ, Φ(ζ)), [21]

where δ(x, y) denotes the delta function that vanishes unless x = y. Then,
the LGR can be expressed as

Λ =
∑
ξ,ε

P(ξ, ε) log
∑
φ

π(φ | ξ)f(φ; ε). [22]

This is the same equation that describes the LGR in the model of bet
hedging, with ξ playing the role of acquired information about the environ-
mental state. In the bet-hedging model, the phenotype variation described
by the distribution π is often assumed to arise from stochastic processes
inside individual organisms. In our model of phenotypic plasticity, how-
ever, the phenotype variation is generated by coupling a deterministic
developmental program Φ to a variable external signal ζ.
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